1
|
Lehmann M, Plieger T, Reuter M, Ettinger U. Insights into the molecular genetic basis of individual differences in metacognition. Physiol Behav 2023; 264:114139. [PMID: 36870383 DOI: 10.1016/j.physbeh.2023.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
There is a striking lack of studies on the molecular genetic basis of metacognition, i.e., the higher-order ability to monitor mental processes. Here, an initial step toward resolving this issue was undertaken by investigating functional polymorphisms from three genes of the dopaminergic or serotonergic systems (DRD4, COMT, and 5-HTTLPR) in relation to behaviorally assessed metacognition in six paradigms across three cognitive domains. We report evidence for a task-dependent higher average confidence level (metacognitive bias) in carriers of at least one S or LG-allele in the 5-HTTLPR genotype and integrate these findings within a differential susceptibility framework.
Collapse
Affiliation(s)
- Mirko Lehmann
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany
| | - Thomas Plieger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany
| | - Martin Reuter
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany.
| |
Collapse
|
2
|
Noroozian M, Kormi-Nouri R, Nyberg L, Persson J. Hippocampal and motor regions contribute to memory benefits after enacted encoding: cross-sectional and longitudinal evidence. Cereb Cortex 2023; 33:3080-3097. [PMID: 35802485 DOI: 10.1093/cercor/bhac262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The neurobiological underpinnings of action-related episodic memory and how enactment contributes to efficient memory encoding are not well understood. We examine whether individual differences in level (n = 338) and 5-year change (n = 248) in the ability to benefit from motor involvement during memory encoding are related to gray matter (GM) volume, white matter (WM) integrity, and dopamine-regulating genes in a population-based cohort (age range = 25-80 years). A latent profile analysis identified 2 groups with similar performance on verbal encoding but with marked differences in the ability to benefit from motor involvement during memory encoding. Impaired ability to benefit from enactment was paired with smaller HC, parahippocampal, and putamen volume along with lower WM microstructure in the fornix. Individuals with reduced ability to benefit from encoding enactment over 5 years were characterized by reduced HC and motor cortex GM volume along with reduced WM microstructure in several WM tracts. Moreover, the proportion of catechol-O-methyltransferase-Val-carriers differed significantly between classes identified from the latent-profile analysis. These results provide converging evidence that individuals with low or declining ability to benefit from motor involvement during memory encoding are characterized by low and reduced GM volume in regions critical for memory and motor functions along with altered WM microstructure.
Collapse
Affiliation(s)
- Maryam Noroozian
- Department of Psychiatry, School of Medicine, South Kargar Str., Tehran 13185/1741, Iran
| | - Reza Kormi-Nouri
- School of Law, Psychology and Social Work, Örebro University, Fakultetsgatan 1, Örebro 702 81, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Radiology, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
- Department of Integrative Medical Biology, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
| | - Jonas Persson
- School of Law, Psychology and Social Work, Center for Lifespan Developmental Research (LEADER), Örebro University, Fakultetsgatan 1, Örebro 702 81, Sweden
- Aging Research Center (ARC), Stockholm University and Karolinska Institute, Tomtebodavägen 18A, Solna 171 65, Sweden
| |
Collapse
|
3
|
Gong J, Zhang T, Zhou L, Mo Y, Yu F, Liu M, Yang L, Liu J. Gender divergent effect of COMT gene rs4680 polymorphism on the association between executive dysfunction and psychotic-like experiences. Behav Brain Res 2023; 439:114215. [PMID: 36372244 DOI: 10.1016/j.bbr.2022.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
AIM Premorbid cognitive impairments are observed prior to the onset of schizophrenia. Catechol-O-methyltransferase (COMT) rs4680 is associated with psychosis and plays a crucial role in the development of the executive function. In addition, genetic COMT variations and gender affect its enzymatic activity. Therefore, the aim of this study was to evaluate the impact of COMT rs4680 on the relationship between executive dysfunction and psychotic-like experiences (PLEs) in college students, with the additional investigation of the gender difference. METHODS A total of 463 students provided biological samples for DNA analysis and the COMT gene rs4680 polymorphism was discriminated by the improved multiplex ligase detection reaction method. They also completed the Prodromal Questionnaire and the Dysexecutive Questionnaire. RESULTS Executive dysfunction significantly predicted positive PLEs in the total, male and female population (β = 0.515, 0.508 and 0.512, p < 0.001). The results of moderated analysis revealed that COMT rs4680 recessive genetic model ('AA genotype' versus 'G carrier') moderated the relationship between executive dysfunction and psychotic-like experience in the total and females (p = 0.002 and p <0.001, respectively), but not in males. CONCLUSION These findings revealed a female-specific effect of COMT rs4680 on the relationship between executive dysfunction and PLEs in young adults.
Collapse
Affiliation(s)
- Jingbo Gong
- Shanghai Changning Mental Health Center, Shanghai 200335, China; Department of Applied Psychology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Zhang
- Department of Student Affairs, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Lihua Zhou
- College of Education Science, Hengyang Normal University, Hengyang, Hunan, China
| | - Yanzi Mo
- Department of Applied Psychology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feifei Yu
- Department of Applied Psychology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Min Liu
- Department of Applied Psychology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Luobin Yang
- Department of Applied Psychology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianbo Liu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen Key Laboratory of Mental Health, Shenzhen, China.
| |
Collapse
|
4
|
The molecular genetic basis of creativity: a mini review and perspectives. PSYCHOLOGICAL RESEARCH 2023; 87:1-16. [PMID: 35217895 DOI: 10.1007/s00426-022-01649-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/16/2022] [Indexed: 01/27/2023]
Abstract
Although creativity is one of the defining features of human species, it is just the beginning of an ambitious attempt for psychologists to understand its genetic basis. With ongoing efforts, great progress has been achieved in molecular genetic studies of creativity. In this mini review, we highlighted recent molecular genetic findings for both domain-general and domain-specific creativity, and provided some perspectives for future studies. It is expected that this work will provide an update on the knowledge regarding the molecular genetic basis of creativity, and contribute to the further development of this field.
Collapse
|
5
|
Ferrera D, Gómez-Esquer F, Peláez I, Barjola P, Fernandes-Magalhaes R, Carpio A, De Lahoz ME, Martín-Buro MC, Mercado F. Working memory dysfunction in fibromyalgia is associated with genotypes of the catechol- O-methyltransferase gene: an event-related potential study. Eur Arch Psychiatry Clin Neurosci 2023; 273:25-40. [PMID: 36100778 PMCID: PMC9958168 DOI: 10.1007/s00406-022-01488-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Recent findings have associated different COMT genotypes with working memory capacity in patients with fibromyalgia. Although it is thought that the COMT gene may influence neural correlates (P2 and P3 ERP components) underlying working memory impairment in this chronic-pain syndrome, it has not yet been explored. Therefore, the aim of the present research was to investigate the potential effect of the COMT gene in fibromyalgia patients on ERP working memory indices (P2 and P3 components). For this purpose, 102 participants (51 patients and 51 healthy control participants) took part in the experiment. Event-related potentials and behavioral responses were recorded while participants performed a spatial n-back task. Participants had to decide if the stimulus coincided or not in the same location as the one presented one (1-back condition) or two (2-back condition) trials before. Genotypes of the COMT gene were determined through a saliva sample from all participants. Present results significantly showed lower working memory performance (p < 0.05) in patients with fibromyalgia as compared to control participants (higher rate of errors and slower reaction times). At neural level, we found that patients exhibited enhanced frontocentral and parieto-occipital P2 amplitudes compared to control participants (p < 0.05). Interestingly, we also observed that only fibromyalgia patients carrying the Val/Val genotype of the COMT gene showed higher frontocentral P2 amplitudes than control participants (p < 0.05). Current results (behavioral outcomes and P2 amplitudes) confirmed the presence of an alteration in working memory functioning in fibromyalgia. The enhancement of frontocentral P2 could be reflecting that these patients would manifest an inefficient way of activating executive attention processes, in carriers of the Val/Val genotype of COMT. To our knowledge, the present findings are the first linking neural indices of working memory dysfunctions and COMT genotypes in fibromyalgia. Applying a subgroup of patient's strategy based on this genetic marker could be useful to establish more tailored therapeutical approaches.
Collapse
Affiliation(s)
- David Ferrera
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Francisco Gómez-Esquer
- grid.28479.300000 0001 2206 5938Emerging Research Group of Anatomical, Molecular and Human Development Bases, Department of Basic Health Sciences, School of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Irene Peláez
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Paloma Barjola
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Roberto Fernandes-Magalhaes
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Alberto Carpio
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - María Eugenia De Lahoz
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - María Carmen Martín-Buro
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Francisco Mercado
- Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
6
|
Fan J, Yang C, Liu Z, Li H, Han Y, Chen K, Chen C, Wang J, Zhang Z. Female-specific effects of the catechol-O-methyl transferase Val 158Met gene polymorphism on working memory-related brain function. Aging (Albany NY) 2020; 12:23900-23916. [PMID: 33221753 PMCID: PMC7762470 DOI: 10.18632/aging.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 11/25/2022]
Abstract
The catechol-O-methyltransferase (COMT) Val158Met polymorphism has been associated with working memory (WM) in many studies, but the results have not been consistent. One plausible explanation is sex-specific effects of this polymorphism as reported in several studies. The current study aimed to explore the sex-specific effects of the COMT Val158Met polymorphism on WM-related brain function in an elderly sample. We found that Val homozygotes outperformed Met allele carriers on the backward digit span subtest for both males and females. The triangular part of the left inferior frontal gyrus and the left inferior temporal gyrus exhibited higher activation in Met allele carriers compared with Val homozygotes during the n-back task, while the background functional connectivity (bFC) between the left angular gyrus (ANG) and the right ANG was enhanced in Val homozygotes as compared to Met allele carriers. Finally, the associations between brain activation, bFC (among various regions), and WM performance were identified only in specific genotype groups of the female participants. These findings provide new insights into the role of COMT Val158Met gene polymorphism in brain function, particularly its female-specific nature.
