1
|
He P, Wei X, Xu Y, Huang J, Tang N, Yan T, Yang C, Lu K. Analysis of complex chromosomal rearrangements using a combination of current molecular cytogenetic techniques. Mol Cytogenet 2022; 15:20. [PMID: 35590339 PMCID: PMC9118736 DOI: 10.1186/s13039-022-00597-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Using combined fluorescence in situ hybridization (FISH) and high-throughput whole-genome sequencing (WGS) molecular cytogenetic technology, we aim to analyze the junction breakpoints of complex chromosome rearrangements (CCR) that were difficult to identify by conventional karyotyping analysis and further characterize the genetic causes of recurrent spontaneous abortion. RESULTS By leveraging a combination of current molecular techniques, including chromosome karyotype analysis, FISH, and WGS, we comprehensively characterized the extremely complex chromosomal abnormalities in this patient with recurrent spontaneous abortions. Here, we demonstrated that combining these current established molecular techniques is an effective and efficient workflow to identify the structural abnormalities of complex chromosomes and locate the rearrangement of DNA fragments. CONCLUSIONS In conclusion, leveraging results from multiple molecular and cytogenetic techniques can provide the most comprehensive genetic analysis for genetic etiology research, diagnosis, and genetic counseling for patients with recurrent spontaneous abortion and embryonic abortion.
Collapse
Grants
- 2018AF10501 the Liuzhou Medical Genetics Research Center (Cultivation and Construction)
- 2018AF10501 the Liuzhou Medical Genetics Research Center (Cultivation and Construction)
- 2018AF10501 the Liuzhou Medical Genetics Research Center (Cultivation and Construction)
- 2018AF10501 the Liuzhou Medical Genetics Research Center (Cultivation and Construction)
- 2018AF10501 the Liuzhou Medical Genetics Research Center (Cultivation and Construction)
- G202003028 the Guangxi medical high-level backbone talents '139'plan training target special
- G202003028 the Guangxi medical high-level backbone talents '139'plan training target special
- G202003028 the Guangxi medical high-level backbone talents '139'plan training target special
- G202003028 the Guangxi medical high-level backbone talents '139'plan training target special
- G202003028 the Guangxi medical high-level backbone talents '139'plan training target special
- Z20190789 the Liuzhou city 1/10/100 talent special project, Health Department Research Fund of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
- Z20190789 the Liuzhou city 1/10/100 talent special project, Health Department Research Fund of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
- Z20190789 the Liuzhou city 1/10/100 talent special project, Health Department Research Fund of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
- Z20190789 the Liuzhou city 1/10/100 talent special project, Health Department Research Fund of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
- Z20190789 the Liuzhou city 1/10/100 talent special project, Health Department Research Fund of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
- the Guangxi medical high-level backbone talents ‘139’plan training target special
Collapse
Affiliation(s)
- Ping He
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
| | - Xiaoni Wei
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
| | - Yuchan Xu
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
| | - Jun Huang
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
| | - Tizhen Yan
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
| | - Chuanchun Yang
- CheerLand Biological Technology Co., Ltd., Shenzhen, China
| | - Kangmo Lu
- Prenatal Diagnosis Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan, Guangdong, China.
| |
Collapse
|
2
|
Śmiarowska M, Brzuchalski B, Grzywacz E, Malinowski D, Machoy-Mokrzyńska A, Pierzchlińska A, Białecka M. Influence of COMT (rs4680) and DRD2 (rs1076560, rs1800497) Gene Polymorphisms on Safety and Efficacy of Methylphenidate Treatment in Children with Fetal Alcohol Spectrum Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084479. [PMID: 35457347 PMCID: PMC9031832 DOI: 10.3390/ijerph19084479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) in a course of high prenatal alcohol exposure (hPAE) are among the most common causes of developmental disorders. The main reason for pharmacological treatment of FASD children is attention deficit hyperactivity disorder (ADHD), and methylphenidate (MPH) is the drug of choice. The aim of the study was to assess whether children born of hPAE with ADHD, with or without morphological FASD, differ in terms of catechol-O-methyltransferase (COMT) and dopamine receptor D2 (DRD2) gene polymorphisms, and if genetic predisposition affects response and safety of MPH treatment. The polymorphisms of COMT (rs4680) and DRD2 (rs1076560, rs1800497) were analyzed in DNA samples. A borderline significance was found for the correlation between MPH side effects and the G allele of COMT (rs4680) (p = 0.04994) in all ADHD children. No effect of COMT (rs4680) and DRD2 (rs1076560, rs1800497) polymorphisms and the treatment efficacy was observed. The analyzed DRD2 and COMT gene polymorphisms seem to play no role in MPH efficacy in ADHD children with hPAE, while low-activity COMT (Met158) variant carriers may be more intolerant to MPH. The MPH treatment is effective in ADHD independent of FASD, although the ADHD-FASD variant requires higher doses to be successful. These results may help in optimization and individualization in child psychiatry.
