1
|
Duan W, Huang G, Sui Y, Wang K, Yu Y, Chu X, Cao X, Chen L, Liu J, Eichler EE, Xiong B. Deficiency of DDX3X results in neurogenesis defects and abnormal behaviors via dysfunction of the Notch signaling. Proc Natl Acad Sci U S A 2024; 121:e2404173121. [PMID: 39471229 DOI: 10.1073/pnas.2404173121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
The molecular mechanisms underlying the neurodevelopmental disorders (NDDs) caused by DDX3X variants remain poorly understood. In this study, we validated that de novo DDX3X variants are enriched in female developmental delay (DD) patients and mainly affect the evolutionarily conserved amino acids based on a meta-analysis of 46,612 NDD trios. We generated a ddx3x deficient zebrafish allele, which exhibited reduced survival rate, DD, microcephaly, adaptation defects, anxiolytic behaviors, social interaction deficits, and impaired spatial recognitive memory. As revealed by single-nucleus RNA sequencing and biological validations, ddx3x deficiency leads to reduced neural stem cell pool, decreased total neuron number, and imbalanced differentiation of excitatory and inhibitory neurons, which are responsible for the behavioral defects. Indeed, the supplementation of L-glutamate or glutamate receptor agonist ly404039 could partly rescue the adaptation and social deficits. Mechanistically, we reveal that the ddx3x deficiency attenuates the stability of the crebbp mRNA, which in turn causes downregulation of Notch signaling and defects in neurogenesis. Our study sheds light on the molecular pathology underlying the abnormal neurodevelopment and behavior of NDD patients with DDX3X mutations, as well as providing potential therapeutic targets for the precision treatment.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guiyang Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Sui
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liangpei Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Fang Q, Xu Y, Feng J, Zhang X, Wang B, Fu Q, Xiang Y. Functional analysis of a novel pathogenic variant in CREBBP associated with bone development. Pediatr Res 2024:10.1038/s41390-024-03490-z. [PMID: 39217261 DOI: 10.1038/s41390-024-03490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND CREBBP has been extensively studied in syndromic diseases associated with skeletal dysplasia. However, there is limited research on the molecular mechanisms through which CREBBP may impact bone development. We identified a novel pathogenic CREBBP variant (c.C3862T/p.R1288W, which is orthologous to mouse c.3789 C > T/p.R1289W) in a patient with non-syndromic polydactyly. METHODS We created a homozygous Crebbp p.R1289W mouse model and compared their skeletal phenotypes to wild-type (WT) animals. Bone marrow stem cells (BMSCs) were isolated and assessed for their proliferative capacity, proportion of apoptotic cells in culture, and differentiation to chondrocytes and osteocytes. RESULTS We observed a significant decrease in body length in 8-week-old homozygous Crebbp p.R1289W mice. The relative length of cartilage of the digits of Crebbp p.R1289W mice was significantly increased compared to WT mice. BMSCs derived from Crebbp p.R1289W mice had significantly decreased cell proliferation and an elevated rate of apoptosis. Consistently, cell proliferative capacity was decreased and the proportion of apoptotic cells was increased in the distal femoral growth plate of Crebbp p.R1289W compared to WT mice. Chemical induction of BMSCs indicated that Crebbp p.R1289W may promote chondrocyte differentiation. CONCLUSION The Crebbp p.R1289W variant plays a pathogenic role in skeletal development in mice. IMPACT CREBBP has been extensively studied in syndromic diseases characterized by skeletal dysplasia. There is limited research regarding the molecular mechanism through which CREBBP may affect bone development. To our knowledge, we generated the first animal model of a novel Crebbp variant, which is predicted to be pathogenic for skeletal diseases. Certain pathogenic variants, such as Crebbp p.R1289W, can independently lead to variant-specific non-syndromic skeletal dysplasia.
Collapse
Affiliation(s)
- Qing Fang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yunlan Xu
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Jue Feng
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Bo Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Ying Xiang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| |
Collapse
|
3
|
Haghshenas S, Bout HJ, Schijns JM, Levy MA, Kerkhof J, Bhai P, McConkey H, Jenkins ZA, Williams EM, Halliday BJ, Huisman SA, Lauffer P, de Waard V, Witteveen L, Banka S, Brady AF, Galazzi E, van Gils J, Hurst ACE, Kaiser FJ, Lacombe D, Martinez-Monseny AF, Fergelot P, Monteiro FP, Parenti I, Persani L, Santos-Simarro F, Simpson BN, Alders M, Robertson SP, Sadikovic B, Menke LA. Menke-Hennekam syndrome; delineation of domain-specific subtypes with distinct clinical and DNA methylation profiles. HGG ADVANCES 2024; 5:100287. [PMID: 38553851 PMCID: PMC11040166 DOI: 10.1016/j.xhgg.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Hidde J Bout
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands
| | - Josephine M Schijns
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Ella M Williams
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Benjamin J Halliday
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Sylvia A Huisman
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands; Zodiak, Prinsenstichting, Purmerend, JE 1444, the Netherlands
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam 1105 AZ, the Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, AZ 1105, the Netherlands
| | - Laura Witteveen
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Angela F Brady
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow HA1 3UJ, UK
| | - Elena Galazzi
- Department of Endocrine & Metabolic Diseases, San Luca Hospital, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Julien van Gils
- Centre Hospitalier Universitaire Bordeaux, 33404 Bordeaux, France
| | - Anna C E Hurst
- Department of Genetics, University of Alabama, Birmingham, AL 35294-0024, USA
| | - Frank J Kaiser
- Institute of Human Genetics, University of Duisburg-Essen, 45122 Essen, Germany; Center for Rare Diseases, University Hospital Essen, 45122 Essen, Germany
| | - Didier Lacombe
- Centre Hospitalier Universitaire Bordeaux, 33404 Bordeaux, France
| | - Antonio F Martinez-Monseny
- Genètica Clínica, Servei de Medicina Genètica i Molecular, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | | | | | - Ilaria Parenti
- Institute of Human Genetics, University of Duisburg-Essen, 45122 Essen, Germany
| | - Luca Persani
- Department of Endocrine & Metabolic Diseases, San Luca Hospital, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, 28029 Madrid, Spain; Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Brittany N Simpson
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45206, USA
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam 1105 AZ, the Netherlands
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A3K7, Canada.