Collapse
Affiliation(s)
- Jialing Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Zhen Liu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - He Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, USA
| | - Jun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Effects of COMT Genotypes on Working Memory Performance in Fibromyalgia Patients. J Clin Med 2020; 9:jcm9082479. [PMID: 32752289 PMCID: PMC7464119 DOI: 10.3390/jcm9082479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Growing research has reported the presence of a clear impairment of working memory functioning in fibromyalgia. Although different genetic factors involving dopamine availability (i.e, the COMT gene) have been associated with the more severe presentation of key symptoms in fibromyalgia, scientific evidence regarding the influence of COMT genotypes on cognitive impairment in these patients is still lacking. To this end, 167 participants took part in the present investigation. Working memory performance was assessed by the application of the SST (Spatial Span Test) and LNST (Letter and Number Sequence Test) belonging to the Weschler Memory Scale III. Significant working memory impairment was shown by the fibromyalgia patients. Remarkably, our results suggest that performance according to different working memory measures might be influenced by different genotypes of the COMT gene. Specifically, fibromyalgia patients carrying the Val/Val genotype exhibited significantly worse outcomes for the span of SST backward, SST backward score, SST total score and the Working Memory Index (WMI) than the Val/Val healthy carriers. Furthermore, the Val/Val patients performed worse on the SST backward and SST score than heterozygotes. Our findings are the first to show a link between the COMT gene and working memory dysfunction in fibromyalgia, supporting the idea that higher COMT enzyme activity would contribute to more severe working memory impairment in fibromyalgia.
Collapse
|
8
|
Dunn AL, Michie PT, Hodgson DM, Harms L. Adolescent cannabinoid exposure interacts with other risk factors in schizophrenia: A review of the evidence from animal models. Neurosci Biobehav Rev 2020; 116:202-220. [PMID: 32610181 DOI: 10.1016/j.neubiorev.2020.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Many factors and their interaction are linked to the aetiology of schizophrenia, leading to the development of animal models of multiple risk factors and adverse exposures. Differentiating between separate and combined effects for each factor could better elucidate schizophrenia pathology, and drive development of preventative strategies for high-load risk factors. An epidemiologically valid risk factor commonly associated with schizophrenia is adolescent cannabis use. The aim of this review is to evaluate how early-life adversity from various origins, in combination with adolescent cannabinoid exposure interact, and whether these interactions confer main, synergistic or protective effects in animal models of schizophrenia-like behavioural, cognitive and morphological alterations. Patterns emerge regarding which models show consistent synergistic or protective effects, particularly those models incorporating early-life exposure to maternal deprivation and maternal immune activation, and sex-specific effects are observed. It is evident that more research needs to be conducted to better understand the risks and alterations of interacting factors, with particular interest in sex differences, to better understand the translatability of these preclinical models to humans.
Collapse
Affiliation(s)
- Ariel L Dunn
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Patricia T Michie
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Lauren Harms
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
9
|
Wong PCM, Kang X, Wong KHY, So HC, Choy KW, Geng X. ASPM-lexical tone association in speakers of a tone language: Direct evidence for the genetic-biasing hypothesis of language evolution. SCIENCE ADVANCES 2020; 6:eaba5090. [PMID: 32537487 PMCID: PMC7253162 DOI: 10.1126/sciadv.aba5090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 05/12/2023]
Abstract
How language has evolved into more than 7000 varieties today remains a question that puzzles linguists, anthropologists, and evolutionary scientists. The genetic-biasing hypothesis of language evolution postulates that genes and language features coevolve, such that a population that is genetically predisposed to perceiving a particular linguistic feature would tend to adopt that feature in their language. Statistical studies that correlated a large number of genetic variants and linguistic features not only generated this hypothesis but also specifically pinpointed a linkage between ASPM and lexical tone. However, there is currently no direct evidence for this association and, therefore, the hypothesis. In an experimental study, we provide evidence to link ASPM with lexical tone perception in a sample of over 400 speakers of a tone language. In addition to providing the first direct evidence for the genetic-biasing hypothesis, our results have implications for further studies of linguistic anthropology and language disorders.
Collapse
Affiliation(s)
- Patrick C. M. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kay H. Y. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwong Wai Choy
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiujuan Geng
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
10
|
Interaction of COMT and KIBRA modulates the association between hippocampal structure and episodic memory performance in healthy young adults. Behav Brain Res 2020; 384:112550. [PMID: 32057830 DOI: 10.1016/j.bbr.2020.112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 11/23/2022]
Abstract
Genetic variations of COMT and KIBRA, which were reported to be expressed in the hippocampus, have been linked to memory function. However, their interaction on the hippocampal structure remains unknown. This study aimed to explore the interaction effects of COMT rs4680 and KIBRA rs17070145 on the hippocampal subfield volumes and test their associations with hippocampus-memory relationship in 187 healthy young adults. Two-way analysis of covariance was applied to the alterations in hippocampal subfield volumes among COMT and KIBRA genotypes. Significant interaction effects of these two genes were found in the right CA1 and CA3 subfields. Among KIBRA C-allele carriers, COMT Val/Val homozygotes showed greater volume in these regions than COMT Met-allele carriers. Furthermore, the slope of the correlation between right CA1 volume and immediate recall on the California Verbal Learning Test-II (CVLT-II) (F = 4.36, p = 0.041) as well as CVLT-II delayed recall (F = 6.44, p = 0.014) were significantly different between COMT Val/Val homozygotes and Met-allele carriers, which were positive or tend to be positive in COMT Val/Val group (CVLT immediate recall, r = 0.319, p = 0.040; CVLT delayed recall, r = 0.304, p = 0.051), but absent in COMT Met-allele carriers (CVLT immediate recall, r = -0.263, p = 0.205; CVLT delayed recall, r = -0.351, p = 0.086). These findings may provide a novel insight into the genetic effects upon the hippocampal structure and suggest that the conjoint effects of COMT and KIBRA played a modulatory role in the hippocampus-episodic memory correlation.
Collapse
|
11
|
Morris KA, Grace SA, Woods W, Dean B, Rossell SL. The influence of COMT rs4680 on functional connectivity in healthy adults: A systematic review. Eur J Neurosci 2020; 52:3851-3878. [PMID: 32306439 DOI: 10.1111/ejn.14748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/01/2022]
Abstract
The aim of this systematic review was to qualitatively synthesise the available research that investigated the influence of COMT genotype at SNP rs4680 on both task-based and resting-state connectivity in healthy adults. Thirty-five studies were identified that met inclusion criteria. Of the included studies, 20 studies reported resting-state findings and 16 studies reported task-based findings (emotion-processing, memory, working memory, reward-based learning and executive function). Studies were highly heterogeneous but an overall trend towards an association of the Val allele with greater resting-state connectivity and the Met allele with greater task-based connectivity is reported. A possible interpretation of current findings is discussed, whereby the Val allele is associated with improved cognitive flexibility allowing integration of novel relevant stimuli, and the Met allele allows improved sustained attention and targeted neural processing, particularly between limbic regions and prefrontal cortex. The most promising brain regions implicated in a COMT genotype influence on functional connectivity include prefrontal regions, amygdala and hippocampus.
Collapse
Affiliation(s)
- Kim A Morris
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia
| | - Sally A Grace
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia
| | - Will Woods
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia
| | - Brian Dean
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia.,The Florey Institute for Neuroscience and Mental Health, Melbourne, Vic., Australia
| | - Susan L Rossell
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia.,Psychiatry, St Vincent's Hospital, Melbourne, Vic., Australia
| |
Collapse
|
12
|
Zhao W, Huang L, Li Y, Zhang Q, Chen X, Fu W, Du B, Deng X, Ji F, Xiang YT, Wang C, Li X, Dong Q, Chen C, Jaeggi SM, Li J. Evidence for the contribution of COMT gene Val158/108Met polymorphism (rs4680) to working memory training-related prefrontal plasticity. Brain Behav 2020; 10:e01523. [PMID: 31917897 PMCID: PMC7010579 DOI: 10.1002/brb3.1523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/28/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetic factors have been suggested to affect the efficacy of working memory training. However, few studies have attempted to identify the relevant genes. METHODS In this study, we first performed a randomized controlled trial (RCT) to identify brain regions that were specifically affected by working memory training. Sixty undergraduate students were randomly assigned to either the adaptive training group (N = 30) or the active control group (N = 30). Both groups were trained for 20 sessions during 4 weeks and received fMRI scans before and after the training. Afterward, we combined the data from the 30 participants in the RCT study who received adaptive training with data from 71 additional participants who also received the same adaptive training but were not part of the RCT study (total N = 101) to test the contribution of the COMT Val158/108Met polymorphism to the interindividual difference in the training effect within the identified brain regions. RESULTS In the RCT study, we found that the adaptive training significantly decreased brain activation in the left prefrontal cortex (TFCE-FWE corrected p = .030). In the genetic study, we found that compared with the Val allele homozygotes, the Met allele carriers' brain activation decreased more after the training at the left prefrontal cortex (TFCE-FWE corrected p = .025). CONCLUSIONS This study provided evidence for the neural effect of a visual-spatial span training and suggested that genetic factors such as the COMT Val158/108Met polymorphism may have to be considered in future studies of such training.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ling Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qiumei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Mental Health, Jining Medical University, Jining, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Wenjin Fu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, China
| | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Susanne M Jaeggi
- School of Education & Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
13
|
Bowers ME, Buzzell GA, Salo V, Troller-Renfree SV, Hodgkinson CA, Goldman D, Gorodetsky E, Martin McDermott J, Henderson HA, Fox NA. Relations between catechol-O-methyltransferase Val158Met genotype and inhibitory control development in childhood. Dev Psychobiol 2019; 62:181-190. [PMID: 31372986 DOI: 10.1002/dev.21901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
The Val158Met rs4680 single-nucleotide polymorphism (SNP) at the catechol-O-methyltransferase (COMT) gene, primarily involved in dopamine breakdown within prefrontal cortex, has shown relations with inhibitory control (IC) in both adults and children. However, little is known about how COMT genotype relates to developmental trajectories of IC throughout childhood. Here, our study explored the effects of the COMT genotype (Val/Val, Val/Met, and Met/Met) on IC trajectories between the ages of 5 and 10 years. Children (n = 222) completed a Go/Nogo task at ages 5, 7, and 10; IC was characterized using signal detection theory to examine IC performance (d') and response strategy (RS) (criterion). COMT genotype was not related to initial levels of IC performance and RS at age 5 or change in RS from ages 5 to 10. In contrast, COMT genotype was related to change in IC performance between 5 and 10 years. While Val/Val children did not differ from Val/Met children in development of IC performance, children with the Met/Met genotype exhibited more rapid development of IC performance when compared with Val/Met peers. These results suggest that COMT genotype modulates the development of IC performance in middle childhood.
