1
|
Delavest M, Even C, Benjemaa N, Poirier MF, Jockers R, Krebs MO. Association of the intronic rs2072621 polymorphism of the X-linked GPR50 gene with affective disorder with seasonal pattern. Eur Psychiatry 2020; 27:369-71. [DOI: 10.1016/j.eurpsy.2011.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/05/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022] Open
Abstract
AbstractThis case-control study found an association between Seasonal Affective Disorder (SAD) and a single nucleotide polymorphism (intronic rs2072621) of the gene encoding GPR50 (an orphan member of the G protein-coupled melatonin receptor subfamily) in females. This may represent a gender-specific risk factor and a molecular link between melatonin and SAD.
Collapse
|
2
|
Holl K, He H, Wedemeyer M, Clopton L, Wert S, Meckes JK, Cheng R, Kastner A, Palmer AA, Redei EE, Solberg Woods LC. Heterogeneous stock rats: a model to study the genetics of despair-like behavior in adolescence. GENES BRAIN AND BEHAVIOR 2017; 17:139-148. [PMID: 28834208 DOI: 10.1111/gbb.12410] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is a complex illness caused by both genetic and environmental factors. Antidepressant resistance also has a genetic component. To date, however, very few genes have been identified for major depression or antidepressant resistance. In this study, we investigated whether outbred heterogeneous stock (HS) rats would be a suitable model to uncover the genetics of depression and its connection to antidepressant resistance. The Wistar Kyoto (WKY) rat, one of the eight founders of the HS, is a recognized animal model of juvenile depression and is resistant to fluoxetine antidepressant treatment. We therefore hypothesized that adolescent HS rats would exhibit variation in both despair-like behavior and response to fluoxetine treatment. We assessed heritability of despair-like behavior and response to sub-acute fluoxetine using a modified forced swim test (FST) in 4-week-old HS rats. We also tested whether blood transcript levels previously identified as depression biomarkers in adolescent human subjects are differentially expressed in HS rats with high vs. low FST immobility. We demonstrate heritability of despair-like behavior in 4-week-old HS rats and show that many HS rats are resistant to fluoxetine treatment. In addition, blood transcript levels of Amfr, Cdr2 and Kiaa1539, genes previously identified in human adolescents with MDD, are differentially expressed between HS rats with high vs. low immobility. These data demonstrate that FST despair-like behavior will be amenable to genetic fine-mapping in adolescent HS rats. The overlap between human and HS blood biomarkers suggest that these studies may translate to depression in humans.
Collapse
Affiliation(s)
- K Holl
- Department of pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - H He
- Internal Medicine, Molecular Medicine, Wake Forest Baptist Health, Winston Salem, NC, USA
| | - M Wedemeyer
- Department of pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Clopton
- Department of pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S Wert
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - J K Meckes
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - R Cheng
- University of California, San Diego, CA, USA
| | - A Kastner
- Department of pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A A Palmer
- University of California, San Diego, CA, USA
| | - E E Redei
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - L C Solberg Woods
- Internal Medicine, Molecular Medicine, Wake Forest Baptist Health, Winston Salem, NC, USA
| |
Collapse
|
3
|
Ryan J, Carrière I, Ritchie K, Ancelin ML. Involvement of GPR50 polymorphisms in depression: independent replication in a prospective elderly cohort. Brain Behav 2015; 5:e00313. [PMID: 25798330 PMCID: PMC4356842 DOI: 10.1002/brb3.313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Despite the explosion in genetic association studies over the last decade, clearly identified genetic risk factors for depression remain scarce and replication studies are becoming increasingly important. G-protein-coupled receptor 50 (GPR50) has been implicated in psychiatric disorders in a small number of studies, although not consistently. METHODS Data were obtained from 1010 elderly men and women from the prospective population-based ESPRIT study. Logistic regression and survival models were used to determine whether three common GPR50 polymorphisms were associated with depression prevalence or the incidence of depression over 12-years. The analyses were adjusted for a range of covariates such as comorbidity and cholesterol levels, to determine independent associations. RESULTS All three variants showed some evidence of an association with late-life depression in women, although these were not consistent across outcomes, the overall effect sizes were relatively small, and most would not remain significant after correction for multiple testing. Women heterozygous for rs13440581, had a 1.6-fold increased risk of baseline depression, while the odds of depression comorbid with anxiety were increased fourfold for women homozygous for the minor allele of rs2072621. When depressed women at baseline were excluded from the analysis, however, neither variant was associated with the 12-year incidence of depression. In contrast, rs561077 was associated with a 1.8-fold increased risk of incident depression specifically. No significant associations were observed in men. DISCUSSION Our results thus provide only weak support for the involvement of GPR50 variants in late-life depression, which appear specific to certain subgroups of depressed individuals (i.e., women and those with more severe forms of depression).