| | - Leonie A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands.
| |
Collapse
|
4
|
Lacombe D, Bloch-Zupan A, Bredrup C, Cooper EB, Houge SD, García-Miñaúr S, Kayserili H, Larizza L, Lopez Gonzalez V, Menke LA, Milani D, Saettini F, Stevens CA, Tooke L, Van der Zee JA, Van Genderen MM, Van-Gils J, Waite J, Adrien JL, Bartsch O, Bitoun P, Bouts AHM, Cueto-González AM, Dominguez-Garrido E, Duijkers FA, Fergelot P, Halstead E, Huisman SA, Meossi C, Mullins J, Nikkel SM, Oliver C, Prada E, Rei A, Riddle I, Rodriguez-Fonseca C, Rodríguez Pena R, Russell J, Saba A, Santos-Simarro F, Simpson BN, Smith DF, Stevens MF, Szakszon K, Taupiac E, Totaro N, Valenzuena Palafoll I, Van Der Kaay DCM, Van Wijk MP, Vyshka K, Wiley S, Hennekam RC. Diagnosis and management in Rubinstein-Taybi syndrome: first international consensus statement. J Med Genet 2024; 61:503-519. [PMID: 38471765 PMCID: PMC11137475 DOI: 10.1136/jmg-2023-109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.
Collapse
Affiliation(s)
- Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux, and INSERM U1211, University of Bordeaux, 33076 Bordeaux, France
| | - Agnès Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, and Centre de référence des maladies rares orales et dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, and Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, Illkirch, France
| | - Cecilie Bredrup
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Edward B Cooper
- Department of Anesthesiology, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sofia Douzgou Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway and Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sixto García-Miñaúr
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Hülya Kayserili
- Department of Medical Genetics, Koc University School of Medicine (KUSOM), 34010 Istanbul, Turkey
| | - Lidia Larizza
- Laboratorio di Ricerca in Citogenetica medica e Genetica Molecolare, Centro di Ricerche e Tecnologie Biomediche IRCCS-Istituto Auxologico Italiano, Milano, Italy
| | - Vanesa Lopez Gonzalez
- Department of Pediatrics, Medical Genetics Section, Virgen de la Arrixaca University Hospital, IMIB, CIBERER, Murcia, Spain
| | - Leonie A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Donatella Milani
- Fondazione IRCCS, Ca'Granda Ospedale Maggiore, 20122 Milan, Italy
| | - Francesco Saettini
- Fondazione Matilde Tettamanti Menotti De Marchi Onlus, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Monza, Italy
| | - Cathy A Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, Tennessee, USA
| | - Lloyd Tooke
- Department of Pediatrics, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Jill A Van der Zee
- Department of Pediatric Urology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maria M Van Genderen
- Bartiméus Diagnostic Center for complex visual disorders, Zeist and Department of Ophthalmology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Julien Van-Gils
- Department of Medical Genetics, University Hospital of Bordeaux, and INSERM U1211, University of Bordeaux, 33076 Bordeaux, France
| | - Jane Waite
- School of Psychology, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Jean-Louis Adrien
- Université de Paris, Laboratoire de Psychopathologie et Processus de Santé, Boulogne Billancourt, France
| | - Oliver Bartsch
- MVZ - Humangenetik, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Pierre Bitoun
- Département de Genetique, SIDVA 91, Juvisy-sur-Orge, France
| | - Antonia H M Bouts
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna M Cueto-González
- Department of Clinical and Molecular Genetics, University Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Floor A Duijkers
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux, and INSERM U1211, University of Bordeaux, 33076 Bordeaux, France
| | - Elizabeth Halstead
- Psychology and Human Development Department, University College London, London, UK
| | - Sylvia A Huisman
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Zodiak, Prinsenstichting, Purmerend, Netherlands
| | - Camilla Meossi
- Fondazione IRCCS, Ca'Granda Ospedale Maggiore, 20122 Milan, Italy
| | - Jo Mullins
- Rubinstein-Taybi Syndrome Support Group, Registered Charity, Rickmansworth, UK
| | - Sarah M Nikkel
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Oliver
- School of Psychology, University of Birmingham, Edgbaston, UK
| | - Elisabetta Prada
- Fondazione IRCCS, Ca'Granda Ospedale Maggiore, 20122 Milan, Italy
| | - Alessandra Rei
- Associazione Rubinstein-Taybi Syndrome-Una Vita Speciale, Organizzazione di Volontariato (ODV), Gornate Olona, Varese, Italy
| | - Ilka Riddle
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | - Janet Russell
- Associazione Rubinstein-Taybi Syndrome-Una Vita Speciale, Organizzazione di Volontariato (ODV), Gornate Olona, Varese, Italy
| | | | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - David F Smith
- Department of Pediatric Otolaryngology, Cincinnati Children's Hospital Medical Center, and Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Markus F Stevens
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katalin Szakszon
- Institution of Pediatrics, University of Debrecen Clinical Centre, Debrecen, Hungary
| | - Emmanuelle Taupiac
- Department of Medical Genetics, University Hospital of Bordeaux, and INSERM U1211, University of Bordeaux, 33076 Bordeaux, France
| | - Nadia Totaro
- Associazione Rubinstein-Taybi Syndrome-Una Vita Speciale, Organizzazione di Volontariato (ODV), Gornate Olona, Varese, Italy
| | - Irene Valenzuena Palafoll
- Department of Clinical and Molecular Genetics, University Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Daniëlle C M Van Der Kaay
- Division of Paediatric Endocrinology, Department of Paediatrics, Erasmus University Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michiel P Van Wijk
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, University Amsterdam, Amsterdam, Netherlands
| | - Klea Vyshka
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA), Robert Debré University Hospital, Paris, France
| | - Susan Wiley