Collapse
Affiliation(s)
- Maureen E Bowers
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - George A Buzzell
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Virginia Salo
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Sonya V Troller-Renfree
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, Intramural Research Program, The National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, Intramural Research Program, The National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Elena Gorodetsky
- Office of Research on Women's Health, The National Institute of Health, Bethesda, MD, USA
| | | | | | - Nathan A Fox
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.,Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| |
Collapse
|
14
|
Tang C, Wang W, Shi M, Zhang N, Zhou X, Li X, Ma C, Chen G, Xiang J, Gao D. Meta-Analysis of the Effects of the Catechol-O-Methyltransferase Val158/108Met Polymorphism on Parkinson's Disease Susceptibility and Cognitive Dysfunction. Front Genet 2019; 10:644. [PMID: 31354790 PMCID: PMC6639434 DOI: 10.3389/fgene.2019.00644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/18/2019] [Indexed: 01/11/2023] Open
Abstract
Background: There is a continued debate and inconsistent findings in previous literature about the relationship of catechol-O-methyltransferase (COMT) and Parkinson’s disease (PD) susceptibility as well as cognitive dysfunction. To substantiate this existing gap, we comprehensively examine COMT genotype effects on the development of PD and test the hypothesis that the Met158 allele of the COMT gene is associated with cognitive dysfunction by conducting a meta-analysis review. Methods: PubMed/MEDLINE, Embase, Cochrane databases search (18/30/08) yielded 49 included studies. Data were extracted by two reviewers and included COMT genotype, publication year, diagnostic status, ancestry, the proportion of male participants, and whether genotype frequencies were consistent with Hardy–Weinberg equilibrium. Unadjusted odds ratios (ORs) were used to derive pooled estimates of PD risk overall and in subgroups defined by ethnicity, gender, and onset of disease. Moreover, the association of certain cognitive domains in PD and COMT gene type was explored. Meta-analyses were performed using random-effect models and p value–based methods. All statistical tests were two-sided. The present study was registered with PROSPERO (CRD42018087323). Results: In the current studies, we found no association between COMT Val158/108Met polymorphism and PD susceptibility. However, the gender-stratified analyses revealed marginally significant effects in heterozygote model analyses in women (P = 0.053). In addition, stratification according to onset of PD also shows significant effects of COMT Val158/108Met polymorphism on late-onset population both in recessive (P = 0.017) and allelic (P = 0.017) genetic models. For the intelligence quotient (IQ) score and Unified Parkinson Disease Rating Scale III (UPDRS III), there was no evidence for genetic association, except in subgroup analyses in Asian populations (IQ score, P = 0.016; UPDRS III, P < 0.001). Conclusion: The COMT Val158/108Met polymorphism is associated with the risk for PD in female or late-onset PD. Methionine/methionine carriers of Asian population performed significantly worse than the valine allele carriers in IQ score and UPDRS III.
Collapse
Affiliation(s)
- Chuanxi Tang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Wei Wang
- Medical Technology School, Xuzhou Medical University, Xuzhou, China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyu Shi
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Na Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xue Li
- School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Chengcheng Ma
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Gang Chen
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Xiang
- Medical Technology School, Xuzhou Medical University, Xuzhou, China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Crocco P, Montesanto A, Dato S, Geracitano S, Iannone F, Passarino G, Rose G. Inter-Individual Variability in Xenobiotic-Metabolizing Enzymes: Implications for Human Aging and Longevity. Genes (Basel) 2019; 10:genes10050403. [PMID: 31137904 PMCID: PMC6562959 DOI: 10.3390/genes10050403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
Xenobiotic-metabolizing enzymes (XME) mediate the body’s response to potentially harmful compounds of exogenous/endogenous origin to which individuals are exposed during their lifetime. Aging adversely affects such responses, making the elderly more susceptible to toxics. Of note, XME genetic variability was found to impact the ability to cope with xenobiotics and, consequently, disease predisposition. We hypothesized that the variability of these genes influencing the interaction with the exposome could affect the individual chance of becoming long-lived. We tested this hypothesis by screening a cohort of 1112 individuals aged 20–108 years for 35 variants in 23 XME genes. Four variants in different genes (CYP2B6/rs3745274-G/T, CYP3A5/rs776746-G/A, COMT/rs4680-G/A and ABCC2/rs2273697-G/A) differently impacted the longevity phenotype. In particular, the highest impact was observed in the age group 65–89 years, known to have the highest incidence of age-related diseases. In fact, genetic variability of these genes we found to account for 7.7% of the chance to survive beyond the age of 89 years. Results presented herein confirm that XME genes, by mediating the dynamic and the complex gene–environment interactions, can affect the possibility to reach advanced ages, pointing to them as novel genes for future studies on genetic determinants for age-related traits.
Collapse
Affiliation(s)
- Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Francesca Iannone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
16
|
Martin DM, McClintock SM, Aaronson ST, Alonzo A, Husain MM, Lisanby SH, McDonald WM, Mohan A, Nikolin S, O'Reardon J, Weickert CS, Loo CK. Pre-treatment attentional processing speed and antidepressant response to transcranial direct current stimulation: Results from an international randomized controlled trial. Brain Stimul 2018; 11:1282-1290. [DOI: 10.1016/j.brs.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 01/30/2023] Open
|
17
|
Geller S, Wilhelm O, Wacker J, Hamm A, Hildebrandt A. Associations of the COMT Val158Met polymorphism with working memory and intelligence – A review and meta-analysis. INTELLIGENCE 2017. [DOI: 10.1016/j.intell.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Mizuno Y, Jung M, Fujisawa TX, Takiguchi S, Shimada K, Saito DN, Kosaka H, Tomoda A. Catechol-O-methyltransferase polymorphism is associated with the cortico-cerebellar functional connectivity of executive function in children with attention-deficit/hyperactivity disorder. Sci Rep 2017; 7:4850. [PMID: 28687733 PMCID: PMC5501850 DOI: 10.1038/s41598-017-04579-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/17/2017] [Indexed: 12/02/2022] Open
Abstract
The cerebellum, although traditionally considered a motor structure, has been increasingly recognized to play a role in regulating executive function, the dysfunction of which is a factor in attention-deficit/hyperactivity disorder (ADHD). Additionally, catechol-O-methyltransferase (COMT) polymorphism has been reported to be associated with executive function. We examined whether the cortico-cerebellar executive function network is altered in children with ADHD and whether COMT polymorphism is associated with the altered network. Thirty-one children with ADHD and thirty age- and IQ-matched typically developing (TD) controls underwent resting-state functional MRI, and functional connectivity of executive function-related Crus I/II in the cerebellum was analysed. COMT Val158Met genotype data were also obtained from children with ADHD. Relative to TD controls, children with ADHD showed significantly lower functional connectivity of the right Crus I/II with the left dorsolateral prefrontal cortex. Additionally, the functional connectivity of children with ADHD was modulated by COMT polymorphism, with Met-carriers exhibiting significantly lower functional connectivity than the Val/Val genotype. These results suggest the existence of variations, such as ethnic differences, in COMT genetic effects on the cortico-cerebellar executive function network. These variations contribute to heterogeneity in ADHD. Further neuroimaging genetics study might lead to the development of fundamental therapies that target ADHD pathophysiology.
Collapse
Affiliation(s)
- Yoshifumi Mizuno
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Minyoung Jung
- Department of Psychiatry, Harvard Medical School, Harvard University, Bldg. 120, 1st Ave., Charlestown, MA, 02129, USA
| | - Takashi X Fujisawa
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Shinichiro Takiguchi
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koji Shimada
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 13-1 Takaramachi, Kanazawa-shi, Ishikawa, 920-8640, Japan
| | - Hirotaka Kosaka
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Akemi Tomoda
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
19
|
Shimada K, Fujisawa TX, Takiguchi S, Naruse H, Kosaka H, Okazawa H, Tomoda A. Ethnic differences in COMT genetic effects on striatal grey matter alterations associated with childhood ADHD: A voxel-based morphometry study in a Japanese sample. World J Biol Psychiatry 2017; 18:322-328. [PMID: 26576742 DOI: 10.3109/15622975.2015.1102325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Attention deficit/hyperactivity disorder (ADHD) is associated with deficits in the dopaminergic fronto-striatal systems mediating higher-level cognitive functions. We hypothesised that a dopamine-regulating gene, catechol-O-methyltransferase (COMT), would have differential effects on the neural systems of different ethnic samples with ADHD. In Caucasian children with ADHD, the COMT Val-homozygotes have been previously shown to be associated with striatal grey matter volume (GMV) alterations. By using voxel-based morphometry, we examined whether Asian children with ADHD would exhibit a pattern opposite to that found in Caucasian samples. METHODS Structural brain images were obtained for Japanese children with ADHD (n = 17; mean age = 10.3 years) and typically developing (TD) children (n = 15; mean age = 12.8 years). COMT Val158Met genotype data were also obtained for the ADHD group. RESULTS Reduced GMV in the left striatum was observed in the ADHD group versus the TD group. This reduced GMV was modulated by COMT polymorphism; Met-carriers exhibited smaller striatal GMV than the Val/Val genotype. CONCLUSIONS Contrasting with previous findings in Caucasians, the COMT Met allele was associated with striatal GMV alterations in Japanese children with ADHD. These results suggest the existence of ethnic differences in the COMT genetic effect on ADHD-related striatal abnormalities.
Collapse
Affiliation(s)
- Koji Shimada
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,b Biomedical Imaging Research Center, University of Fukui , Fukui , Japan.,c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan
| | - Takashi X Fujisawa
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan
| | | | - Hiroaki Naruse
- c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan
| | - Hirotaka Kosaka
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan.,e Department of Neuropsychiatry, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Hidehiko Okazawa
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,b Biomedical Imaging Research Center, University of Fukui , Fukui , Japan
| | - Akemi Tomoda
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan
| |
Collapse
|
20
|
Miskowiak KW, Kjaerstad HL, Støttrup MM, Svendsen AM, Demant KM, Hoeffding LK, Werge TM, Burdick KE, Domschke K, Carvalho AF, Vieta E, Vinberg M, Kessing LV, Siebner HR, Macoveanu J. The catechol-O-methyltransferase (COMT) Val158Met genotype modulates working memory-related dorsolateral prefrontal response and performance in bipolar disorder. Bipolar Disord 2017; 19:214-224. [PMID: 28544426 DOI: 10.1111/bdi.12497] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/24/2017] [Accepted: 04/01/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cognitive dysfunction affects a substantial proportion of patients with bipolar disorder (BD), and genetic-imaging paradigms may aid in the elucidation of mechanisms implicated in this symptomatic domain. The Val allele of the functional Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene is associated with reduced prefrontal cortex dopamine and exaggerated working memory-related prefrontal activity. This functional magnetic resonance imaging (fMRI) study investigated for the first time whether the COMT Val158Met genotype modulates prefrontal activity during spatial working memory in BD. METHODS Sixty-four outpatients with BD in full or partial remission were stratified according to COMT Val158Met genotype (ValVal [n=13], ValMet [n=34], and MetMet [n=17]). The patients completed a spatial n-back working memory task during fMRI and the Cambridge Neuropsychological Test Automated Battery (CANTAB) Spatial Working Memory test outside the scanner. RESULTS During high working memory load (2-back vs 1-back), Val homozygotes displayed decreased activity relative to ValMet individuals, with Met homozygotes displaying intermediate levels of activity in the right dorsolateral prefrontal cortex (dlPFC) (P=.016). Exploratory whole-brain analysis revealed a bilateral decrease in working memory-related dlPFC activity in the ValVal group vs the ValMet group which was not associated with differences in working memory performance during fMRI. Outside the MRI scanner, Val carriers performed worse in the CANTAB Spatial Working Memory task than Met homozygotes (P≤.006), with deficits being most pronounced in Val homozygotes. CONCLUSIONS The association between Val allelic load, dlPFC activity and WM impairment points to a putative role of aberrant PFC dopamine tonus in the cognitive impairments in BD.