Collapse
Affiliation(s)
- Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstancόw Wielkopolskich 72 St., 70-111 Szczecin, Poland; (M.Ś.); (B.B.); (D.M.); (A.P.)
| | - Bogusław Brzuchalski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstancόw Wielkopolskich 72 St., 70-111 Szczecin, Poland; (M.Ś.); (B.B.); (D.M.); (A.P.)
| | - Elżbieta Grzywacz
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Aleja Powstancόw Wielkopolskich 72 St., 70-111 Szczecin, Poland; (E.G.); (A.M.-M.)
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstancόw Wielkopolskich 72 St., 70-111 Szczecin, Poland; (M.Ś.); (B.B.); (D.M.); (A.P.)
| | - Anna Machoy-Mokrzyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Aleja Powstancόw Wielkopolskich 72 St., 70-111 Szczecin, Poland; (E.G.); (A.M.-M.)
| | - Anna Pierzchlińska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstancόw Wielkopolskich 72 St., 70-111 Szczecin, Poland; (M.Ś.); (B.B.); (D.M.); (A.P.)
| | - Monika Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstancόw Wielkopolskich 72 St., 70-111 Szczecin, Poland; (M.Ś.); (B.B.); (D.M.); (A.P.)
- Correspondence:
| |
Collapse
|
3
|
Balogh L, Pulay AJ, Réthelyi JM. Genetics in the ADHD Clinic: How Can Genetic Testing Support the Current Clinical Practice? Front Psychol 2022; 13:751041. [PMID: 35350735 PMCID: PMC8957927 DOI: 10.3389/fpsyg.2022.751041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with a childhood prevalence of 5%. In about two-thirds of the cases, ADHD symptoms persist into adulthood and often cause significant functional impairment. Based on the results of family and twin studies, the estimated heritability of ADHD approximates 80%, suggests a significant genetic component in the etiological background of the disorder; however, the potential genetic effects on disease risk, symptom severity, and persistence are unclear. This article provides a brief review of the genome-wide and candidate gene association studies with a focus on the clinical aspects, summarizing findings of ADHD disease risk, ADHD core symptoms as dimensional traits, and other traits frequently associated with ADHD, which may contribute to the susceptibility to other comorbid psychiatric disorders. Furthermore, neuropsychological impairment and measures from neuroimaging and electrophysiological paradigms, emerging as potential biomarkers, also provide a prominent target for molecular genetic studies, since they lie in the pathway from genes to behavior; therefore, they can contribute to the understanding of the underlying neurobiological mechanisms and the interindividual heterogeneity of clinical symptoms. Beyond the aforementioned aspects, throughout the review, we also give a brief summary of the genetic results, including polygenic risk scores that can potentially predict individual response to different treatment options and may offer a possibility for personalized treatment for the therapy of ADHD in the future.
Collapse
Affiliation(s)
- Lívia Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Attila J Pulay
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
5
|
Holz NE, Zohsel K, Laucht M, Banaschewski T, Hohmann S, Brandeis D. Gene x environment interactions in conduct disorder: Implications for future treatments. Neurosci Biobehav Rev 2018; 91:239-258. [DOI: 10.1016/j.neubiorev.2016.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023]
|
6
|
Fernández-Jaén A, Albert J, Fernández-Mayoralas DM, López-Martín S, Fernández-Perrone AL, Jimenez de la Peña M, Calleja-Pérez B, Recio Rodríguez M, López Arribas S. Cingulate Cortical Thickness and Dopamine Transporter ( DAT1) Genotype in Children and Adolescents With ADHD. J Atten Disord 2018; 22:651-660. [PMID: 27160695 DOI: 10.1177/1087054716647483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aimed to examine the influence of dopamine transporter gene ( DAT1) 3'UTR genotype on cingulate cortical thickness in a large sample of children and adolescents with ADHD. METHOD Brain MRIs were acquired from 46 ADHD patients with homozygosity for the 10-repeat allele and 52 ADHD patients with a single copy or no copy of the allele. The cingulate cortex of each MRI scan was automatically parceled into sulci and gyri as well as into Brodmann areas (BA). RESULTS There were no group differences in age, gender, full-scale intelligence quotient, symptom severity, treatment status, comorbidity, or mean overall cortical thickness. Sulcus/gyrus- and BA-based analyses revealed that patients homozygous for the 10-repeat allele showed significantly greater thickness in right cingulate gyrus and right BA 24 compared with 9-repeat carriers. CONCLUSION These findings suggest that thickness of cingulate cortex is influenced by the presence of the 10-repeat allele in ADHD.
