1
|
Lee CH, Bartholomay KL, Marzelli MJ, Miller JG, Bruno JL, Lightbody AA, Reiss AL. Neuroanatomical Profile of Young Females with Fragile X Syndrome: A Voxel-Based Morphometry Analysis. Cereb Cortex 2021; 32:2310-2320. [PMID: 34546362 DOI: 10.1093/cercor/bhab319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022] Open
Abstract
Fragile X syndrome is a genetic condition associated with alterations in brain and subsequent cognitive development. However, due to a milder phenotype relative to males, females with fragile X syndrome are underrepresented in research studies. In the current study, we investigate neuroanatomical differences in young females (age range: 6.03-16.32 years) with fragile X syndrome (N = 46) as compared to age-, sex-, and verbal abilities-matched participants (comparison group; N = 35). Between-group analyses of whole-brain and regional brain volumes were assessed using voxel-based morphometry. Results demonstrate significantly larger total gray and white matter volumes in girls with fragile X syndrome compared to a matched comparison group (Ps < 0.001). In addition, the fragile X group showed significantly larger gray matter volume in a bilateral parieto-occipital cluster and a right parieto-occipital cluster (Ps < 0.001). Conversely, the fragile X group showed significantly smaller gray matter volume in the bilateral gyrus rectus (P < 0.03). Associations between these regional brain volumes and key socio-emotional variables provide insight into gene-brain-behavior relationships underlying the fragile X syndrome phenotype in females. These findings represent the first characterization of a neuroanatomical phenotype in a large sample of girls with fragile X syndrome and expand our knowledge about potential neurodevelopmental mechanisms underlying cognitive-behavioral outcomes in this condition.
Collapse
Affiliation(s)
- Cindy H Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Kristi L Bartholomay
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Marzelli
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jonas G Miller
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jennifer L Bruno
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Amy A Lightbody
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan L Reiss
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA.,Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Baker EK, Arpone M, Vera SA, Bretherton L, Ure A, Kraan CM, Bui M, Ling L, Francis D, Hunter MF, Elliott J, Rogers C, Field MJ, Cohen J, Maria LS, Faundes V, Curotto B, Morales P, Trigo C, Salas I, Alliende AM, Amor DJ, Godler DE. Intellectual functioning and behavioural features associated with mosaicism in fragile X syndrome. J Neurodev Disord 2019; 11:41. [PMID: 31878865 PMCID: PMC6933737 DOI: 10.1186/s11689-019-9288-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Background Fragile X syndrome (FXS) is a common cause of intellectual disability and autism spectrum disorder (ASD) usually associated with a CGG expansion, termed full mutation (FM: CGG ≥ 200), increased DNA methylation of the FMR1 promoter and silencing of the gene. Mosaicism for presence of cells with either methylated FM or smaller unmethylated pre-mutation (PM: CGG 55–199) alleles in the same individual have been associated with better cognitive functioning. This study compares age- and sex-matched FM-only and PM/FM mosaic individuals on intellectual functioning, ASD features and maladaptive behaviours. Methods This study comprised a large international cohort of 126 male and female participants with FXS (aged 1.15 to 43.17 years) separated into FM-only and PM/FM mosaic groups (90 males, 77.8% FM-only; 36 females, 77.8% FM-only). Intellectual functioning was assessed with age appropriate developmental or intelligence tests. The Autism Diagnostic Observation Schedule-2nd Edition was used to examine ASD features while the Aberrant Behavior Checklist-Community assessed maladaptive behaviours. Results Comparing males and females (FM-only + PM/FM mosaic), males had poorer intellectual functioning on all domains (p < 0.0001). Although females had less ASD features and less parent-reported maladaptive behaviours, these differences were no longer significant after controlling for intellectual functioning. Participants with PM/FM mosaicism, regardless of sex, presented with better intellectual functioning and less maladaptive behaviours compared with their age- and sex-matched FM-only counterparts (p < 0.05). ASD features were similar between FM-only and PM/FM mosaics within each sex, after controlling for overall intellectual functioning. Conclusions Males with FXS had significantly lower intellectual functioning than females with FXS. However, there were no significant differences in ASD features and maladaptive behaviours, after controlling for intellectual functioning, independent of the presence or absence of mosaicism. This suggests that interventions that primarily target cognitive abilities may in turn reduce the severity of maladaptive behaviours including ASD features in FXS.