Collapse
Affiliation(s)
- K W Miskowiak
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - H L Kjaerstad
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - M M Støttrup
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - A M Svendsen
- Mental Health Centre Copenhagen, Capital Region of Denmark, Copenhagen, Denmark
| | - K M Demant
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - L K Hoeffding
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Clinical Immunology, University Hospital of Copenhagen Rigshospitalet, Copenhagen, Denmark
| | - T M Werge
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - K E Burdick
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, NY, USA
| | - K Domschke
- Department of Psychiatry, University of Freiburg, Freiburg, Germany
| | - A F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - E Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - M Vinberg
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - L V Kessing
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - J Macoveanu
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Lacourt TE, Heijnen CJ. Mechanisms of Neurotoxic Symptoms as a Result of Breast Cancer and Its Treatment: Considerations on the Contribution of Stress, Inflammation, and Cellular Bioenergetics. CURRENT BREAST CANCER REPORTS 2017; 9:70-81. [PMID: 28616125 PMCID: PMC5445149 DOI: 10.1007/s12609-017-0245-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Breast cancer and its treatment are associated with a range of neurotoxic symptoms, such as fatigue, cognitive impairment, and pain. Although these symptoms generally subside after treatment completion, they become chronic in a significant subset of patients. We here summarize recent findings on neuroinflammation, stress, and mitochondrial dysfunction as mechanistic pathways leading to neurotoxic symptom experience in breast cancer patients and survivors. RECENT FINDINGS Neuroinflammation related to stress or cancer treatment and stress resulting from diagnosis, treatment, or (cancer-related) worrying are important predictors of a neurotoxic symptom experience, both during and after treatment for breast cancer. Both inflammation and stress hormones, as well as cancer treatment, can induce mitochondrial dysfunction resulting in reduced cellular energy. SUMMARY We propose reduced cellular energy (mitochondrial dysfunction) induced by inflammation, oxygen radical production, and stress as a result of cancer and/or cancer treatment as a final mechanism underlying neurotoxic symptoms.
Collapse
Affiliation(s)
- Tamara E. Lacourt
- Department of Symptom Research, Neuroimmunology Laboratory, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX 77030 USA
| | - Cobi J. Heijnen
- Department of Symptom Research, Neuroimmunology Laboratory, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX 77030 USA
| |
Collapse
|
22
|
Lin Z, He H, Zhang C, Wang Z, Jiang M, Li Q, Lan X, Zhang M, Huang X. Influence of Val108/158Met COMT Gene Polymorphism on the Efficacy of Modified Electroconvulsive Therapy in Patients with Treatment Resistant Depression. Cell Biochem Biophys 2016; 71:1387-93. [PMID: 25388840 DOI: 10.1007/s12013-014-0361-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Depression is a common emotional disorder associated with increased risk of suicide and rate of disability. In this double-blinded control study, we tested the efficacy of modified electroconvulsive therapy (MECT) in patients with treatment resistant depression (TRD) using the Hamilton Depression Rating Scale for Depression (HAMD). The total scores of HAMD were found to be significantly decreased after the treatment. The genotyping of catechol-O-methyltransferase (COMT) was carried out with polymerase chain reaction-based testing. Our results demonstrated that frequency of mutant COMT alleles in TRD patients was significantly higher than that of the controls indicating a correlation of the enzyme genotype to the occurrence of TRD. Moreover, the patients homozygous for wild-type COMT gene (G/G) were evidenced to be more sensitive to MECT treatment than those with an heterozygous mutant genotype (A/G).
Collapse
Affiliation(s)
- Zhaoyu Lin
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Hongbo He
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Chunping Zhang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Zhijie Wang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Miaoling Jiang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Qirong Li
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Xiaochang Lan
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Minling Zhang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Xiong Huang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China.
| |
Collapse
|
23
|
Chen W, Chen C, Xia M, Wu K, Chen C, He Q, Xue G, Wang W, He Y, Dong Q. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory. Front Hum Neurosci 2016; 10:540. [PMID: 27853425 PMCID: PMC5091010 DOI: 10.3389/fnhum.2016.00540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo).
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Karen Wu
- Department of Psychology and Social Behavior, University of CaliforniaIrvine, CA, USA
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of CaliforniaIrvine, CA, USA
| | - Qinghua He
- Faculty of Psychology, Southwest UniversityChongqing, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Wenjing Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| |
Collapse
|
24
|
Degen C, Zschocke J, Toro P, Sattler C, Wahl HW, Schönknecht P, Schröder J. The COMTp.Val158Met Polymorphism and Cognitive Performance in Adult Development, Healthy Aging and Mild Cognitive Impairment. Dement Geriatr Cogn Disord 2016; 41:27-34. [PMID: 26489081 DOI: 10.1159/000439585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The impact of genetic polymorphisms on cognition is assumed to increase with age as losses of brain resources have to be compensated for. We investigate the relation of catechol-O-methyltransferase (COMT)p.Val158Met polymorphism and cognitive capacity in the course of adult development, healthy aging and the development of mild cognitive impairment (MCI) in two birth cohorts of subjects born between 1930 and 1932 or between 1950 and 1952. METHODS Thorough neuropsychological assessment was conducted in a total of 587 participants across three examination waves between 1993 and 2008. The COMT genotype was determined as a restriction fragment length polymorphism after PCR amplification and digestion with NlaIII. RESULTS Significant effects of the COMTp.Val158Met polymorphism were identified for attention and cognitive flexibility in the younger but not the older cohort. CONCLUSION These results confirm the importance of the COMTp.Val158Met genotype on tasks assessing attention and cognitive flexibility in midlife but not in healthy aging and the development of MCI. Our findings suggest that the influence of COMT changes as a function of age, decreasing from midlife to aging.
Collapse
Affiliation(s)
- Christina Degen
- Section of Geriatric Psychiatry, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Lamb YN, McKay NS, Singh SS, Waldie KE, Kirk IJ. Catechol-O-methyltransferase val(158)met Polymorphism Interacts with Sex to Affect Face Recognition Ability. Front Psychol 2016; 7:965. [PMID: 27445927 PMCID: PMC4921451 DOI: 10.3389/fpsyg.2016.00965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/10/2016] [Indexed: 01/10/2023] Open
Abstract
The catechol-O-methyltransferase (COMT) val158met polymorphism affects the breakdown of synaptic dopamine. Consequently, this polymorphism has been associated with a variety of neurophysiological and behavioral outcomes. Some of the effects have been found to be sex-specific and it appears estrogen may act to down-regulate the activity of the COMT enzyme. The dopaminergic system has been implicated in face recognition, a form of cognition for which a female advantage has typically been reported. This study aimed to investigate potential joint effects of sex and COMT genotype on face recognition. A sample of 142 university students was genotyped and assessed using the Faces I subtest of the Wechsler Memory Scale - Third Edition (WMS-III). A significant two-way interaction between sex and COMT genotype on face recognition performance was found. Of the male participants, COMT val homozygotes and heterozygotes had significantly lower scores than met homozygotes. Scores did not differ between genotypes for female participants. While male val homozygotes had significantly lower scores than female val homozygotes, no sex differences were observed in the heterozygotes and met homozygotes. This study contributes to the accumulating literature documenting sex-specific effects of the COMT polymorphism by demonstrating a COMT-sex interaction for face recognition, and is consistent with a role for dopamine in face recognition.
Collapse
Affiliation(s)
- Yvette N Lamb
- School of Psychology, The University of Auckland Auckland, New Zealand
| | - Nicole S McKay
- School of Psychology, The University of Auckland Auckland, New Zealand
| | - Shrimal S Singh
- School of Psychology, The University of Auckland Auckland, New Zealand
| | - Karen E Waldie
- School of Psychology, The University of Auckland Auckland, New Zealand
| | - Ian J Kirk
- School of Psychology, The University of Auckland Auckland, New Zealand
| |
Collapse
|
26
|
Costa DDS, de Paula JJ, Alvim-Soares AM, Pereira PA, Malloy-Diniz LF, Rodrigues LOC, Romano-Silva MA, de Miranda DM. COMT Val(158)Met Polymorphism Is Associated with Verbal Working Memory in Neurofibromatosis Type 1. Front Hum Neurosci 2016; 10:334. [PMID: 27458360 PMCID: PMC4932101 DOI: 10.3389/fnhum.2016.00334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type I (NF1) is a neurogenetic disease marked by multiple cognitive and learning problems. Genetic variants may account for phenotypic variance in NF1. Here, we investigated the association between the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism and working memory and arithmetic performance in 50 NF1 individuals. A significant association of the COMT polymorphism was observed only with verbal working memory, as measured by the backward digit-span task with an advantageous performance for Met/Met carriers. To study how genetic modifiers influence NF1 cognitive performance might be of importance to decrease the unpredictability of the cognitive profile among NF1 patients.