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Vincent KM, Graham GE. Exploring genotype-phenotype correlations in CREBBP: comment on the literature and description of an additional patient with an atypical outcome. Eur J Hum Genet 2023; 31:975-976. [PMID: 37246193 PMCID: PMC10474082 DOI: 10.1038/s41431-023-01385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023] Open
Affiliation(s)
| | - Gail E Graham
- Department of Medical Genetics, CHEO, Ottawa, ON, Canada
| |
Collapse
|
6
|
Cogan G, Bourgon N, Borghese R, Julien E, Jaquette A, Stos B, Achaiaa A, Chuon S, Nitschke P, Fourrage C, Stirnemann J, Boutaud L, Attie‐Bitach T. Diagnosis of Menke-Hennekam syndrome by prenatal whole exome sequencing and review of prenatal signs. Mol Genet Genomic Med 2023; 11:e2219. [PMID: 37353886 PMCID: PMC10496051 DOI: 10.1002/mgg3.2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
INTRODUCTION CREBBP truncating mutations and deletions are responsible for the well-known Rubinstein-Taybi syndrome. Recently, a new, distinct CREBBP-linked syndrome has been described: missense mutations located at the 3' end of exon 30 and the 5' portion of exon 31 induce Menke-Hennekam syndrome. Patients with this syndrome present a recognizable facial dysmorphism, intellectual disability of variable severity, microcephaly, short stature, autism, epilepsy, visual and hearing impairments, feeding problems, upper airway infections, scoliosis, and/or kyphosis. To date, all diagnoses were made postnatally. METHOD AND CASE REPORT Trio-whole exome sequencing (WES) was performed in a fetus showing increased nuchal translucency persistence and aorta abnormalities at 28 weeks of gestation (WG). RESULTS WES revealed a CREBBP de novo missense mutation (c.5602C>T; p.Arg1868Trp) in exon 31, previously reported as the cause of Menke-Hennekam syndrome. Termination of pregnancy was performed at 32 WG. We further reviewed the prenatal signs of Menke-Hennekam syndrome already reported. Among the 35 patients reported and diagnosed postnatally up to this day, 15 presented recognizable prenatal signs, the most frequent being intra-uterine growth retardation, brain, and cardiovascular anomalies. CONCLUSION Menke-Hennekam is a rare syndrome with unspecific, heterogeneous, and inconstant prenatal symptoms occurring most frequently with the c.5602C>T, p.(Arg1868Trp) mutation. Therefore, the prenatal diagnosis of Menke-Hennekam syndrome is only possible by molecular investigation. Moreover, this case report and review reinforce the importance of performing prenatal WES when unspecific signs are present on imaging.
Collapse
Affiliation(s)
- Guillaume Cogan
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Nicolas Bourgon
- Service d'Obstétrique—Maternité Chirurgie, Médecine et Imagerie foetales, AP‐HP.CentreHôpital Necker Enfants MaladesParisFrance
| | - Roxana Borghese
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Emmanuel Julien
- Service d'ObstétriqueCentre hospitalier du MansLe MansFrance
| | - Aurélia Jaquette
- Service de Pédiatrie, génétique médicaleCentre hospitalier d'AlençonAlençonFrance
| | - Bertrand Stos
- AP‐HP.CentreCardiologie Pédiatrique Hôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Amale Achaiaa
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Sophie Chuon
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Patrick Nitschke
- Bioinformatics Platform, Institut ImagineINSERM UMR 1163ParisFrance
| | - Cécile Fourrage
- Bioinformatics Platform, Institut ImagineINSERM UMR 1163ParisFrance
| | - Julien Stirnemann
- Service d'Obstétrique—Maternité Chirurgie, Médecine et Imagerie foetales, AP‐HP.CentreHôpital Necker Enfants MaladesParisFrance
| | - Lucile Boutaud
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Tania Attie‐Bitach
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| |
Collapse
|
7
|
Bai Z, Li G, Kong X. Case report: a Chinese girl like atypical Rubinstein-Taybi syndrome caused by a novel heterozygous mutation of the EP300 gene. BMC Med Genomics 2023; 16:24. [PMID: 36797748 PMCID: PMC9933371 DOI: 10.1186/s12920-022-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/19/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Rubinstein-Taybi syndrome (RSTS) is an extremely rare autosomal dominant inheritable disorder caused by CREBBP and EP300 mutations, while atypical RSTS harbouring variant from the same genes but not obvious resembling RSTS. There are only a few cases of Menke-Hennekam syndrome (MKHK) with variant of exon 30 or 31 of CREBBP or EP300 gene have been reported that not resembling RSTS recent years. Atypical RSTS cannot be accurately classified as MKHK, nor is it easy to identify the obvious classic characteristics of RSTS. The clinical manifestations and genetic variation of atypical RSTS are not fully understood. CASE PRESENTATION We present a Chinese core family with a girl had recurrent respiratory tract infection and developmental delay. The patient with language and motor mild development retardation, she has slight abnormal facial features, mild hirsutism and post-axial hexadactylia of left foot. Her cisterna magna is enlarged to connect with the fourth ventricle, and the ventricular system is enlarged. She has a malacia beside the posterior horn of the left lateral ventricle. The patient has primary low immunoglobulin G and A, but her level of immunoglobulin M content in blood is normal. The patient harbors a novel heterozygous frameshift variant of c.2499dupG in exon 14 of EP300 gene, that it is proved to de novo origin. The mutation is judged to be a pathogenic mutation, and it has high-grade pathogenic evidence. CONCLUSION The clinical and genetic evaluation of this case corroborates that clinical features caused by c.2499dupG in exon 14 of EP300 are less marked than RSTS2 patient although it is difficult to establish an accurate genotype-phenotype correlation. Our additional case also helps to deepen the clinical and genetic spectrum in this disorder. The case provides a novel mutation of EP300 and enriches the phenotypes related with the gene. We have contributed new variation and disease information for guardians and doctors to broaden the knowledge about EP300-RSTS genotype and phenotype, this may contribute to ameliorate the health management of patients and improve the genetic counseling to the families.