Collapse
Affiliation(s)
- Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia. .,School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia.
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Solange Aliaga Vera
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Lesley Bretherton
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Alexandra Ure
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Pediatrics, Monash University, Clayton, VIC, Australia
| | - Claudine M Kraan
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, VIC, Australia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Matthew F Hunter
- Department of Pediatrics, Monash University, Clayton, VIC, Australia.,Monash Genetics, Monash Health, Melbourne, VIC, Australia
| | - Justine Elliott
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Michael J Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Jonathan Cohen
- Fragile X Alliance Inc, Centre for Developmental Disability Health Victoria, Monash University, North Caulfield, Clayton, VIC, Australia
| | - Lorena Santa Maria
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Victor Faundes
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Bianca Curotto
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Paulina Morales
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Cesar Trigo
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Isabel Salas
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Angelica M Alliende
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Bruno JL, Hosseini SH, Lightbody AA, Manchanda MK, Reiss AL. Brain circuitry, behavior, and cognition: A randomized placebo-controlled trial of donepezil in fragile X syndrome. J Psychopharmacol 2019; 33:975-985. [PMID: 31264943 PMCID: PMC6894490 DOI: 10.1177/0269881119858304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Fragile X syndrome, the most common inherited cause for intellectual disability, is associated with alterations in cholinergic among other neurotransmitter systems. This study investigated the effects of donepezil hydrochloride, a cholinesterase inhibitor that has potential to correct aberrant cholinergic signaling. METHOD Forty-two individuals with fragile X syndrome (mean age=19.61 years) were randomized to receive 2.5-10.0 mg of donepezil (n=20, seven females) or placebo (n=22, eight females) per day. One individual in the active group withdrew at week 7. Outcomes included the contingency naming test, the aberrant behavior checklist, and behavior and brain activation patterns during a functional magnetic resonance imaging gaze discrimination task. RESULTS There were no significant differences between active and placebo groups on cognitive (contingency naming task) or behavioral (total score or subscales of the aberrant behavior checklist) outcomes. At baseline, the active and placebo groups did not differ in functional magnetic resonance imaging activation patterns during the gaze task. After 12 weeks of treatment the active group displayed reduced activation in response to the averted vs direct gaze contrast, relative to the placebo group, in the left superior frontal gyrus. CONCLUSIONS Reduced functional brain activation for the active group may represent less arousal in response to direct eye gaze, relative to the placebo group. Change in functional magnetic resonance imaging activation patterns may serve as a more sensitive metric and predictor of response to treatment when compared to cognitive and behavioral assessments. Our results suggest that donepezil may have an impact on brain functioning, but longer term follow-up and concomitant behavioral intervention may be required to demonstrate improvement in cognition and behavior.
Collapse
Affiliation(s)
- Jennifer L. Bruno
- Center for Interdisciplinary Brain Sciences Research, Stanford University.,To whom correspondence should be addressed: 401 Quarry Road, Palo Alto, CA 94304, Phone: 818-415-9119, Fax: (650) 724-4761,
| | - S.M. Hadi Hosseini
- Center for Interdisciplinary Brain Sciences Research, Stanford University
| | - Amy A. Lightbody
- Center for Interdisciplinary Brain Sciences Research, Stanford University
| | - Mai K. Manchanda
- Center for Interdisciplinary Brain Sciences Research, Stanford University
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University.,Department of Radiology, Stanford University.,Department of Pediatrics, Stanford University
| |
Collapse
|
4
|
Schmitt LM, Shaffer RC, Hessl D, Erickson C. Executive Function in Fragile X Syndrome: A Systematic Review. Brain Sci 2019; 9:E15. [PMID: 30654486 PMCID: PMC6356760 DOI: 10.3390/brainsci9010015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
Executive function (EF) supports goal-directed behavior and includes key aspects such as working memory, inhibitory control, cognitive flexibility, attention, processing speed, and planning. Fragile X syndrome (FXS) is the leading inherited monogenic cause of intellectual disability and is phenotypically characterized by EF deficits beyond what is expected given general cognitive impairments. Yet, a systematic review of behavioral studies using performance-based measures is needed to provide a summary of EF deficits across domains in males and females with FXS, discuss clinical and biological correlates of these EF deficits, identify critical limitations in available research, and offer suggestions for future studies in this area. Ultimately, this review aims to advance our understanding of the underlying pathophysiological mechanisms contributing to EF in FXS and to inform the development of outcome measures of EF and identification of new treatment targets in FXS.