Collapse
Affiliation(s)
- Danielle de Souza Costa
- Postgraduate Program in Molecular Medicine, School of Medicine, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Jonas J. de Paula
- Postgraduate Program in Molecular Medicine, School of Medicine, Federal University of Minas GeraisBelo Horizonte, Brazil
- Department of Psychology, Faculty of Medical Sciences of Minas GeraisBelo Horizonte, Brazil
| | - Antonio M. Alvim-Soares
- Postgraduate Program in Molecular Medicine, School of Medicine, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Patrícia A. Pereira
- Postgraduate Program in Molecular Medicine, School of Medicine, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Leandro F. Malloy-Diniz
- Department of Psychiatry, School of Medicine, Federal University of Minas GeraisBelo Horizonte, Brazil
- National Institute of Science and Technology of Molecular MedicineBelo Horizonte, Brazil
| | - Luiz O. C. Rodrigues
- Neurofibromatosis Outpatient Reference Center, School of Medicine, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Marco A. Romano-Silva
- Department of Psychiatry, School of Medicine, Federal University of Minas GeraisBelo Horizonte, Brazil
- National Institute of Science and Technology of Molecular MedicineBelo Horizonte, Brazil
| | - Débora M. de Miranda
- National Institute of Science and Technology of Molecular MedicineBelo Horizonte, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Minas GeraisBelo Horizonte, Brazil
| |
Collapse
|
27
|
Li W, Liu B, Xu J, Jiang T, Yu C. Interaction of COMT rs4680 and BDNF rs6265 polymorphisms on functional connectivity density of the left frontal eye field in healthy young adults. Hum Brain Mapp 2016; 37:2468-78. [PMID: 27004987 DOI: 10.1002/hbm.23187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/04/2016] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
As modulators of dopamine availability and release in the brain, COMT and BDNF polymorphisms have demonstrated interactions on human cognition; however, the underlying neural mechanisms remain largely unknown. In this study, we aimed to investigate the interactions of COMT rs4680 and BDNF rs6265 on global functional connectivity density (gFCD) of the brain in 265 healthy young subjects. We found a significant COMT × BDNF interaction on the gFCD in the left frontal eye field (FEF), showing an inverted U-shape modulation by the presumed dopamine signaling. This finding was consistently repeated in the gFCD analyses using other four connection thresholds. Our findings reveal a COMT × BDNF interaction on the FCD in the left FEF, which may be helpful for understanding the neural mechanisms of the COMT × BDNF interactions on the FEF-related cognitive functions. Hum Brain Mapp 37:2468-2478, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
28
|
Kos MZ, Carless MA, Peralta J, Blackburn A, Almeida M, Roalf D, Pogue-Geile MF, Prasad K, Gur RC, Nimgaonkar V, Curran JE, Duggirala R, Glahn DC, Blangero J, Gur RE, Almasy L. Exome Sequence Data From Multigenerational Families Implicate AMPA Receptor Trafficking in Neurocognitive Impairment and Schizophrenia Risk. Schizophr Bull 2016; 42:288-300. [PMID: 26405221 PMCID: PMC4753604 DOI: 10.1093/schbul/sbv135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a mental disorder characterized by impairments in behavior, thought, and neurocognitive performance. We searched for susceptibility loci at a quantitative trait locus (QTL) previously reported for abstraction and mental flexibility (ABF), a cognitive function often compromised in schizophrenia patients and their unaffected relatives. Exome sequences were determined for 134 samples in 8 European American families from the original linkage study, including 25 individuals with schizophrenia or schizoaffective disorder. At chromosome 5q32-35.3, we analyzed 407 protein-altering variants for association with ABF and schizophrenia status. For replication, significant, Bonferroni-corrected findings were tested against cognitive traits in Mexican American families (n = 959), as well as interrogated for schizophrenia risk using GWAS results from the Psychiatric Genomics Consortium (PGC). From the gene SYNPO, rs6579797 (MAF = 0.032) shows significant associations with ABF (P = .015) and schizophrenia (P = .040), as well as jointly (P = .0027). In the Mexican American pedigrees, rs6579797 exhibits significant associations with IQ (P = .011), indicating more global effects on neurocognition. From the PGC results, other SYNPO variants were identified with near significant effects on schizophrenia risk, with a local linkage disequilibrium block displaying signatures of positive selection. A second missense variant within the QTL, rs17551608 (MAF = 0.19) in the gene WWC1, also displays a significant effect on schizophrenia in our exome sequences (P = .038). Remarkably, the protein products of SYNPO and WWC1 are interaction partners involved in AMPA receptor trafficking, a brain process implicated in synaptic plasticity. Our study reveals variants in these genes with significant effects on neurocognition and schizophrenia risk, identifying a potential pathogenic mechanism for schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Mark Z. Kos
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX;,*To whom correspondence should be addressed; South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX 78229, US; tel: 210-585-9772, fax: 210-582-5836, e-mail:
| | - Melanie A. Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Juan Peralta
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - August Blackburn
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - David Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Konasale Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - David C. Glahn
- Department of Psychiatry, Olin Neuropsychiatric Research Center, Yale School of Medicine, Hartford, CT
| | - John Blangero
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| |
Collapse
|
29
|
Lee A, Qiu A. Modulative effects of COMT haplotype on age-related associations with brain morphology. Hum Brain Mapp 2016; 37:2068-82. [PMID: 26920810 DOI: 10.1002/hbm.23161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 12/25/2022] Open
Abstract
Catechol-O-methyltransferase (COMT), located on chromosome 22q11.2, encodes an enzyme critical for dopamine flux in the prefrontal cortex. Genetic variants of COMT have been suggested to functionally manipulate prefrontal morphology and function in healthy adults. This study aims to investigate modulative roles of individuals COMT SNPs (rs737865, val158met, rs165599) and its haplotypes in age-related brain morphology using an Asian sample with 174 adults aged from 21 to 80 years. We showed an age-related decline in cortical thickness of the dorsal visual pathway, including the left dorsolateral prefrontal cortex, bilateral angular gyrus, right superior frontal cortex, and age-related shape compression in the basal ganglia as a function of the genotypes of the individual COMT SNPs, especially COMT val158met. Using haplotype trend regression analysis, COMT haplotype probabilities were estimated and further revealed an age-related decline in cortical thickness in the default mode network (DMN), including the posterior cingulate, precuneus, supramarginal and paracentral cortex, and the ventral visual system, including the occipital cortex and left inferior temporal cortex, as a function of the COMT haplotype. Our results provided new evidence on an antagonistic pleiotropic effect in COMT, suggesting that genetically programmed neural benefits in early life may have a potential bearing towards neural susceptibility in later life. Hum Brain Mapp 37:2068-2082, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annie Lee
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore.,Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, 117609, Singapore
| |
Collapse
|
30
|
Wang M, Ma Y, Yuan W, Su K, Li MD. Meta-Analysis of the COMT Val158Met Polymorphism in Major Depressive Disorder: Effect of Ethnicity. J Neuroimmune Pharmacol 2016; 11:434-45. [PMID: 26803486 DOI: 10.1007/s11481-016-9651-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/14/2016] [Indexed: 12/23/2022]
Abstract
The COMT (catechol-O-methyltransferase) Val158Met polymorphism (rs4680) is a potential susceptibility variant for major depressive disorder (MDD). Although many genetic studies have examined the association between MDD and this polymorphism, the results were inconclusive. In the present study, we conducted a series of meta-analyses of samples consisting of 2905 MDD cases and 2403 controls with the goal of determining whether this variant indeed has any effect on MDD. We revealed a significant association in the comparison of Val/Val + Val/Met vs. Met/Met (OR =1.180; 95 % CI = 1.019, 1.367; P = 0.027), Val/Met vs. Val/Val (OR =1.18; 95 % CI = 1.038, 1.361; P = 0.013), and Val/Met vs. Met/Met (OR =1.229; 95 % CI = 1.053, 1.435; P = 0.009). Further meta-analyses of samples with European ancestry demonstrated a significant association of this SNP with MDD susceptibility in Val/Val + Val/Met vs. Met/Met (OR =1.231, 95 % CI = 1.046, 1.449; P = 0.013) and Val/Met vs. Met/Met (OR =1.284, 95 % CI = 1.050, 1.484; P = 0.012). For the samples with East Asian ancestry, we found a significant association in both allelic (Val vs. Met: OR =0.835; 95 % CI = 0.714, 0.975; P = 0.023) and genotypic (Met/Met + Val/Met vs. Val/Val: OR =1.431, 95 % CI = 1.143, 1.791; P = 0.002; Val/Met vs. Val/Val: OR =1.482, 95 % CI = 1.171, 1.871; P = 0.001) analyses. No evidence of heterogeneity among studies or publication bias was observed. Together, our results indicate that the COMT Val158Met polymorphism is a vulnerability factor for MDD with distinct effects in different ethnic populations.
Collapse
Affiliation(s)
- Maiqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China. .,Air Center for Air Pollution and Health, Zhejiang University, Hangzhou, China. .,Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Network-Dependent Modulation of COMT and DRD2 Polymorphisms in Healthy Young Adults. Sci Rep 2015; 5:17996. [PMID: 26642826 PMCID: PMC4672286 DOI: 10.1038/srep17996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
Nonlinear modulation of the dopamine signaling on brain functions can be estimated by the interaction effects of dopamine-related genetic variations. We aimed to explore the interaction effects of COMT rs4680 and DRD2 rs1076560 on intra-network connectivity using independent component analysis. In 250 young healthy adults, we identified 11 meaningful resting-state networks (RSNs), including the salience, visual, auditory, default-mode, sensorimotor, attention and frontoparietal networks. A two-way analysis of covariance was used to investigate COMT×DRD2 interactions on intra-network connectivity in each network, controlling for age, gender and education. Significant COMT×DRD2 interaction was found in intra-network connectivity in the left medial prefrontal cortex of the anterior default-mode network, in the right dorsolateral frontal cortex of the right dorsal attention network, and in the left dorsal anterior cingulate cortex of the salience network. Post hoc tests revealed that these interactions were driven by the differential effects of DRD2 genotypes on intra-network connectivity in different COMT genotypic subgroups. Moreover, even in the same COMT subgroup, the modulation effects of DRD2 on intra-network connectivity were different across RSNs. These findings suggest a network-dependent modulation of the DA-related genetic variations on intra-network connectivity.
Collapse
|
32
|
Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci 2015; 9:181. [PMID: 26029052 PMCID: PMC4428123 DOI: 10.3389/fncel.2015.00181] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/25/2015] [Indexed: 01/08/2023] Open
Abstract
There has been an explosion of research using transcranial direct current stimulation (tDCS) for investigating and modulating human cognitive and motor function in healthy populations. It has also been used in many studies seeking to improve deficits in disease populations. With the slew of studies reporting “promising results” for everything from motor recovery after stroke to boosting memory function, one could be easily seduced by the idea of tDCS being the next panacea for all neurological ills. However, huge variability exists in the reported effects of tDCS, with great variability in the effect sizes and even contradictory results reported. In this review, we consider the interindividual factors that may contribute to this variability. In particular, we discuss the importance of baseline neuronal state and features, anatomy, age and the inherent variability in the injured brain. We additionally consider how interindividual variability affects the results of motor-evoked potential (MEP) testing with transcranial magnetic stimulation (TMS), which, in turn, can lead to apparent variability in response to tDCS in motor studies.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Tokyo, Japan ; Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Restorative Neurosciences, Imperial College London London, UK
| | - Kazumasa Uehara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Tokyo, Japan ; Research Fellow of the Japan Society for the Promotion of Science Tokyo Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Tokyo, Japan
| |
Collapse
|
33
|
Willmott C, Withiel T, Ponsford J, Burke R. COMT Val158Met and cognitive and functional outcomes after traumatic brain injury. J Neurotrauma 2014; 31:1507-14. [PMID: 24786534 DOI: 10.1089/neu.2013.3308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is significant variability in long-term outcomes after traumatic brain injury (TBI), making accurate prognosis difficult. In seeking to enhance understanding of outcomes, this study aimed to investigate whether COMT Val(158)Met allele status was associated with performance on neuropsychological measures of attention and working memory, executive functioning, learning and memory, and speed of information processing in the early rehabilitation phase. The study also aimed to examine whether the COMT polymorphism was associated with longer-term functional outcomes. A total of 223 participants (71.3% male) with moderate-to-severe TBI were recruited as rehabilitation inpatients to participate in a prospective, longitudinal head injury outcome study. The three COMT genotype groups (Val/Val, Val/Met, and Met/Met) were well matched for estimated full-scale IQ, years of education, age at injury, and injury severity. Results showed no significant difference between genotypes on neuropsychological measures (all p>0.05) or functional outcome, as measured by the Glasgow Outcome Scale-Extended (GOS-E), after controlling for age, education, and severity of injury. The presence of frontal lobe pathology was also not associated with cognitive performance. Those with greater injury severity (i.e., longer duration of post-traumatic amnesia) performed more poorly on measures of processing speed and verbal new learning and recall. It was concluded that there was little support for the influence of COMT Val(158)Met on cognitive function, or functional outcome measures, in the acute rehabilitation phase after TBI.