Collapse
Affiliation(s)
- Joanne Ryan
- Inserm, U1061 Montpellier, F-34093, France ; Univ Montpellier 1, U1061 Montpellier, France ; CDE, Murdoch Childrens Research Institute, Royal Children's Hospital Parkville, Victoria, 3052, Australia ; Department of Paediatrics, University of Melbourne Parkville, Victoria, 3052, Australia
| | - Isabelle Carrière
- Inserm, U1061 Montpellier, F-34093, France ; Univ Montpellier 1, U1061 Montpellier, France
| | - Karen Ritchie
- Inserm, U1061 Montpellier, F-34093, France ; Univ Montpellier 1, U1061 Montpellier, France ; Faculty of Medicine, Imperial College London, W12 0NN, U.K
| | - Marie-Laure Ancelin
- Inserm, U1061 Montpellier, F-34093, France ; Univ Montpellier 1, U1061 Montpellier, France
| |
Collapse
|
4
|
Vieland VJ, Walters KA, Lehner T, Azaro M, Tobin K, Huang Y, Brzustowicz LM. Revisiting schizophrenia linkage data in the NIMH Repository: reanalysis of regularized data across multiple studies. Am J Psychiatry 2014; 171:350-9. [PMID: 24170318 PMCID: PMC4041610 DOI: 10.1176/appi.ajp.2013.11121766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The Combined Analysis of Psychiatric Studies (CAPS) project conducted extensive review and regularization across studies of all schizophrenia linkage data available as of 2011 from the National Institute of Mental Health-funded Center for Collaborative Genomic Studies on Mental Disorders, also known as the Human Genetics Initiative (HGI). The authors reanalyzed the data using statistical methods tailored to accumulation of evidence across multiple, potentially highly heterogeneous, sets of data. METHOD Data were subdivided based on contributing study, major population group, and presence or absence within families of schizophrenia with a substantial affective component. The posterior probability of linkage (PPL) statistical framework was used to sequentially update linkage evidence across these data subsets (omnibus results). RESULTS While some loci previously implicated using the HGI data were also identified in the present omnibus analysis (2q36.1, 15q23), others were not. Several loci were found that had not previously been reported in the HGI samples but are supported by independent linkage or association studies (3q28, 12q23.1, 11p11.2, Xq26.1). Not surprisingly, differences were seen across population groups. Of particular interest are signals on 11p15.3, 11p11.2, and Xq26.1, for which data from families with a substantial affective component support linkage while data from the remaining families provide evidence against linkage. All three of these loci overlap with loci reported in independent studies of bipolar disorder or mixed bipolar-schizophrenia samples. CONCLUSIONS Public data repositories provide the opportunity to leverage large multisite data sets for studying complex disorders. Analysis with a statistical method specifically designed for such data enables us to extract new information from an existing data resource.
Collapse
|
5
|
Goldstein JM, Cherkerzian S, Tsuang MT, Petryshen TL. Sex differences in the genetic risk for schizophrenia: history of the evidence for sex-specific and sex-dependent effects. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:698-710. [PMID: 24132902 DOI: 10.1002/ajmg.b.32159] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/14/2013] [Indexed: 12/16/2022]
Abstract
Although there is a long history to examinations of sex differences in the familial (and specifically, genetic) transmission of schizophrenia, there have been few investigators who have systematically and rigorously studied this issue. This is true even in light of population and clinical studies identifying significant sex differences in incidence, expression, neuroanatomic and functional brain abnormalities, and course of schizophrenia. This review highlights the history of work in this arena from studies of family transmission patterns, linkage and twin studies to the current molecular genetic strategies of large genome-wide association studies. Taken as a whole, the evidence supports the presence of genetic risks of which some are sex-specific (i.e., presence in one sex and not the other) or sex-dependent (i.e., quantitative differences in risk between the sexes). Thus, a concerted effort to systematically investigate these questions is warranted and, as we argue here, necessary in order to fully understand the etiology of schizophrenia.
Collapse
Affiliation(s)
- Jill M Goldstein
- Brigham & Women's Hospital Departments of Psychiatry and Medicine, Division of Women's Health, Connors Center for Women's Health & Gender Biology, Boston, Massachusetts; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts; Division of Psychiatric Neuroscience, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
6
|
Abstract
Whole-genome linkage and association studies of bipolar disorder are beginning to provide some compelling evidence for the involvement of several chromosomal regions and susceptibility genes in the pathogenesis of bipolar disorder. Developments in genotyping technology and efforts to combine data from different studies have helped in identifying chromosomes 6q16-q25, 13q, and 16p12 as probable susceptibility loci for bipolar disorder and confirmed CACNA1C and ANK3 as susceptibility genes for bipolar disorder. However, a lack of replication is still apparent in the literature. New studies focusing on copy number variants as well as new analytical approaches utilizing pathway analysis offer a new direction in the study of the genetics of bipolar disorder.