Collapse
Affiliation(s)
| | | | | | - Sara López-Martín
- 4 Univesidad Rey Juan Carlos, Madrid, Spain.,5 Centro Neuromottiva, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Salatino-Oliveira A, Rohde LA, Hutz MH. The dopamine transporter role in psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2018; 177:211-231. [PMID: 28766921 DOI: 10.1002/ajmg.b.32578] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
The dopamine transporter (DAT) is one of the most relevant and investigated neurotransmitter transporters. DAT is a plasma membrane protein which plays a homeostatic role, controlling both extracellular and intracellular concentrations of dopamine (DA). Since unbalanced DA levels are known to be involved in numerous mental disorders, a wealth of investigations has provided valuable insights concerning DAT role into normal brain functioning and pathological processes. Briefly, this extensive but non-systematic review discusses what is recently known about the role of SLC6A3 gene which encodes the dopamine transporter in psychiatric phenotypes. DAT protein, SLC6A3 gene, animal models, neuropsychology, and neuroimaging investigations are also concisely discussed. To conclude, current challenges are reviewed in order to provide perspectives for future studies.
Collapse
Affiliation(s)
| | - Luis A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute for Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Mara H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Batalla A, Lorenzetti V, Chye Y, Yücel M, Soriano-Mas C, Bhattacharyya S, Torrens M, Crippa JAS, Martín-Santos R. The Influence of DAT1, COMT, and BDNF Genetic Polymorphisms on Total and Subregional Hippocampal Volumes in Early Onset Heavy Cannabis Users. Cannabis Cannabinoid Res 2018; 3:1-10. [PMID: 29404409 PMCID: PMC5797324 DOI: 10.1089/can.2017.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Hippocampal neuroanatomy is affected by genetic variations in dopaminergic candidate genes and environmental insults, such as early onset of chronic cannabis exposure. Here, we examine how hippocampal total and subregional volumes are affected by cannabis use and functional polymorphisms of dopamine-relevant genes, including the catechol-O-methyltransferase (COMT), dopamine transporter (DAT1), and the brain-derived neurotrophic factor (BDNF) genes. Material and Methods: We manually traced total hippocampal volumes and automatically segmented hippocampal subregions using high-resolution MRI images, and performed COMT, DAT1, and BDNF genotyping in 59 male Caucasian young adults aged 18–30 years. These included 30 chronic cannabis users with early-onset (regular use at <16 years) and 29 age-, education-, and intelligence-matched controls. Results: Cannabis use and dopaminergic gene polymorphism had both distinct and interactive effects on the hippocampus. We found emerging alterations of hippocampal total and specific subregional volumes in cannabis users relative to controls (i.e., CA1, CA2/3, and CA4), and associations between cannabis use levels and total and specific subregional volumes. Furthermore, total hippocampal volume and the fissure subregion were affected by cannabis×DAT1 polymorphism (i.e., 9/9R and in 10/10R alleles), reflecting high and low levels of dopamine availability. Conclusion: These findings suggest that cannabis exposure alters the normal relationship between DAT1 polymorphism and the anatomy of total and subregional hippocampal volumes, and that specific hippocampal subregions may be particularly affected.