Collapse
Affiliation(s)
- Catherine Willmott
- 1 School of Psychological Sciences, Monash University , Clayton, VIC, Australia
| | | | | | | |
Collapse
|
34
|
Lage GM, Miranda DM, Romano-Silva MA, Campos SB, Albuquerque MR, Corrêa H, Malloy-Diniz LF. Association between the catechol-O-methyltransferase (COMT) Val158Met polymorphism and manual aiming control in healthy subjects. PLoS One 2014; 9:e99698. [PMID: 24956262 PMCID: PMC4067272 DOI: 10.1371/journal.pone.0099698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/17/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Prefrontal dopamine is catabolized by the catechol-O-methyltransferase (COMT) enzyme. Current evidence suggests that the val/met single nucleotide polymorphism in the COMT gene can predict the efficiency of executive cognition in humans. Individuals carrying the val allele perform more poorly because less synaptic dopamine is available. METHODOLOGY/PRINCIPAL FINDINGS We investigated the influence of the COMT polymorphism on motor performance in a task that requires different executive functions. We administered a manual aiming motor task that was performed under four different conditions of execution by 111 healthy participants. Participants were grouped according to genotype (met/met, met/val, val/val), and the motor performance among groups was compared. Overall, the results indicate that met/met carriers presented lower levels of peak velocity during the movement trajectory than the val carriers, but met/met carriers displayed higher accuracy than the val carriers. CONCLUSIONS/SIGNIFICANCE This study found a significant association between the COMT polymorphism and manual aiming control. Few studies have investigated the genetics of motor control, and these findings indicate that individual differences in motor control require further investigation using genetic studies.
Collapse
Affiliation(s)
- Guilherme M. Lage
- Grupo de Estudo em Desenvolvimento Motor e Aprendizagem Motora (GEDAM), Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Investigações em Neurociências Clínicas (LINC), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora M. Miranda
- Laboratório de Investigações em Neurociências Clínicas (LINC), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marco A. Romano-Silva
- Laboratório de Investigações em Neurociências Clínicas (LINC), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone B. Campos
- INCT de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maicon R. Albuquerque
- Laboratório de Investigações em Neurociências Clínicas (LINC), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Humberto Corrêa
- Laboratório de Investigações em Neurociências Clínicas (LINC), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro F. Malloy-Diniz
- Laboratório de Investigações em Neurociências Clínicas (LINC), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
35
|
Zhang S, Zhang M, Zhang J. Association of COMT and COMT-DRD2 interaction with creative potential. Front Hum Neurosci 2014; 8:216. [PMID: 24782743 PMCID: PMC3995040 DOI: 10.3389/fnhum.2014.00216] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/27/2014] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence suggest that genes involved in dopamine (DA) transmission may contribute to creativity. Among these genes, the catechol-O-methyltransferase gene (COMT) and the dopamine D2 receptor gene (DRD2) are the most promising candidates. Our previous study has revealed evidence for the involvement of DRD2 in creative potential. The present study extended our previous study by systematically exploring the association of COMT with creative potential as well as the interaction between COMT and DRD2. Twelve single nucleotide polymorphisms (SNPs) covering COMT were genotyped in 543 healthy Chinese college students whose creative potentials were assessed by divergent thinking tests. Single SNP analysis showed that rs174697 was nominally associated with verbal originality, two SNPs (rs737865 and rs5993883) were nominally associated with figural fluency, and two SNPs (rs737865 and rs4680) were nominally associated with figural originality. Haplotype analysis showed that, the TCT and CCT haplotype (rs737865-rs174675-rs5993882) were nominally associated with figural originality, and the TATGCAG and CGCGGGA haplotype (rs4646312-rs6269-rs4633-rs6267-rs4818-rs4680-rs769224) were nominally associated with figural originality and verbal flexibility, respectively. However, none of these nominal findings survived correction for multiple testing. Gene-gene interaction analysis identified one significant four-way interaction of rs174675 (COMT), rs174697 (COMT), rs1076560 (DRD2), and rs4436578 (DRD2) on verbal fluency, one significant four-way interaction of rs174675 (COMT), rs4818 (COMT), rs1076560 (DRD2), and rs4648317 (DRD2) on verbal flexibility, and one significant three-way interaction of rs5993883 (COMT), rs4648319 (DRD2), and rs4648317 (DRD2) on figural flexibility. In conclusion, the present study provides nominal evidence for the involvement of COMT in creative potential and suggests that DA related genes may act in coordination to contribute to creativity.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| | - Muzi Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| |
Collapse
|
36
|
Catechol-O-methyltransferase (COMT) genotype affects age-related changes in plasticity in working memory: a pilot study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:414351. [PMID: 24772423 PMCID: PMC3977538 DOI: 10.1155/2014/414351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 11/17/2022]
Abstract
Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT) amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults. Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24–30 years) and 25 older (aged 60–75 years) healthy adults. Participants underwent adaptive training in the n-back working memory task over 12 sessions under increasing difficulty conditions. Results. Both younger and older adults exhibited sizeable behavioral plasticity through training (P < .001), which was larger in younger as compared to older adults (P < .001). Age-related differences were qualified by an interaction with COMT genotype (P < .001), and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults. Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism.
Collapse
|
37
|
Functional connectivity in healthy subjects is nonlinearly modulated by the COMT and DRD2 polymorphisms in a functional system-dependent manner. J Neurosci 2013; 33:17519-26. [PMID: 24174684 DOI: 10.1523/jneurosci.2163-13.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The dopamine system is known to modulate brain function in an inverted U-shaped manner. Recently, the functional networks of the brain were categorized into two systems, a "control system" and a "processing system." However, it remains unclear whether the inverted U-shaped model of dopaminergic modulation could be applied to both of these functional systems. The catechol-O-methyltransferase (COMT) and dopamine D2 receptor (DRD2) were genotyped in 258 healthy young human subjects. The local and long-range functional connectivity densities (FCDs) of each voxel were calculated and compared in a voxel-wise manner using a two-way (COMT and DRD2 genotypes) analysis of covariance. The resting-state functional connectivity analysis was performed to determine the functional networks to which brain regions with significant FCD differences belonged. Significant COMT × DRD2 interaction effects were found in the local FCDs of the superior portion of the right temporal pole (sTP) and left lingual gyrus (LG) and in the long-range FCDs of the right putamen and left medial prefrontal cortex (MPFC). Post hoc tests showed nonlinear relationships between the genotypic subgroups and FCD. In the control system, the sTP and putamen, components of the salience network, showed a U-shaped modulation by dopamine signaling. In the processing system, however, the MPFC of the default-mode network and the LG of the visual network showed an inverted U-shaped modulation by the dopamine system. Our findings suggest an interaction between COMT and DRD2 genotypes and show a functional system-dependent modulation of dopamine signaling.
Collapse
|
38
|
Ira E, Zanoni M, Ruggeri M, Dazzan P, Tosato S. COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. J Psychiatry Neurosci 2013; 38:366-80. [PMID: 23527885 PMCID: PMC3819150 DOI: 10.1503/jpn.120178] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Endophenotypes in genetic psychiatry may increase our understanding of the molecular mechanisms underlying disease risk and its manifestations. We sought to investigate the link between neuropsychological impairments and brain structural abnormalities associated with the COMT Val(158)Met polymorphism in patients with schizophrenia to improve understanding of the pathophysiology of this disorder. METHODS We performed a systematic review using studies identified in PubMed and MEDLINE (from the date of the first available article to July 2012). Our review examined evidence of an association between the COMT Val(158)Met polymorphism and both neuropsychological performance and brain structure in patients with psychosis, in their relatives and in healthy individuals (step 1). The review also explored whether the neuropsychological tasks and brain structures identified in step 1 met the criteria for an endophenotype (step 2). Then we evaluated evidence that the neuropsychological endophenotypes identified in step 2 are associated with the brain structure endophenotypes identified in that step (step 3). Finally, we propose a neurobiological interpretation for this evidence. RESULTS A poorer performance on the n-back task and the Continuous Performance Test (CPT) and smaller temporal and frontal brain areas were associated with the COMT Val allele in patients with schizophrenia and their relatives and met most of the criteria for an endophenotype. It is possible that the COMT Val(158)Met polymorphism therefore contributes to the development of these neuropsychological and brain structural endophenotypes of schizophrenia, in which the prefrontal cortex may represent the neural substrate underlying both n-back and CPT performances. LIMITATIONS The association between a single genetic variant and an endophenotype does not necessarily imply a causal relationship between them. CONCLUSION This evidence and the proposed interpretation contribute to explain, at least in part, the biological substrate of 4 important endophenotypes that characterize schizophrenia.