Collapse
Affiliation(s)
- Zhouxian Bai
- grid.412633.10000 0004 1799 0733The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Gaopan Li
- grid.412633.10000 0004 1799 0733The Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
8
|
Musante L, Faletra F, Meier K, Tomoum H, Najarzadeh Torbati P, Blair E, North S, Gärtner J, Diegmann S, Beiraghi Toosi M, Ashrafzadeh F, Ghayoor Karimiani E, Murphy D, Murru FM, Zanus C, Magnolato A, La Bianca M, Feresin A, Girotto G, Gasparini P, Costa P, Carrozzi M. TTC5 syndrome: Clinical and molecular spectrum of a severe and recognizable condition. Am J Med Genet A 2022; 188:2652-2665. [PMID: 35670379 PMCID: PMC9541101 DOI: 10.1002/ajmg.a.62852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/30/2022] [Indexed: 01/24/2023]
Abstract
Biallelic mutations in the TTC5 gene have been associated with autosomal recessive intellectual disability (ARID) and subsequently with an ID syndrome including severe speech impairment, cerebral atrophy, and hypotonia as clinical cornerstones. A TTC5 role in IDs has been proposed based on the physical interaction of TTC5 with p300, and possibly reducing p300 co-activator complex activity, similarly to what was observed in Menke-Hennekam 1 and 2 patients (MKHK1 and 2) carrying, respectively, mutations in exon 30 and 31 of CREBBP and EP300, which code for the TTC5-binding region. Recently, TTC5-related brain malformation has been linked to tubulinopathies due to the function of TTC5 in tubulins' dynamics. We reported seven new patients with novel or recurrent TTC5 variants. The deep characterization of the molecular and phenotypic spectrum confirmed TTC5-related disorder as a recognizable, very severe neurodevelopmental syndrome. In addition, other relevant clinical aspects, including a severe pre- and postnatal growth retardation, cryptorchidism, and epilepsy, have emerged from the reversal phenotype approach and the review of already published TTC5 cases. Microcephaly and facial dysmorphism resulted in being less variable than that documented before. The TTC5 clinical features have been compared with MKHK1 published cases in the hypothesis that clinical overlap in some characteristics of the two conditions was related to the common p300 molecular pathway.
Collapse
Affiliation(s)
- Luciana Musante
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Flavio Faletra
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Kolja Meier
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GöttingenGöttingenGermany
| | - Hoda Tomoum
- Department of PediatricsAin Shams UniversityCairoEgypt
| | | | - Edward Blair
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Sally North
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GöttingenGöttingenGermany
| | - Susann Diegmann
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GöttingenGöttingenGermany
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Ehsan Ghayoor Karimiani
- Department of Molecular GeneticsNext Generation Genetic PolyclinicMashhadIran
- Molecular and Clinical Sciences InstituteSt. George's, University of LondonLondonUK
- Innovative Medical Research Center, Mashhad BranchIslamic Azad UniversityMashhadIran
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Flora Maria Murru
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Caterina Zanus
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Andrea Magnolato
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Martina La Bianca
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Agnese Feresin
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Giorgia Girotto
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Paolo Gasparini
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Paola Costa
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Marco Carrozzi
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| |
Collapse
|
9
|
A Case of Common Variable Immunodeficiency with CREBP Gene Mutation without Rubinstein Taybi Syndrome Features. Case Reports Immunol 2022; 2022:4970973. [PMID: 35833092 PMCID: PMC9273453 DOI: 10.1155/2022/4970973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Hypogammaglobulinemias, based on inborn errors of immunity, are primary immunodeficiencies (PIDs) that can also be diagnosed for the first time in adulthood. Common variable immunodeficiency (CVID) is a multifactorial disease often symptomatic due to antibody deficiency. In addition, some PIDs are classified into the category of immunodeficiencies with syndromic features due to their accompanying clinical findings unrelated to immunity. In this article, a patient with CVID who was diagnosed in adulthood and who was revealed to have a mutation specific to Rubinstein–Taybi syndrome and clinical features reminiscent of this syndrome only after molecular tests was presented.
Collapse
|
10
|
Xiang J, Jin Y, Song N, Chen S, Shen J, Xie W, Sun X, Peng Z, Sun Y. Comprehensive genetic testing improves the clinical diagnosis and medical management of pediatric patients with isolated hearing loss. BMC Med Genomics 2022; 15:142. [PMID: 35761346 PMCID: PMC9235092 DOI: 10.1186/s12920-022-01293-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose Genetic testing is widely used in diagnosing genetic hearing loss in patients. Other than providing genetic etiology, the benefits of genetic testing in pediatric patients with hearing loss are less investigated. Methods From 2018–2020, pediatric patients who initially presented isolated hearing loss were enrolled. Comprehensive genetic testing, including GJB2/SLC26A4 multiplex amplicon sequencing, STRC/OTOA copy number variation analysis, and exome sequencing, were hierarchically offered. Clinical follow-up and examinations were performed. Results A total of 80 pediatric patients who initially presented isolated hearing loss were considered as nonsyndromic hearing loss and enrolled in this study. The definitive diagnosis yield was 66% (53/80) and the likely diagnosis yield was 8% (6/80) through comprehensive genetic testing. With the aid of genetic testing and further clinical follow-up and examinations, the clinical diagnoses and medical management were altered in eleven patients (19%, 11/59); five were syndromic hearing loss; six were nonsyndromic hearing loss mimics. Conclusion Syndromic hearing loss and nonsyndromic hearing loss mimics are common in pediatric patients who initially present with isolated hearing loss. The comprehensive genetic testing provides not only a high diagnostic yield but also valuable information for clinicians to uncover subclinical or pre-symptomatic phenotypes, which allows early diagnosis of SHL, and leads to precise genetic counseling and changes the medical management. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01293-x.