Collapse
Affiliation(s)
- Shaza Alsabban
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, Box PO82, De Crespigny Park, Denmark Hill, London, England SE5 8AF, UK.
| | | | | |
Collapse
|
7
|
Goldstein JM, Cherkerzian S, Seidman LJ, Petryshen TL, Fitzmaurice G, Tsuang MT, Buka SL. Sex-specific rates of transmission of psychosis in the New England high-risk family study. Schizophr Res 2011; 128:150-5. [PMID: 21334180 PMCID: PMC3085650 DOI: 10.1016/j.schres.2011.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/20/2011] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
Abstract
Recent molecular genetic studies have demonstrated X-chromosome abnormalities in the transmission of psychosis, a finding that may contribute to understanding sex differences in the disorder. Using our family high risk paradigm, we tested the hypothesis that there are sex-specific patterns of transmission of psychosis and whether there is specificity comparing nonaffective- with affective-type psychoses. We identified 159 parents with psychoses (schizophrenia psychosis spectrum disorders (SPS, n=59) and affective (AP, n=100)) and 114 comparable, healthy control parents. 203 high risk (HR) and 147 control offspring were diagnostically assessed (185 females; 165 males). We compared the proportion of male:female offspring with psychoses by affected parent sex and the consistency for SPS compared to AP parents, and tested (using exact logistic regression) whether the male:female ratio for affected offspring differed significantly between affected mothers and affected fathers. Risk of psychosis in offspring was a function of the sex of the parent and offspring. Among ill mothers, 18.8% of their male offspring developed psychosis compared with 9.5% of their daughters. In contrast, among ill fathers, 3.1% of their male offspring developed psychosis compared with 15.2% of their daughters. The male:female ratio for affected offspring differed significantly (p < 0.05) between affected mothers and fathers. Similar patterns held for SPS and AP. Results demonstrated sex-specific transmission of psychosis regardless of psychosis-type and suggest X-linked inheritance. This has important implications for molecular genetic studies of psychoses underscoring the impact of one's gender on gene-brain-behavior phenotypes of SCZ.
Collapse
Affiliation(s)
- Jill M Goldstein
- Brigham and Women's Hospital Departments of Psychiatry and Medicine, Division of Women's Health, Connors Center for Women's Health and Gender Biology, Boston, MA 02120, USA.
| | - Sara Cherkerzian
- Brigham & Women’s Hospital Departments of Psychiatry and Medicine, Division of Women’s Health, Connors Center for Women’s Health & Gender Biology, Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Division of Psychiatric Neuroscience, Massachusetts General Hospital, Boston, MA, USA,Beth Israel Deaconess Hospital, Department of Psychiatry, Division of Public Psychiatry, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA
| | - Tracey L Petryshen
- Department of Psychiatry, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Garrett Fitzmaurice
- Department of Psychiatry, Harvard Medical School at McLean Hospital, Belmont, MA, USA
| | - Ming T Tsuang
- Beth Israel Deaconess Hospital, Department of Psychiatry, Division of Public Psychiatry, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA,University of California at San Diego, Department of Psychiatry, Center for Behavior Genomics, San Diego, CA, USA,Harvard Institute of Psychiatric Epidemiology and Genetics, Harvard School of Public Heath, Boston, MA, USA
| | - Stephen L Buka
- Brown University, Department of Community Health, Providence, RI, USA
| |
Collapse
|
8
|
Rapoport SI, Basselin M, Kim HW, Rao JS. Bipolar disorder and mechanisms of action of mood stabilizers. ACTA ACUST UNITED AC 2009; 61:185-209. [PMID: 19555719 DOI: 10.1016/j.brainresrev.2009.06.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/03/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Bipolar disorder (BD) is a major medical and social burden, whose cause, pathophysiology and treatment are not agreed on. It is characterized by recurrent periods of mania and depression (Bipolar I) or of hypomania and depression (Bipolar II). Its inheritance is polygenic, with evidence of a neurotransmission imbalance and disease progression. Patients often take multiple agents concurrently, with incomplete therapeutic success, particularly with regard to depression. Suicide is common. Of the hypotheses regarding the action of mood stabilizers in BD, the "arachidonic acid (AA) cascade" hypothesis is presented in detail in this review. It is based on evidence that chronic administration of lithium, carbamazepine, sodium valproate, or lamotrigine to rats downregulated AA turnover in brain phospholipids, formation of prostaglandin E(2), and/or expression of AA cascade enzymes, including cytosolic phospholipase A(2), cyclooxygenase-2 and/or acyl-CoA synthetase. The changes were selective for AA, since brain docosahexaenoic or palmitic acid metabolism, when measured, was unaffected, and topiramate, ineffective in BD, did not modify the rat brain AA cascade. Downregulation of the cascade by the mood stabilizers corresponded to inhibition of AA neurotransmission via dopaminergic D(2)-like and glutamatergic NMDA receptors. Unlike the mood stabilizers, antidepressants that increase switching of bipolar depression to mania upregulated the rat brain AA cascade. These observations suggest that the brain AA cascade is a common target of mood stabilizers, and that bipolar symptoms, particularly mania, are associated with an upregulated cascade and excess AA signaling via D(2)-like and NMDA receptors. This review presents ways to test these suggestions.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|