Collapse
Affiliation(s)
- Elisa Ira
- Correspondence to: E. Ira, Department of Public Health and Community Medicine, Section of Psychiatry, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro 10, 37134 Verona, Italy;
| | | | | | | | | |
Collapse
|
39
|
Tian T, Qin W, Liu B, Wang D, Wang J, Jiang T, Yu C. Catechol-O-methyltransferase Val158Met polymorphism modulates gray matter volume and functional connectivity of the default mode network. PLoS One 2013; 8:e78697. [PMID: 24147141 PMCID: PMC3797700 DOI: 10.1371/journal.pone.0078697] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022] Open
Abstract
The effect of catechol-O-methyltransferase (COMT) Val158Met polymorphism on brain structure and function has been previously investigated separately and regionally; this prevents us from obtaining a full picture of the effect of this gene variant. Additionally, gender difference must not be overlooked because estrogen exerts an interfering effect on COMT activity. We examined 323 young healthy Chinese Han subjects and analyzed the gray matter volume (GMV) differences between Val/Val individuals and Met carriers in a voxel-wise manner throughout the whole brain. We were interested in genotype effects and genotype × gender interactions. We then extracted these brain regions with GMV differences as seeds to compute resting-state functional connectivity (rsFC) with the rest of the brain; we also tested the genotypic differences and gender interactions in the rsFCs. Val/Val individuals showed decreased GMV in the posterior cingulate cortex (PCC) compared with Met carriers; decreased GMV in the medial superior frontal gyrus (mSFG) was found only in male Val/Val subjects. The rsFC analysis revealed that both the PCC and mSFG were functionally correlated with brain regions of the default mode network (DMN). Both of these regions showed decreased rsFCs with different parts of the frontopolar cortex of the DMN in Val/Val individuals than Met carriers. Our findings suggest that the COMT Val158Met polymorphism modulates both the structure and functional connectivity within the DMN and that gender interactions should be considered in studies of the effect of this genetic variant, especially those involving prefrontal morphology.
Collapse
Affiliation(s)
- Tian Tian
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- The Queensland Brain Institute, the University of Queensland, Brisbane, Australia
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- * E-mail:
| |
Collapse
|
40
|
Goldberg X, Fatjó-Vilas M, Alemany S, Nenadic I, Gastó C, Fañanás L. Gene-environment interaction on cognition: a twin study of childhood maltreatment and COMT variability. J Psychiatr Res 2013; 47:989-94. [PMID: 23538286 DOI: 10.1016/j.jpsychires.2013.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 02/02/2013] [Accepted: 02/06/2013] [Indexed: 12/24/2022]
Abstract
The functional variant Val(158)Met in the coding sequence of COMT gene is involved in the modulation of dopamine availability in the prefrontal cortex in both clinical and general population samples. It has been suggested that the interplay between this genotype and early environmental factors could be used to predict the observed variation in cognitive flexibility. However, other genetic variants and environmental factors may confound the association and produce the inconsistent results commonly found in the literature. In the present study we aimed at testing putative interaction mechanisms between childhood maltreatment and COMT genotypic variability that might explain a proportion of the observed variability of cognitive flexibility in the population. Our design was based on a sample of adult monozygotic twins, which allowed us to test these effects free from potential genetic and shared-environmental confounding factors. Results showed that unique environmental effects of childhood maltreatment significantly impacted cognitive performance among Met/Met subjects. Interestingly, the direction of the association indicated that exposure to early stressful experiences was associated with enhanced cognitive flexibility in this genotype group. These results suggest that COMT may operate as a plasticity gene that provides differential cognitive capacity to respond to environmental stressors.
Collapse
Affiliation(s)
- Ximena Goldberg
- Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Wang Y, Li J, Chen C, Chen C, Zhu B, Moysis RK, Lei X, Li H, Liu Q, Xiu D, Liu B, Chen W, Xue G, Dong Q. COMT rs4680 Met is not always the 'smart allele': Val allele is associated with better working memory and larger hippocampal volume in healthy Chinese. GENES BRAIN AND BEHAVIOR 2013; 12:323-9. [PMID: 23421762 DOI: 10.1111/gbb.12022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/10/2012] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) Val158Met (rs4680) polymorphism plays a crucial role in regulating brain dopamine level. Converging evidence from Caucasian samples showed that, compared with rs4680 Val allele, the Met allele was linked to lower COMT activity, which in turn was linked to better cognitive performance such as working memory (WM) and to a larger hippocampus (a brain region important for WM). However, some behavioral studies have shown that the function of rs4680 appears to vary across different ethnic groups, with Chinese subjects showing an opposite pattern as that for Caucasians (i.e. the Val allele is linked to better cognitive functions related to WM in Chinese). Using a sample of healthy Han Chinese college students (ages from 19 to 21 years), this study investigated the association of COMT Val158Met genotype with behavioral data on a two-back WM task (n = 443, 189M/254F) and T1 MRI data (n = 320, 134M/186F). Results showed that, compared to the Met allele, the Val allele was associated with larger hippocampal volume (the right hippocampus: β = -0.118, t = -2.367, P = 0.019, and the left hippocampus: β = -0.099, t = -1.949, P = 0.052) and better WM performance (β = -0.110, t = -2.315, P = 0.021). These results add to the growing literature on differentiated effects of COMT rs4680 polymorphism on WM across populations and offer a brain structural mechanism for such population-specific genetic effects.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Berryhill ME, Wiener M, Stephens JA, Lohoff FW, Coslett HB. COMT and ANKK1-Taq-Ia genetic polymorphisms influence visual working memory. PLoS One 2013; 8:e55862. [PMID: 23383291 PMCID: PMC3561341 DOI: 10.1371/journal.pone.0055862] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/03/2013] [Indexed: 11/28/2022] Open
Abstract
Complex cognitive tasks such as visual working memory (WM) involve networks of interacting brain regions. Several neurotransmitters, including an appropriate dopamine concentration, are important for WM performance. A number of gene polymorphisms are associated with individual differences in cognitive task performance. COMT, for example, encodes catechol-o-methyl transferase the enzyme primarily responsible for catabolizing dopamine in the prefrontal cortex. Striatal dopamine function, linked with cognitive tasks as well as habit learning, is influenced by the Taq-Ia polymorphism of the DRD2/ANKK1 gene complex; this gene influences the density of dopamine receptors in the striatum. Here, we investigated the effects of these polymorphisms on a WM task requiring the maintenance of 4 or 6 items over delay durations of 1 or 5 seconds. We explored main effects and interactions between the COMT and DRD2/ANKK1-Taq-Ia polymorphisms on WM performance. Participants were genotyped for COMT (Val(158)Met) and DRD2/ANKK1-Taq-Ia (A1+, A1-) polymorphisms. There was a significant main effect of both polymorphisms. Participants' WM reaction times slowed with increased Val loading such that the Val/Val homozygotes made the slowest responses and the Met/Met homozygotes were the fastest. Similarly, WM reaction times were slower and more variable for the DRD2/ANKK1-Taq-Ia A1+ group than the A1- group. The main effect of COMT was only apparent in the DRD2/ANKK1-Taq-Ia A1- group. These findings link WM performance with slower dopaminergic metabolism in the prefrontal cortex as well as a greater density of dopamine receptors in the striatum.
Collapse
Affiliation(s)
- Marian E Berryhill
- Memory and Brain Laboratory, Department of Psychology, University of Nevada, Reno, Nevada, United States of America.
| | | | | | | | | |
Collapse
|
43
|
Wu K, O'Keeffe D, Politis M, O'Keeffe GC, Robbins TW, Bose SK, Brooks DJ, Piccini P, Barker RA. The catechol-O-methyltransferase Val(158)Met polymorphism modulates fronto-cortical dopamine turnover in early Parkinson's disease: a PET study. ACTA ACUST UNITED AC 2012; 135:2449-57. [PMID: 22843413 DOI: 10.1093/brain/aws157] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cognitive deficits occur in up to 30% of patients with early Parkinson's disease, some of which are thought to result from dysfunction within the fronto-striatal dopaminergic network. Recently, it has been shown that a common functional polymorphism (Val(158)Met) in the catechol-O-methyltransferase (COMT) gene is associated with changes in executive performance in tasks that have a fronto-striatal basis. This is thought to relate to changes in cortical dopamine levels as catechol-O-methyltransferase is the main mode of inactivation for dopamine in frontal areas. However to date, no study has investigated dopamine turnover as a function of this genetic polymorphism in Parkinson's disease. We, therefore, set out to investigate in vivo changes in presynaptic dopamine storage in patients with idiopathic Parkinson's disease as a function of the catechol-O-methyltransferase Val(158)Met polymorphism using (18)F-DOPA positron emission tomography. Twenty patients with Parkinson's disease (10 homozygous for Val/Val and 10 for Met/Met catechol-O-methyltransferase polymorphisms) underwent (18)F-DOPA positron emission tomography using a prolonged imaging protocol. The first dynamic scan was acquired from 0 to 90 min (early), and the second scan (late) from 150 to 210 min post-intravenous radioligand administration. Patients were matched for age, sex, verbal IQ, disease duration and severity of motor features. (18)F-DOPA influx constants (Ki) were calculated and compared for frontal and striatal regions. Late scan mean frontal and striatal Ki values were significantly reduced in both Parkinson's disease groups relative to early scan Ki values. Met/Met patients had significantly higher late scan Ki values compared with their Val/Val counterparts in anterior cingulate, superior frontal and mid-frontal regions but early frontal Ki values were not different between the two groups. As late Ki values reflect rates of dopamine metabolism to 3,4-dihydroxyphenylacetic acid and homovanillic acid, our results indicate that Met homozygotes have higher presynaptic dopamine levels in frontal regions than Val homozygotes, which may help to explain how this genotypic variation may influence the fronto-striatal cognitive deficits of Parkinson's disease.
Collapse
Affiliation(s)
- Kit Wu
- Centre for Neuroscience, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jones KT, Berryhill ME. Parietal contributions to visual working memory depend on task difficulty. Front Psychiatry 2012; 3:81. [PMID: 22973241 PMCID: PMC3437464 DOI: 10.3389/fpsyt.2012.00081] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/21/2012] [Indexed: 11/13/2022] Open
Abstract
The nature of parietal contributions to working memory (WM) remain poorly understood but of considerable interest. We previously reported that posterior parietal damage selectively impaired WM probed by recognition (Berryhill and Olson, 2008a). Recent studies provided support using a neuromodulatory technique, transcranial direct current stimulation (tDCS) applied to the right parietal cortex (P4). These studies confirmed parietal involvement in WM because parietal tDCS altered WM performance: anodal current tDCS improved performance in a change detection task, and cathodal current tDCS impaired performance on a sequential presentation task. Here, we tested whether these complementary results were due to different degrees of parietal involvement as a function of WM task demands, WM task difficulty, and/or participants' WM capacity. In Experiment 1, we applied cathodal and anodal tDCS to the right parietal cortex and tested participants on both previously used WM tasks. We observed an interaction between tDCS (anodal, cathodal), WM task difficulty, and participants' WM capacity. When the WM task was difficult, parietal stimulation (anodal or cathodal) improved WM performance selectively in participants with high WM capacity. In the low WM capacity group, parietal stimulation (anodal or cathodal) impaired WM performance. These nearly equal and opposite effects were only observed when the WM task was challenging, as in the change detection task. Experiment 2 probed the interplay of WM task difficulty and WM capacity in a parametric manner by varying set size in the WM change detection task. Here, the effect of parietal stimulation (anodal or cathodal) on the high WM capacity group followed a linear function as WM task difficulty increased with set size. The low WM capacity participants were largely unaffected by tDCS. These findings provide evidence that parietal involvement in WM performance depends on both WM capacity and WM task demands. We discuss these findings in terms of alternative WM strategies employed by low and high WM capacity individuals. We speculate that low WM capacity individuals do not recruit the posterior parietal lobe for WM tasks as efficiently as high WM capacity individuals. Consequently, tDCS provides greater benefit to individuals with high WM capacity.