Collapse
|
11
|
Sima A, Smădeanu RE, Simionescu AA, Nedelea F, Vlad AM, Becheanu C. Menke–Hennekam Syndrome: A Literature Review and a New Case Report. CHILDREN 2022; 9:children9050759. [PMID: 35626936 PMCID: PMC9139512 DOI: 10.3390/children9050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Background: Menke–Hennekam syndrome (MHS) is a rare and recently described syndrome consecutive to the variants in exon 30 or 31 in CREBBP (CREB-binding protein gene). The CREB-binding protein (CREBBP) and EP300 genes are two commonly expressed genes whose products possess acetyltransferase activity for histones and various other proteins. Mutations that affect these two genes are known to cause Rubinstein–Taybi syndrome (RTS); however, with the application of whole exome sequencing (WES) there were reports of variants that affect specific regions of exon 30 or 31 of these two genes but without the specific phenotype of RTS. Material and Methods: A review of the available literature was conducted, aimed at underscoring the difficulties in diagnosing MHS based on phenotype particularities. Results: Five applicable studies were identified by searching PubMed, Web of Science, and Scopus databases for publications up to November 2021 using the key terms “Menke–Hennekam syndrome” and “CREBBP”. Conclusions: In this paper, we present a new case and highlight the importance of exome sequencing to identify different mutations of exons 30 and 31 of the CREBBP gene involved in MHS, and we make formal recommendations based on our literature review.
Collapse
Affiliation(s)
- Aurora Sima
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, “Grigore Alexandrescu” Emergency Hospital for Children, 011743 Bucharest, Romania; (A.S.); (A.-M.V.); (C.B.)
| | - Roxana Elena Smădeanu
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, “Grigore Alexandrescu” Emergency Hospital for Children, 011743 Bucharest, Romania; (A.S.); (A.-M.V.); (C.B.)
- Correspondence: ; Tel.: +40-021-316-9366
| | - Anca Angela Simionescu
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, Filantropia Clinical Hospital, 011132 Bucharest, Romania;
| | - Florina Nedelea
- Department of Clinical Genetics, Carol Davila University of Medicine and Pharmacy, Filantropia Clinical Hospital, 011132 Bucharest, Romania;
| | - Andreea-Maria Vlad
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, “Grigore Alexandrescu” Emergency Hospital for Children, 011743 Bucharest, Romania; (A.S.); (A.-M.V.); (C.B.)
| | - Cristina Becheanu
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, “Grigore Alexandrescu” Emergency Hospital for Children, 011743 Bucharest, Romania; (A.S.); (A.-M.V.); (C.B.)
| |
Collapse
|
12
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Nishi E, Takenouchi T, Miya F, Uehara T, Yanagi K, Hasegawa Y, Ueda K, Mizuno S, Kaname T, Kosaki K, Okamoto N. The novel and recurrent variants in exon 31 of CREBBP in Japanese patients with Menke-Hennekam syndrome. Am J Med Genet A 2021; 188:446-453. [PMID: 34652060 DOI: 10.1002/ajmg.a.62533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/02/2021] [Accepted: 09/25/2021] [Indexed: 11/07/2022]
Abstract
Menke-Hennekam syndrome-1 (MKHK1) is a congenital disorder caused by the heterozygous variants in exon 30 or 31 of CREBBP (CREB binding protein) gene mapped on 16p13.3. It is characterized by psychomotor delay, variable impairment of intellectual disability (ID), feeding difficulty, autistic behavior, hearing impairment, short stature, microcephaly, and facial dysmorphisms. The CREBBP loss-of-function variants cause Rubinstein-Taybi syndrome-1 (RSTS1). The function of CREBBP leading to MKHK1 has not been clarified so far, and the phenotype of MKHK1 significantly differs from that of RSTS1. We examined six patients with de novo pathogenic variants affecting the last exon of CREBBP, and they shared the clinical features of MKHK1. This study revealed that one frameshift and three nonsense variants of CREBBP cause MKHK1, and inferred that the nonsense variants of the last exon could further help in the elucidation of the etiology of MKHK1.
Collapse
Affiliation(s)
- Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Toshiki Takenouchi
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yuiko Hasegawa
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kimiko Ueda
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Seiji Mizuno
- Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Kasugai, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| |
Collapse
|
14
|
Van Gils J, Magdinier F, Fergelot P, Lacombe D. Rubinstein-Taybi Syndrome: A Model of Epigenetic Disorder. Genes (Basel) 2021; 12:968. [PMID: 34202860 PMCID: PMC8303114 DOI: 10.3390/genes12070968] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
The Rubinstein-Taybi syndrome (RSTS) is a rare congenital developmental disorder characterized by a typical facial dysmorphism, distal limb abnormalities, intellectual disability, and many additional phenotypical features. It occurs at between 1/100,000 and 1/125,000 births. Two genes are currently known to cause RSTS, CREBBP and EP300, mutated in around 55% and 8% of clinically diagnosed cases, respectively. To date, 500 pathogenic variants have been reported for the CREBBP gene and 118 for EP300. These two genes encode paralogs acting as lysine acetyltransferase involved in transcriptional regulation and chromatin remodeling with a key role in neuronal plasticity and cognition. Because of the clinical heterogeneity of this syndrome ranging from the typical clinical diagnosis to features overlapping with other Mendelian disorders of the epigenetic machinery, phenotype/genotype correlations remain difficult to establish. In this context, the deciphering of the patho-physiological process underlying these diseases and the definition of a specific episignature will likely improve the diagnostic efficiency but also open novel therapeutic perspectives. This review summarizes the current clinical and molecular knowledge and highlights the epigenetic regulation of RSTS as a model of chromatinopathy.
Collapse
Affiliation(s)
- Julien Van Gils
- Reference Center AD SOOR, AnDDI-RARE, INSERM U 1211, Medical Genetics Department, Bordeaux University, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (P.F.); (D.L.)
| | - Frederique Magdinier
- Marseille Medical Genetics, INSERM U 1251, MMG, Aix Marseille University, 13385 Marseille, France;
| | - Patricia Fergelot
- Reference Center AD SOOR, AnDDI-RARE, INSERM U 1211, Medical Genetics Department, Bordeaux University, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (P.F.); (D.L.)
| | - Didier Lacombe
- Reference Center AD SOOR, AnDDI-RARE, INSERM U 1211, Medical Genetics Department, Bordeaux University, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (P.F.); (D.L.)
| |
Collapse
|
15
|
Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature. Am J Hum Genet 2021; 108:1053-1068. [PMID: 33909990 PMCID: PMC8206150 DOI: 10.1016/j.ajhg.2021.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as “non-FLHS SRCAP-related NDD.” All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.