Collapse
Affiliation(s)
- Lauren M Schmitt
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - David Hessl
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616, USA.
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Closing the Gender Gap in Fragile X Syndrome: Review on Females with FXS and Preliminary Research Findings. Brain Sci 2019; 9:brainsci9010011. [PMID: 30642066 PMCID: PMC6356553 DOI: 10.3390/brainsci9010011] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 11/17/2022] Open
Abstract
Fragile X syndrome (FXS) is a genetic condition known to increase the risk of cognitive impairment and socio-emotional challenges in affected males and females. To date, the vast majority of research on FXS has predominantly targeted males, who usually exhibit greater cognitive impairment compared to females. Due to their typically milder phenotype, females may have more potential to attain a higher level of independence and quality of life than their male counterparts. However, the constellation of cognitive, behavioral, and, particularly, socio-emotional challenges present in many females with FXS often preclude them from achieving their full potential. It is, therefore, critical that more research specifically focuses on females with FXS to elucidate the role of genetic, environmental, and socio-emotional factors on outcome in this often-overlooked population.
Collapse
|
6
|
Sandoval GM, Shim S, Hong DS, Garrett AS, Quintin EM, Marzelli MJ, Patnaik S, Lightbody AA, Reiss AL. Neuroanatomical abnormalities in fragile X syndrome during the adolescent and young adult years. J Psychiatr Res 2018; 107:138-144. [PMID: 30408626 PMCID: PMC6249038 DOI: 10.1016/j.jpsychires.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Abnormal brain development and cognitive dysfunction have been reported both in children and in adults with fragile X syndrome (FXS). However, few studies have examined neuroanatomical abnormalities in FXS during adolescence. In this study we focus on adolescent subjects with FXS (N = 54) as compared to age- and sex-matched subjects with idiopathic intellectual disability (Comparison Group) (N = 32), to examine neuroanatomical differences during this developmental period. Brain structure was assessed with voxel-based morphometry and independent groups t-test in SPM8 software. Results showed that the FXS group, relative to the comparison group, had significantly larger gray matter volume (GMV) in only one region: the bilateral caudate nucleus, but have smaller GMV in several regions including bilateral medial frontal, pregenual cingulate, gyrus rectus, insula, and superior temporal gyrus. Group differences also were noted in white matter regions. Within the FXS group, lower FMRP levels were associated with less GMV in several regions including cerebellum and gyrus rectus, and less white matter volume (WMV) in pregenual cingulate, middle frontal gyrus, and other regions. Lower full scale IQ within the FXS group was associated with larger right caudate nucleus GMV. In conclusion, adolescents and young adults with FXS demonstrate neuroanatomical abnormalities consistent with those previously reported in children and adults with FXS. These brain variations likely result from reduced FMRP during early neurodevelopment and mediate downstream deleterious effects on cognitive function.
Collapse
|
7
|
Boutet I, Collin CA, MacLeod LS, Messier C, Holahan MR, Berry-Kravis E, Gandhi RM, Kogan CS. Utility of the Hebb-Williams Maze Paradigm for Translational Research in Fragile X Syndrome: A Direct Comparison of Mice and Humans. Front Mol Neurosci 2018; 11:99. [PMID: 29643767 PMCID: PMC5882825 DOI: 10.3389/fnmol.2018.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/13/2018] [Indexed: 11/26/2022] Open
Abstract
To generate meaningful information, translational research must employ paradigms that allow extrapolation from animal models to humans. However, few studies have evaluated translational paradigms on the basis of defined validation criteria. We outline three criteria for validating translational paradigms. We then evaluate the Hebb–Williams maze paradigm (Hebb and Williams, 1946; Rabinovitch and Rosvold, 1951) on the basis of these criteria using Fragile X syndrome (FXS) as model disease. We focused on this paradigm because it allows direct comparison of humans and animals on tasks that are behaviorally equivalent (criterion #1) and because it measures spatial information processing, a cognitive domain for which FXS individuals and mice show impairments as compared to controls (criterion #2). We directly compared the performance of affected humans and mice across different experimental conditions and measures of behavior to identify which conditions produce comparable patterns of results in both species. Species differences were negligible for Mazes 2, 4, and 5 irrespective of the presence of visual cues, suggesting that these mazes could be used to measure spatial learning in both species. With regards to performance on the first trial, which reflects visuo-spatial problem solving, Mazes 5 and 9 without visual cues produced the most consistent results. We conclude that the Hebb–Williams mazes paradigm has the potential to be utilized in translational research to measure comparable cognitive functions in FXS humans and animals (criterion #3).