Collapse
Affiliation(s)
- Albert Batalla
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, The Netherlands
| | - Valentina Lorenzetti
- School of Psychological Sciences, Institute of Psychology Health and Society, The University of Liverpool, Liverpool, United Kingdom.,Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Yann Chye
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Murat Yücel
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, CIBERSAM G-17, and Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Marta Torrens
- Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José A S Crippa
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Rocío Martín-Santos
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| |
Collapse
|
9
|
Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017; 80:115-155. [PMID: 28159610 PMCID: PMC6947924 DOI: 10.1016/j.neubiorev.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marten Onnink
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yan Shi
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janneke Dammers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Vilor-Tejedor N, Cáceres A, Pujol J, Sunyer J, González JR. Imaging genetics in attention-deficit/hyperactivity disorder and related neurodevelopmental domains: state of the art. Brain Imaging Behav 2016; 11:1922-1931. [DOI: 10.1007/s11682-016-9663-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Schweren LJS, Hartman CA, Heslenfeld DJ, Groenman AP, Franke B, Oosterlaan J, Buitelaar JK, Hoekstra PJ. Age and DRD4 Genotype Moderate Associations Between Stimulant Treatment History and Cortex Structure in Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2016; 55:877-885.e3. [PMID: 27663943 DOI: 10.1016/j.jaac.2016.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) has been associated with dopaminergic imbalance and subtle volume decreases in the brain. Stimulants acutely enhance dopaminergic neurotransmission. Long-term effects of prolonged manipulation of the dopaminergic system on brain structure remain poorly understood; they could be beneficial or unfavorable and could be moderated by common genetic variants and/or age. METHOD In a large observational ADHD cohort study (N = 316), the effects of cumulative stimulant treatment, genotype (for DAT1 haplotype and DRD4 variants), and treatment-by-genotype interactions on striatal, frontal, and hippocampal volumes and their interactions with age were evaluated. RESULTS No main effects of treatment were found. Associations between treatment and bilateral frontal and left hippocampal volume depended on DRD4 genotype and age. At a younger age and lower treatment levels, but not at a younger age and higher treatment levels, carriers of the DRD4 7R allele showed decreased frontal cortex volumes. At an older age, carriers and non-carriers showed smaller frontal volumes irrespective of treatment history. Left hippocampal volume was similar to that in controls at average treatment levels and increased with treatment only in carriers of the DRD4 risk allele and at a younger age. No interaction effects were found in the striatum. CONCLUSION Carriers of the DRD4 risk allele at a younger age might be sensitive to cortical remodeling after stimulant treatment. The cross-sectional nature of this study warrants cautious interpretation of age effects. The present findings, although of small effect size, might ultimately contribute to optimal care for individuals with ADHD.
Collapse
Affiliation(s)
- Lizanne J S Schweren
- University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| | - Catharina A Hartman
- University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | | | | | - Barbara Franke
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | | | - Jan K Buitelaar
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center
| | - Pieter J Hoekstra
- University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Onnink AMH, Franke B, van Hulzen K, Zwiers MP, Mostert JC, Schene AH, Heslenfeld DJ, Oosterlaan J, Hoekstra PJ, Hartman CA, Vasquez AA, Kan CC, Buitelaar J, Hoogman M. Enlarged striatal volume in adults with ADHD carrying the 9-6 haplotype of the dopamine transporter gene DAT1. J Neural Transm (Vienna) 2016; 123:905-15. [PMID: 26935821 PMCID: PMC4969340 DOI: 10.1007/s00702-016-1521-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
The dopamine transporter gene, DAT1 (SLC6A3), has been studied extensively as a candidate gene for attention-deficit/hyperactivity disorder (ADHD). Different alleles of variable number of tandem repeats (VNTRs) in this gene have been associated with childhood ADHD (10/10 genotype and haplotype 10-6) and adult ADHD (haplotype 9-6). This suggests a differential association depending on age, and a role of DAT1 in modulating the ADHD phenotype over the lifespan. The DAT1 gene may mediate susceptibility to ADHD through effects on striatal volumes, where it is most highly expressed. In an attempt to clarify its mode of action, we examined the effect of three DAT1 alleles (10/10 genotype, and the haplotypes 10-6 and 9-6) on bilateral striatal volumes (nucleus accumbens, caudate nucleus, and putamen) derived from structural magnetic resonance imaging scans using automated tissue segmentation. Analyses were performed separately in three cohorts with cross-sectional MRI data, a childhood/adolescent sample (NeuroIMAGE, 301 patients with ADHD and 186 healthy participants) and two adult samples (IMpACT, 118 patients with ADHD and 111 healthy participants; BIG, 1718 healthy participants). Regression analyses revealed that in the IMpACT cohort, and not in the other cohorts, carriers of the DAT1 adult ADHD risk haplotype 9-6 had 5.9 % larger striatum volume relative to participants not carrying this haplotype. This effect varied by diagnostic status, with the risk haplotype affecting striatal volumes only in patients with ADHD. An explorative analysis in the cohorts combined (N = 2434) showed a significant gene-by-diagnosis-by-age interaction suggesting that carriership of the 9-6 haplotype predisposes to a slower age-related decay of striatal volume specific to the patient group. This study emphasizes the need of a lifespan approach in genetic studies of ADHD.