Collapse
|
16
|
Favalli N, Bassi G, Pellegrino C, Millul J, De Luca R, Cazzamalli S, Yang S, Trenner A, Mozaffari NL, Myburgh R, Moroglu M, Conway SJ, Sartori AA, Manz MG, Lerner RA, Vogt PK, Scheuermann J, Neri D. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat Chem 2021; 13:540-548. [PMID: 33833446 PMCID: PMC8405038 DOI: 10.1038/s41557-021-00660-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | | | | | - Su Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| | - Peter K Vogt
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
17
|
Dyment DA, O'Donnell-Luria A, Agrawal PB, Coban Akdemir Z, Aleck KA, Antaki D, Al Sharhan H, Au PYB, Aydin H, Beggs AH, Bilguvar K, Boerwinkle E, Brand H, Brownstein CA, Buyske S, Chodirker B, Choi J, Chudley AE, Clericuzio CL, Cox GF, Curry C, de Boer E, de Vries BBA, Dunn K, Dutmer CM, England EM, Fahrner JA, Geckinli BB, Genetti CA, Gezdirici A, Gibson WT, Gleeson JG, Greenberg CR, Hall A, Hamosh A, Hartley T, Jhangiani SN, Karaca E, Kernohan K, Lauzon JL, Lewis MES, Lowry RB, López-Giráldez F, Matise TC, McEvoy-Venneri J, McInnes B, Mhanni A, Garcia Minaur S, Moilanen J, Nguyen A, Nowaczyk MJM, Posey JE, Õunap K, Pehlivan D, Pajusalu S, Penney LS, Poterba T, Prontera P, Doriqui MJR, Sawyer SL, Sobreira N, Stanley V, Torun D, Wargowski D, Witmer PD, Wong I, Xing J, Zaki MS, Zhang Y, Boycott KM, Bamshad MJ, Nickerson DA, Blue EE, Innes AM. Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome. Am J Med Genet A 2021; 185:119-133. [PMID: 33098347 PMCID: PMC8197629 DOI: 10.1002/ajmg.a.61926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/09/2020] [Accepted: 09/19/2020] [Indexed: 01/19/2023]
Abstract
Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.
Collapse
Affiliation(s)
- David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Anne O'Donnell-Luria
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kyrieckos A Aleck
- Department of Genetics and Metabolism, Phoenix Children's Medical Group, Phoenix, Arizona, USA
| | - Danny Antaki
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Hind Al Sharhan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ping-Yee B Au
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Waco, Texas, USA
| | - Harrison Brand
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Steve Buyske
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, USA
| | - Bernard Chodirker
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Albert E Chudley
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carol L Clericuzio
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Gerald F Cox
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cynthia Curry
- University of California, San Francisco, California, USA
- Genetic Medicine, University Pediatric Specialists, Fresno, California, USA
| | - Elke de Boer
- Department of Human Genetics, Raboud University Medical Centre, Nijmegen, Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Raboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University Medical Centre, Nijmegen, Netherlands
| | - Kathryn Dunn
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cullen M Dutmer
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eleina M England
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
| | - Jill A Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bilgen B Geckinli
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - William T Gibson
- Department of Medical Genetics and British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Cheryl R Greenberg
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - April Hall
- Waisman Center Clinical Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kristin Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julie L Lauzon
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics and British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Brian Lowry
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francesc López-Giráldez
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tara C Matise
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Jennifer McEvoy-Venneri
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Brenda McInnes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aziz Mhanni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sixto Garcia Minaur
- Sección de Genética Clínica, INGEMM (Instituto de Genética Médica y Molecular), Madrid, Spain
| | - Jukka Moilanen
- Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - An Nguyen
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Malgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Katrin Õunap
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Sander Pajusalu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| | - Lynette S Penney
- Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timothy Poterba
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia and University of Perugia, Perugia, Italy
| | | | - Sarah L Sawyer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Deniz Torun
- Department of Medical Genetics, Gulhane Military Medical Academy, Ankara, Turkey
| | - David Wargowski
- Division of Genetics, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isaac Wong
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Yeting Zhang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Deborah A Nickerson
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Provenzano A, La Barbera A, Scagnet M, Pagliazzi A, Traficante G, Pantaleo M, Tiberi L, Vergani D, Kurtas NE, Guarducci S, Bargiacchi S, Forzano G, Artuso R, Palazzo V, Kura A, Giordano F, di Feo D, Mortilla M, De Filippi C, Mattei G, Garavelli L, Giusti B, Genitori L, Zuffardi O, Giglio S. Chiari 1 malformation and exome sequencing in 51 trios: the emerging role of rare missense variants in chromatin-remodeling genes. Hum Genet 2020; 140:625-647. [PMID: 33337535 PMCID: PMC7981314 DOI: 10.1007/s00439-020-02231-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Type 1 Chiari malformation (C1M) is characterized by cerebellar tonsillar herniation of 3–5 mm or more, the frequency of which is presumably much higher than one in 1000 births, as previously believed. Its etiology remains undefined, although a genetic basis is strongly supported by C1M presence in numerous genetic syndromes associated with different genes. Whole-exome sequencing (WES) in 51 between isolated and syndromic pediatric cases and their relatives was performed after confirmation of the defect by brain magnetic resonance image (MRI). Moreover, in all the cases showing an inherited candidate variant, brain MRI was performed in both parents and not only in the carrier one to investigate whether the defect segregated with the variant. More than half of the variants were Missense and belonged to the same chromatin-remodeling genes whose protein truncation variants are associated with severe neurodevelopmental syndromes. In the remaining cases, variants have been detected in genes with a role in cranial bone sutures, microcephaly, neural tube defects, and RASopathy. This study shows that the frequency of C1M is widely underestimated, in fact many of the variants, in particular those in the chromatin-remodeling genes, were inherited from a parent with C1M, either asymptomatic or with mild symptoms. In addition, C1M is a Mendelian trait, in most cases inherited as dominant. Finally, we demonstrate that modifications of the genes that regulate chromatin architecture can cause localized anatomical alterations, with symptoms of varying degrees.