Collapse
Affiliation(s)
- Isabelle Boutet
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Claude Messier
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | - Elizabeth Berry-Kravis
- Pediatrics, Biochemistry, and Neurology, Rush University Medical Center, Chicago, IL, United States
| | - Reno M Gandhi
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Cary S Kogan
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Martin A, Quintin EM, Hall SS, Reiss AL. The Role of Executive Function in Independent Living Skills in Female Adolescents and Young Adults With Fragile X Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2016; 121:448-460. [PMID: 27611354 PMCID: PMC5756733 DOI: 10.1352/1944-7558-121.5.448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fragile X syndrome (FXS) is associated with executive function (EF) and independent living skills (ILS) deficits. We examined the role of childhood EF in ILS during adolescence/early adulthood in females with FXS and two comparison groups in the same age range (matched for IQ [IQ/Age group] and with another genetic condition, Turner syndrome [TS group]). EF and ILS were significantly higher for the FXS group than the IQ/Age group but did not differ from the TS group. For the FXS group, age and EF were significant predictors of ILS during adolescence/early adulthood, but there were no statistically significant longitudinal associations between EF and ILS. Our findings suggest that impairments in EF may have a significant effect on ILS in FXS.
Collapse
Affiliation(s)
- Arianna Martin
- Arianna Martin, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University; Eve-Marie Quintin, Educational and Counseling Psychology Department, McGill University; Scott S. Hall, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University; and Allan L. Reiss, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University
| | - Eve-Marie Quintin
- Arianna Martin, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University; Eve-Marie Quintin, Educational and Counseling Psychology Department, McGill University; Scott S. Hall, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University; and Allan L. Reiss, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University
| | - Scott S Hall
- Arianna Martin, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University; Eve-Marie Quintin, Educational and Counseling Psychology Department, McGill University; Scott S. Hall, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University; and Allan L. Reiss, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University
| | - Allan L Reiss
- Arianna Martin, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University; Eve-Marie Quintin, Educational and Counseling Psychology Department, McGill University; Scott S. Hall, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University; and Allan L. Reiss, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University
| |
Collapse
|
9
|
Kover ST, Pierpont EI, Kim JS, Brown WT, Abbeduto L. A neurodevelopmental perspective on the acquisition of nonverbal cognitive skills in adolescents with fragile X syndrome. Dev Neuropsychol 2014; 38:445-60. [PMID: 24138215 DOI: 10.1080/87565641.2013.820305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This longitudinal study was designed to investigate trajectories of nonverbal cognitive ability in adolescents with fragile X syndrome with respect to the relative influence of fragile X mental retardation protein (FMRP), autism symptom severity, and environmental factors on visualization and fluid reasoning abilities. Males and females with fragile X syndrome (N = 53; ages 10-16 years) were evaluated with the Leiter-R at up to four annual assessments. On average, IQ declined with age. FMRP levels predicted change in fluid reasoning, but not in visualization. The role of FMRP in the neural development that underlies the fragile X syndrome cognitive phenotype is discussed.