Collapse
Affiliation(s)
- Kevin T Jones
- Memory and Brain Laboratory, Department of Psychology, University of Nevada Reno, NV, USA
| | | |
Collapse
|
45
|
Lee TW, Yu YWY, Hong CJ, Tsai SJ, Wu HC, Chen TJ. The effects of catechol-O-methyl-transferase polymorphism Val158Met on functional connectivity in healthy young females: a resting EEG study. Brain Res 2010; 1377:21-31. [PMID: 21195697 DOI: 10.1016/j.brainres.2010.12.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 01/09/2023]
Abstract
The catechol-O-methyl-transferase (COMT) gene has been linked to a wide spectrum of human phenotypes, including cognition, affective response, pain sensitivity, anxiety and psychosis. This study examined the modulatory effects of COMT Val158Met on neural interactions, indicated by connectivity strengths. Blood samples and resting state eyes-closed EEG signals were collected in 254 healthy young females. The COMT Val158Met polymorphism was decoded into 3 groups: Val/Val, Val/Met and Met/Met. The values of mutual information of 20 frontal-related channel pairs across delta, theta, alpha and beta frequencies were analyzed based on the time-frequency mutual information method. Our one-way ANOVA analyses revealed that the significant connection-frequency pairs were relatively left lateralized (P<0.01) and included F7-T3 and F7-C3 at delta frequency, and F3-F4, F7-T3, F7-C3, F7-P3, F3-C3, F3-F7 and F4-F8 at theta frequency. The F-test at F7-T3 and F7-C3 theta surpassed the statistical threshold of P<0.003 (after Bonferroni correction). For all the above connection-frequency pairs, there was a dose-dependent trend in the connectivity strengths of the alleles as follows: Val/Val>Val/Met>Met/Met. Our analyses complemented previous literature regarding neural modulation by the COMT Val158Met polymorphism. The implication to the pathogenesis in schizophrenia was also discussed. Further studies are needed to clarify whether there is gender difference on this gene-brain interaction.
Collapse
Affiliation(s)
- Tien-Wen Lee
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan County, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Colzato LS, van den Wildenberg WPM, Van der Does AJW, Hommel B. Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. Neuroscience 2010; 170:782-8. [PMID: 20678555 DOI: 10.1016/j.neuroscience.2010.07.050] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/19/2010] [Accepted: 07/25/2010] [Indexed: 12/28/2022]
Abstract
Various psychiatric disorders are characterized by elevated levels of impulsivity. Although extensive evidence supports a specific role of striatal, but not frontal dopamine (DA) in human impulsivity, recent studies on genetic variability have raised some doubts on such a role. Importantly, impulsivity consists of two dissociable components that previous studies have failed to separate: functional and dysfunctional impulsivity. We compared participants with a genetic predisposition to have relatively high striatal DA levels (DAT1 9-repeat carriers, DRD2 C957T T/T homozygotes, and DRD4 7-repeat carriers) with participants with other genetic predispositions. We predicted that the first group would show high scores of dysfunctional, but not functional, self-reported impulsivity and greater difficulty in inhibiting a behavioral response to a stop-signal, a behavioral measure of impulsivity. In a sample of 130 healthy adults, we studied the relation between DAT1, DRD4, and C957T polymorphism at the DRD2 gene (polymorphisms related to striatal DA) and catechol-Omethyltransferase (COMT) Val158Met (a polymorphism related to frontal DA) on self-reported dysfunctional and functional impulsivity, assessed by the Dickman impulsivity inventory (DII), and the efficiency of inhibitory control, assessed by the stop-signal paradigm. DRD2 C957T T/T homozygotes and DRD4 7-repeat carriers indeed had significantly higher scores on self-reported dysfunctional, but not functional, impulsivity. T/T homozygotes were also less efficient in inhibiting prepotent responses. Our findings support the claim that dopaminergic variation affects dysfunctional impulsivity. This is in line with the notion that the over-supply of striatal DA might weaken inhibitory pathways, thereby enhancing the activation of, and the competition between responses.
Collapse
Affiliation(s)
- L S Colzato
- Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden University, Postbus 9555, 2300 RB, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Pomarol-Clotet E, Fatjó-Vilas M, McKenna PJ, Monté GC, Sarró S, Ortiz-Gil J, Aguirre C, Gomar JJ, Guerrero A, Landin R, Capdevila A, Fañanás L, Salvador R. COMT Val158Met polymorphism in relation to activation and de-activation in the prefrontal cortex: A study in patients with schizophrenia and healthy subjects. Neuroimage 2010; 53:899-907. [PMID: 20398774 DOI: 10.1016/j.neuroimage.2010.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/18/2022] Open
Abstract
The Val158Met polymorphism in the COMT gene has been found to be associated with differences in brain activation in both healthy subjects and patients with schizophrenia. The predominant finding has been increased prefrontal activation associated with the Val allele; however, genotype-related de-activations have not been studied. In this study 42 schizophrenia patients and 31 controls underwent fMRI while performing the n-back task. Brain differences related to presence/absence of disease and presence/absence of the Val/Val genotype were examined. Both disease and Val/Val genotype were associated with failure of de-activation in a cluster centred in the medial prefrontal cortex. There was no interaction between disease and genotype at this location, but clusters where there were significant interactions emerged in the right prefrontal cortex and left temporal/parietal cortex. These findings suggest that Val158Met polymorphism influences task-related de-activations in the default mode network in both healthy subjects and schizophrenia patients to an equivalent extent. However the Val158Met polymorphism also has disease-specific effects on DLPFC activation in schizophrenia.
Collapse
Affiliation(s)
- E Pomarol-Clotet
- Benito Menni Complex Assistencial Salut Mental and CIBERSAM, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Krach S, Jansen A, Krug A, Markov V, Thimm M, Sheldrick AJ, Eggermann T, Zerres K, Stöcker T, Shah NJ, Kircher T. COMT genotype and its role on hippocampal-prefrontal regions in declarative memory. Neuroimage 2010; 53:978-84. [PMID: 20060911 DOI: 10.1016/j.neuroimage.2009.12.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/03/2009] [Accepted: 12/22/2009] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Memory dysfunction is a prominent feature in schizophrenia. Impairments of declarative memory have been consistently linked to alterations especially within hippocampal-prefrontal regions. Due to the high heritability of schizophrenia, susceptibility genes and their modulatory impact on the neural correlates on memory are of major relevance. In the present study the influence of the COMT val(158)met status on the neural correlates of declarative memory was investigated in healthy subjects. METHODS From an initial behavioural sample of 522 healthy individuals (Sheldrick et al., 2008), 84 subjects underwent fMRI scanning while performing a memory encoding and a retrieval task. The COMT val(158)met status was determined for the whole sample and correlated with cortical activation within the group of n=84 individuals. RESULTS There were no effects of COMT status on behavioural performance. For declarative memory processing the number of met alleles predicted circumscribed bilateral insula and anterior hippocampus activations during memory encoding as well as less deactivations within the bilateral posterior parahippocampal gyri during memory retrieval. DISCUSSION Although declarative memory performance was unaffected, the neural correlates within hippocampal-prefrontal regions demonstrate a link between COMT val(158)met carrier status and brain areas associated with declarative memory processing. The study contributes to a better understanding of the role that susceptibility genes might play in the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Sören Krach
- Department of Psychiatry and Psychotherapy, Section of Brain Imaging, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Krug A, Markov V, Sheldrick A, Krach S, Jansen A, Zerres K, Eggermann T, Stöcker T, Shah NJ, Kircher T. The effect of the COMT val(158)met polymorphism on neural correlates of semantic verbal fluency. Eur Arch Psychiatry Clin Neurosci 2009; 259:459-65. [PMID: 19381707 DOI: 10.1007/s00406-009-0010-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 03/31/2009] [Indexed: 01/02/2023]
Abstract
Variation in the val(158)met polymorphism of the COMT gene has been found to be associated with cognitive performance. In functional neuroimaging studies, this dysfunction has been linked to signal changes in prefrontal areas. Given the complex modulation and functional heterogeneity of frontal lobe systems, further specification of COMT gene-related phenotypes differing in prefrontally mediated cognitive performance are of major interest. Eighty healthy individuals (54 men, 26 women; mean age 23.3 years) performed an overt semantic verbal fluency task while brain activation was measured with functional magnetic resonance imaging (fMRI). COMT val(158)met genotype was determined and correlated with brain activation measured with fMRI during the task. Although there were no differences in performance, brain activation in the left inferior frontal gyrus [Brodmann area 10] was positively correlated with the number of val alleles in the COMT gene. COMT val(158)met status modulates brain activation during the language production on a semantic level in an area related to executive functions.
Collapse
Affiliation(s)
- Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reinvang I, Winjevoll IL, Rootwelt H, Espeseth T. Working memory deficits in healthy APOE epsilon 4 carriers. Neuropsychologia 2009; 48:566-73. [PMID: 19879282 DOI: 10.1016/j.neuropsychologia.2009.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/11/2009] [Accepted: 10/21/2009] [Indexed: 11/19/2022]
Abstract
Studies on the cognitive effects of APOE allele variation in healthy persons have mainly focused on episodic memory performance as most sensitive to genetic effects. The present study focuses on working memory performance, measured both in an experimental paradigm, the AX-Continuous Performance Task (AX-CPT), and in neuropsychological test paradigms of span capacity and interference control. In a highly functioning healthy group (N=186) of mean age 64.5 years we found evidence of reduced working memory performance in APOE epsilon4 carriers, with sex and epsilon4 dose as modifying variables. Several aspects of capacity and control in working memory were affected, while genetic effects were not present for measures of episodic memory. The pattern of results suggests that response inhibition is sensitive to genetic effects. In healthy individuals the broad range of neurobiological mechanisms associated with APOE is consistent with effects on non-memory cognitive subsystems, and gender effects may be modulated by interaction of APOE with myelination, androgen mechanisms, or broad patterns of age-related changes in gene expression.
Collapse
Affiliation(s)
- Ivar Reinvang
- Center for Study of Human Cognition, Department of Psychology, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|