Collapse
Affiliation(s)
- Aldesia Provenzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Andrea La Barbera
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Scagnet
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Angelica Pagliazzi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Traficante
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marilena Pantaleo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Nehir Edibe Kurtas
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Silvia Guarducci
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Ada Kura
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Flavio Giordano
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Daniele di Feo
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marzia Mortilla
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Claudio De Filippi
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| |
Collapse
|
19
|
A Novel CREBBP in-Frame Deletion Variant in a Chinese Girl with Atypical Rubinstein-Taybi Syndrome Phenotypes. J Mol Neurosci 2020; 71:607-612. [PMID: 32839936 DOI: 10.1007/s12031-020-01681-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023]
Abstract
Loss-of-function variants in CREBBP or EP300 result in Rubinstein-Taybi syndrome (RSTS). The previously reported cluster of variants in the last part of exon 30 and the beginning of exon 31 of CREBBP, overlapping with the ZNF2 (zinc finger, ZZ-type; residues 1701 to 1744) and ZNF3 (zinc finger, TAZ-type; residues 1764 to 1853) domains, is associated with atypical RSTS. The main features include developmental delay, short stature, microcephaly, distinctive facial features, autistic behavior, feeding difficulties, recurrent upper airway infections, and hearing impairment. Here, we report a 2-year-7-month-old Chinese girl presenting mild cognitive impairments, developmental delay, short stature, recurrent upper airway infections, and facial dysmorphism that resembled the phenotypes of previously reported atypical RSTS patients. The characteristic facial and limb dysmorphism for RSTS was absent in our patient. In addition, our patient exhibited novel phenotypes including attention deficit hyperactivity disorder (ADHD), sleep problem, and abnormal walking posture. Whole-exome sequencing (WES) identified a novel de novo in-frame deletion variant in the beginning of exon 30 of CREBBP (NM_004380:c.4897_4899delTTC, p.Phe1633del) in the HAT domain where no pathogenic variants have been previously reported to be responsible for atypical RSTS. Our case allows us to more accurately define the borders of the CREBBP coding sequence resulting in atypical RSTS, which are extended to the beginning of exon 30 (residue 1633) at the 5' end of CREBBP in the HAT domain, and reveals novel phenotypes observed in our atypical Chinese RSTS patient.
Collapse
|
20
|
Cross E, Duncan-Flavell PJ, Howarth RJ, Hobbs JI, Thomas NS, Bunyan DJ. Screening of a large Rubinstein-Taybi cohort identified many novel variants and emphasizes the importance of the CREBBP histone acetyltransferase domain. Am J Med Genet A 2020; 182:2508-2520. [PMID: 32827181 DOI: 10.1002/ajmg.a.61813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Pathogenic variants within the CREBBP and EP300 genes account for the majority of individuals with Rubinstein-Taybi syndrome (RSTS). Data are presented from a large cohort of 395 individuals referred for diagnostic testing of CREBBP, and of the 19 CREBBP missense variants classified as likely pathogenic in this study, 17 were within the histone acetyltransferase (HAT) domain, providing evidence that this domain is critical to the normal function of the CREBBP protein (CBP). The data presented here, combined with other published results, suggest that the presence of a missense variant within the CBP HAT domain can be considered as moderate evidence of pathogenicity in the context of official variant interpretation guidelines. Within our study cohort, 129 had a pathogenic or likely pathogenic CREBBP variant and 5 had a variant of uncertain significance (VUS) which warranted familial studies. 147 of the remaining probands were also screened for EP300 and a further 16 pathogenic or likely pathogenic variants were identified, plus one VUS. Therefore, this analysis has provided a molecular diagnosis in at least 145 individuals with RSTS (37%) and identified a wide range of variants (n = 133) of which 103 were novel.
Collapse
Affiliation(s)
- Esther Cross
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | | | - Rachel J Howarth
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - James I Hobbs
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Nicholas Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Faculty of Medicine, University of Southampton, Southampton, UK
| | - David J Bunyan
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
21
|
Wang J, Lu QR. Convergent epigenetic regulation of glial plasticity in myelin repair and brain tumorigenesis: A focus on histone modifying enzymes. Neurobiol Dis 2020; 144:105040. [PMID: 32800999 DOI: 10.1016/j.nbd.2020.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Brain regeneration and tumorigenesis are complex processes involving in changes in chromatin structure to regulate cellular states at the molecular and genomic level. The modulation of chromatin structure dynamics is critical for maintaining progenitor cell plasticity, growth and differentiation. Oligodendrocyte precursor cells (OPC) can be differentiated into mature oligodendrocytes, which produce myelin sheathes to permit saltatory nerve conduction. OPCs and their primitive progenitors such as pri-OPC or pre-OPC are highly adaptive and plastic during injury repair or brain tumor formation. Recent studies indicate that chromatin modifications and epigenetic homeostasis through histone modifying enzymes shape genomic regulatory landscape conducive to OPC fate specification, lineage differentiation, maintenance of myelin sheaths, as well as brain tumorigenesis. Thus, histone modifications can be convergent mechanisms in regulating OPC plasticity and malignant transformation. In this review, we will focus on the impact of histone modifying enzymes in modulating OPC plasticity during normal development, myelin regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
22
|
Squeo GM, Augello B, Massa V, Milani D, Colombo EA, Mazza T, Castellana S, Piccione M, Maitz S, Petracca A, Prontera P, Accadia M, Della Monica M, Di Giacomo MC, Melis D, Selicorni A, Giglio S, Fischetto R, Di Fede E, Malerba N, Russo M, Castori M, Gervasini C, Merla G. Customised next-generation sequencing multigene panel to screen a large cohort of individuals with chromatin-related disorder. J Med Genet 2020; 57:760-768. [PMID: 32170002 DOI: 10.1136/jmedgenet-2019-106724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The regulation of the chromatin state by epigenetic mechanisms plays a central role in gene expression, cell function, and maintenance of cell identity. Hereditary disorders of chromatin regulation are a group of conditions caused by abnormalities of the various components of the epigenetic machinery, namely writers, erasers, readers, and chromatin remodelers. Although neurological dysfunction is almost ubiquitous in these disorders, the constellation of additional features characterizing many of these genes and the emerging clinical overlap among them indicate the existence of a community of syndromes. The introduction of high-throughput next generation sequencing (NGS) methods for testing multiple genes simultaneously is a logical step for the implementation of diagnostics of these disorders. METHODS We screened a heterogeneous cohort of 263 index patients by an NGS-targeted panel, containing 68 genes associated with more than 40 OMIM entries affecting chromatin function. RESULTS This strategy allowed us to identify clinically relevant variants in 87 patients (32%), including 30 for which an alternative clinical diagnosis was proposed after sequencing analysis and clinical re-evaluation. CONCLUSION Our findings indicate that this approach is effective not only in disorders with locus heterogeneity, but also in order to anticipate unexpected misdiagnoses due to clinical overlap among cognate disorders. Finally, this work highlights the utility of a prompt diagnosis in such a clinically and genetically heterogeneous group of disorders that we propose to group under the umbrella term of chromatinopathies.