Collapse
Affiliation(s)
- Sara T Kover
- a Waisman Center , University of Wisconsin-Madison , Madison , Wisconsin
| | | | | | | | | |
Collapse
|
10
|
Bruno JL, Shelly EW, Quintin EM, Rostami M, Patnaik S, Spielman D, Mayer D, Gu M, Lightbody AA, Reiss AL. Aberrant basal ganglia metabolism in fragile X syndrome: a magnetic resonance spectroscopy study. J Neurodev Disord 2013; 5:20. [PMID: 23981510 PMCID: PMC3766683 DOI: 10.1186/1866-1955-5-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022] Open
Abstract
Background The profile of cognitive and behavioral variation observed in individuals with fragile X syndrome (FXS), the most common known cause of inherited intellectual impairment, suggests aberrant functioning of specific brain systems. Research investigating animal models of FXS, characterized by limited or lack of fragile X mental retardation protein, (FMRP), has linked brain dysfunction to deficits in the cholinergic and glutamatergic systems. Thus, we sought to examine in vivo levels of neurometabolites related to cholinergic and glutamatergic functioning in males and females with FXS. Methods The study participants included 18 adolescents and young adults with FXS, and a comparison group of 18 individuals without FXS matched for age, sex and general intellectual functioning. Proton magnetic resonance spectroscopy (MRS) was used to assess neurometabolite levels in the caudate nucleus, a region known to be greatly enlarged and involved in abnormal brain circuitry in individuals with FXS. A general linear model framework was used to compare group differences in metabolite concentration. Results We observed a decrease in choline (P = 0.027) and in glutamate + glutamine (P = 0.032) in the caudate nucleus of individuals with FXS, relative to individuals in the comparison group. Conclusions This study provides evidence of metabolite differences in the caudate nucleus, a brain region of potential importance to our understanding of the neural deficits underlying FXS. These metabolic differences may be related to aberrant receptor signaling seen in animal models. Furthermore, identification of the specific neurometabolites involved in FXS dysfunction could provide critical biomarkers for the design and efficacy tracking of disease-specific pharmacological treatments.
Collapse
Affiliation(s)
- Jennifer Lynn Bruno
- Center for Interdisciplinary Brain Sciences Research, Stanford University, 401 Quarry Road, Stanford, CA 94305-5795, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 2012; 4:19. [PMID: 22958744 PMCID: PMC3464940 DOI: 10.1186/1866-1955-4-19] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023] Open
Abstract
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina School of Medicine, CB# 7255, 101 Manning Drive, Chapel Hill, NC, 275997255, USA
| | - Cara A Damiano
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John A Allen
- Neuroscience Research Unit Pfizer Global Research and Development, Groton, CT 06340, USA
| |
Collapse
|
12
|
Riddle T, Suhr J. Extension of the Contingency Naming Test to adult assessment: psychometric analysis in a college student sample. Clin Neuropsychol 2012; 26:609-25. [PMID: 22432965 DOI: 10.1080/13854046.2012.666265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The Contingency Naming Test (CNT; Taylor, Albo, Phebus, Sachs, & Bierl, 1987) was initially designed to assess aspects of executive functioning, such as processing speed and response inhibition, in children. The measure has shown initial utility in identifying differences in executive function among child clinical groups; however, there is an absence of adequate psychometric data for use with adults. The current study expanded psychometric data upward for use with a college student sample and explored the measure's test-retest reliability and factor structure. Performance in the adult sample showed continued improvement above child norms, consistent with theories of executive function development. Exploratory factor analysis showed that the CNT is most closely related to measures of processing speed, as well as elements of response inhibition within the latter trials. Overall, results from the current study provide added support for the utility of the CNT as a measure of executive functioning in young adults. However, more research is needed to determine patterns of performance among adult clinical groups, as well as to better understand how performance patterns may change in a broader age range, including middle and older adulthood.
Collapse
Affiliation(s)
- Tara Riddle
- Department of Psychology, Ohio University, Athens, OH 45701, USA.
| | | |
Collapse
|
13
|
Lightbody AA, Reiss AL. Gene, brain, and behavior relationships in fragile X syndrome: evidence from neuroimaging studies. ACTA ACUST UNITED AC 2010; 15:343-52. [PMID: 20014368 DOI: 10.1002/ddrr.77] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fragile X syndrome (FraX) remains the most common inherited cause of intellectual disability and provides a valuable model for studying gene-brain-behavior relationships. Over the past 15 years, structural and functional magnetic resonance imaging studies have emerged with the goal of better understanding the neural pathways contributing to the cognitive and behavioral outcomes seen in individuals with FraX. Specifically, structural MRI studies have established and begun to refine the specific topography of neuroanatomical variation associated with FraX. In addition, functional neuroimaging studies have begun to elucidate the neural underpinnings of many of the unique characteristics of FraX including difficulties with eye gaze, executive functioning, and behavioral inhibition. This review highlights studies with a focus on the relevant gene-brain-behavior connections observed in FraX. The relationship of brain regions and activation patterns to FMRP are discussed as well as the clinical cognitive and behavioral correlates of these neuroimaging findings.
Collapse
Affiliation(s)
- Amy A Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road-Room 1369, Stanford, CA 94305-5795, USA.
| | | |
Collapse
|
14
|
Gender differences in neurodevelopmental disorders: autism and fragile x syndrome. Curr Top Behav Neurosci 2010; 8:209-29. [PMID: 21769728 DOI: 10.1007/7854_2010_96] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gender is an important factor to consider in understanding the clinical presentation, management, and developmental trajectory of children with neuropsychiatric disorders. While much is known about the clinical and neurobehavioural profiles of boys with neuropsychiatric disorders, surprisingly little is known about girls. The aim of this chapter was to review our understanding of gender by considering the most prevalent childhood onset neuropsychiatric disorders, autism and Fragile X syndrome. This chapter highlights findings which suggest that girls with autism and Fragile X syndrome show some unique differences in cognitive and clinical profiles when compared to boys with these conditions; this may indicate the need for innovative assessment and management approaches which take gender into consideration. Our understanding of how differences emerge in boys and girls with neuropsychiatric disorders is unclear, future research needs to focus on the role of biological maturation rates, sex hormones, and psychosocial factors in order to progress this field.
Collapse
|
15
|
Hatton DD, Wheeler A, Sideris J, Sullivan K, Reichardt A, Roberts J, Clark R, Bailey DB. Developmental trajectories of young girls with fragile x syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2009; 114:161-171. [PMID: 19374463 DOI: 10.1352/1944-7558-114.3.161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To describe the early phenotype of girls with full mutation fragile X, we used 54 observations of 15 girls between the ages of 6 months and 9 years to examine developmental trajectories as measured by the Battelle Development Inventory. In this sample, autistic behavior was associated with poorer developmental outcomes, primarily due to interactions of age with autistic behavior, even though autistic behavior, measured continuously, was relatively mild. Although this small sample, ascertained primarily through male relatives with fragile X syndrome, limits generalizability, considerable variability in developmental outcome in young girls was documented. In addition, findings support previous research suggesting that even mild autistic behaviors in girls can be associated with developmental outcomes.
Collapse
|
16
|
Reiss AL. Childhood developmental disorders: an academic and clinical convergence point for psychiatry, neurology, psychology and pediatrics. J Child Psychol Psychiatry 2009; 50:87-98. [PMID: 19220592 PMCID: PMC5756732 DOI: 10.1111/j.1469-7610.2008.02046.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Significant advances in understanding brain development and behavior have not been accompanied by revisions of traditional academic structure. Disciplinary isolation and a lack of meaningful interdisciplinary opportunities are persistent barriers in academic medicine. To enhance clinical practice, research, and training for the next generation, academic centers will need to take bold steps that challenge traditional departmental boundaries. Such change is not only desirable but, in fact, necessary to bring about a truly innovative and more effective approach to treating disorders of the developing brain. METHODS I focus on developmental disorders as a convergence point for transcending traditional academic boundaries. First, the current taxonomy of developmental disorders is described with emphasis on how current diagnostic systems inadvertently hinder research progress. Second, I describe the clinical features of autism, a phenomenologically defined condition, and Rett and fragile X syndromes, neurogenetic diseases that are risk factors for autism. Finally, I describe how the fields of psychiatry, psychology, neurology, and pediatrics now have an unprecedented opportunity to promote an interdisciplinary approach to training, research, and clinical practice and, thus, advance a deeper understanding of developmental disorders. RESULTS Research focused on autism is increasingly demonstrating the heterogeneity of individuals diagnosed by DSM criteria. This heterogeneity hinders the ability of investigators to replicate research results as well as progress towards more effective, etiology-specific interventions. In contrast, fragile X and Rett syndromes are 'real' diseases for which advances in research are rapidly accelerating towards more disease-specific human treatment trials. CONCLUSIONS A major paradigm shift is required to improve our ability to diagnose and treat individuals with developmental disorders. This paradigm shift must take place at all levels - training, research and clinical activity. As clinicians and scientists who are currently constrained by disciplinary-specific history and training, we must move towards redefining ourselves as clinical neuroscientists with shared interests and expertise that permit a more cohesive and effective approach to improving the lives of patients.
Collapse
|