Collapse
Affiliation(s)
- Gabriella Maria Squeo
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Bartolomeo Augello
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Donatella Milani
- UOSD Pediatria ad alta intensità di cura, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Adele Colombo
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Piccione
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, Hospital San Gerardo, Monza, Italy
| | - Antonio Petracca
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", Tricase, Italy
| | - Matteo Della Monica
- Medical Genetics Unit, Cardarelli Hospital, Largo A Cardarelli, Napoli, Italy
| | | | - Daniela Melis
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Napoli, Italy
| | - Angelo Selicorni
- Pediatric Department, ASST Lariana, Sant'Anna General Hospital, Como, Italy
| | - Sabrina Giglio
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', Medical Genetics Unit, University Hospital Meyer, Firenze, Italy
| | - Rita Fischetto
- Metabolic Diseases, Clinical Genetics and Diabetology Unit, Paediatric Hospital Giovanni XXIII, Bari, Italy
| | - Elisabetta Di Fede
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Natascia Malerba
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Matteo Russo
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cristina Gervasini
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
23
|
Cuvertino S, Hartill V, Colyer A, Garner T, Nair N, Al-Gazali L, Canham N, Faundes V, Flinter F, Hertecant J, Holder-Espinasse M, Jackson B, Lynch SA, Nadat F, Narasimhan VM, Peckham M, Sellers R, Seri M, Montanari F, Southgate L, Squeo GM, Trembath R, van Heel D, Venuto S, Weisberg D, Stals K, Ellard S, Barton A, Kimber SJ, Sheridan E, Merla G, Stevens A, Johnson CA, Banka S. A restricted spectrum of missense KMT2D variants cause a multiple malformations disorder distinct from Kabuki syndrome. Genet Med 2020; 22:867-877. [PMID: 31949313 PMCID: PMC7200597 DOI: 10.1038/s41436-019-0743-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose To investigate if specific exon 38 or 39 KMT2D missense variants (MVs) cause a condition distinct from
Kabuki syndrome type 1 (KS1). Methods Multiple individuals, with MVs in exons 38 or 39 of KMT2D that encode a highly conserved region of 54
amino acids flanked by Val3527 and Lys3583, were identified and phenotyped.
Functional tests were performed to study their pathogenicity and understand the
disease mechanism. Results The consistent clinical features of the affected individuals, from
seven unrelated families, included choanal atresia, athelia or hypoplastic
nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies,
hearing loss, external ear malformations, and thyroid abnormalities. None of the
individuals had intellectual disability. The frequency of clinical features,
objective software-based facial analysis metrics, and genome-wide peripheral
blood DNA methylation patterns in these patients were significantly different
from that of KS1. Circular dichroism spectroscopy indicated that these MVs
perturb KMT2D secondary structure through an increased disordered to ɑ-helical
transition. Conclusion KMT2D MVs located in a specific
region spanning exons 38 and 39 and affecting highly conserved residues cause a
novel multiple malformations syndrome distinct from KS1. Unlike KMT2D haploinsufficiency in KS1, these MVs likely
result in disease through a dominant negative mechanism.
Collapse
Affiliation(s)
- Sara Cuvertino
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Verity Hartill
- Leeds Institute of Medical Research, Faculty of Medicine and Health, The University of Leeds, Leeds, UK.,Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Alice Colyer
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Terence Garner
- Division of Developmental Biology & Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Nisha Nair
- Centre of Genetics & Genomics Versus Arthritis, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine & Health Sciences, United Arab University, Al-Ain, UAE
| | - Natalie Canham
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK.,North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - Victor Faundes
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK.,Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Frances Flinter
- Department of Clinical Genetics, Guy's & St Thomas NHS Foundation Trust, London, UK
| | | | | | - Brian Jackson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Sally Ann Lynch
- Temple street Children's University Hospital, Dublin, Ireland
| | - Fatima Nadat
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | | | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Robert Sellers
- Division of Developmental Biology & Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Marco Seri
- Medical Genetics Unit, St. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Francesca Montanari
- Medical Genetics Unit, St. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.,Department of Medical & Molecular Genetics, King's College London, London, UK
| | - Gabriella Maria Squeo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Richard Trembath
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | | | - Santina Venuto
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Daniel Weisberg
- Clinical Psychology Department, Royal Manchester Children's Hospital, Manchester University Foundation NHS Trust, Health Innovation Manchester, Manchester, UK
| | - Karen Stals
- Molecular Genetics Department, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Sian Ellard
- Molecular Genetics Department, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | - Anne Barton
- Centre of Genetics & Genomics Versus Arthritis, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Eamonn Sheridan
- Leeds Institute of Medical Research, Faculty of Medicine and Health, The University of Leeds, Leeds, UK.,Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Giuseppe Merla
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Adam Stevens
- Division of Developmental Biology & Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Colin A Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, The University of Leeds, Leeds, UK
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK. .,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Health Innovation Manchester, Manchester, UK.
| |
Collapse
|