Collapse
Affiliation(s)
- A. Marten H. Onnink
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics (855), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics (855), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Kimm van Hulzen
- Department of Human Genetics (855), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Marcel P. Zwiers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jeanette C. Mostert
- Department of Human Genetics (855), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Aart H. Schene
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dirk J. Heslenfeld
- Clinical Neuropsychology Section, Department of Clinical Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Department of Clinical Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Pieter J. Hoekstra
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Catharina A. Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics (855), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelis C. Kan
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatric University Centre, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics (855), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
14
|
Richards JS, Arias Vásquez A, Franke B, Hoekstra PJ, Heslenfeld DJ, Oosterlaan J, Faraone SV, Buitelaar JK, Hartman CA. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes. PLoS One 2016; 11:e0155755. [PMID: 27218681 PMCID: PMC4878752 DOI: 10.1371/journal.pone.0155755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 05/04/2016] [Indexed: 11/19/2022] Open
Abstract
Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD). Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE) in interindividual variability of total gray matter (GM), caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312) and without ADHD (N = 437) from N = 402 families (age M = 17.00, SD = 3.60). GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation) as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.
Collapse
Affiliation(s)
- Jennifer S. Richards
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
- * E-mail:
| | - Alejandro Arias Vásquez
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Pieter J. Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Dirk J. Heslenfeld
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, United States of America
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Catharina A. Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| |
Collapse
|
15
|
Cortical thickness differences in the prefrontal cortex in children and adolescents with ADHD in relation to dopamine transporter (DAT1) genotype. Psychiatry Res 2015. [PMID: 26206710 DOI: 10.1016/j.pscychresns.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several lines of evidence suggest that the dopamine transporter gene (DAT1) plays a crucial role in attention deficit hyperactivity disorder (ADHD). Concretely, recent data indicate that the 10-repeat (10R) DAT1 allele may mediate neuropsychological functioning, response to methylphenidate, and even brain function and structure in children with ADHD. This study aimed to investigate the influence of 10R DAT1 on thickness of the prefrontal cortex in children and adolescents with ADHD. To this end, brain magnetic resonance images were acquired from 33 patients with homozygosity for the 10R allele and 30 patients with a single copy or no copy of the allele. The prefrontal cortex of each MRI scan was automatically parceled into regions of interest (ROIs) based on Brodmann areas (BA). The two groups were matched for age, gender, IQ, ADHD subtype, symptom severity, comorbidity and medication status. However, patients with two copies of the 10R allele exhibited significantly decreased cortical thickness in right BA 46 relative to patients with one or fewer copies of the allele. No other prefrontal ROI differed significantly between the two groups. Present findings suggest that cortical thickness of right lateral prefrontal cortex (BA 46) is influenced by the presence of the DAT1 10 repeat allele in children and adolescents with ADHD.
Collapse
|
16
|
Blasco-Fontecilla H, Gonzalez-Perez M, Garcia-Lopez R, Poza-Cano B, Perez-Moreno MR, de Leon-Martinez V, Otero-Perez J. Efficacy of chess training for the treatment of ADHD: A prospective, open label study. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2015; 9:13-21. [PMID: 25911280 DOI: 10.1016/j.rpsm.2015.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/21/2014] [Accepted: 02/17/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To examine the effectiveness of playing chess as a treatment option for children with ADHD. METHODS Parents of 44 children ages 6 to 17 with a primary diagnosis of ADHD consented to take part in the study. Parents completed the Spanish version of the Swanson, Nolan and Pelham Scale for parents (SNAP-IV) and the Abbreviated Conner's Rating Scales for parents (CPRS-HI) prior to an 11-week chess-training program. We used a paired t-test to compare pre- and post-intervention outcomes, and Cohen-d calculations to measure the magnitude of the effect. The statistical significance was set at P<.05. RESULTS Children with ADHD improved in both the SNAP-IV (t=6.23; degrees of freedom (df)=41; P<.001) and the CPRS-HI (t=5.39; df=33; P<.001). Our results suggest a large effect in decreasing the severity of ADHD as measured by the SNAP-IV (d=0.85) and the CPRS-HI (d=0.85). Furthermore, we found a correlation between intelligence quotient and SNAP-IV improvement (P<.05). CONCLUSIONS The results of our pilot study should be interpreted with caution. This pilot project highlights the importance of carrying out larger studies with a case-control design. If our results are replicated in better designed studies, playing chess could be included within the multimodal treatment of ADHD.
Collapse
Affiliation(s)
- Hilario Blasco-Fontecilla
- Centro de Salud Mental de Villalba, Departamento de Psiquiatría, Instituto de Investigación Sanitaria Puerta de Hierro Majadahonda (IDIPHIM)-Hospital Universitario Puerta de Hierro, Madrid, España; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Universidad Autónoma de Madrid, Madrid, España; Consulting Asistencial Sociosanitario (CAS).
| | - Marisa Gonzalez-Perez
- Centro de Salud Mental de Villalba, Departamento de Psiquiatría, Instituto de Investigación Sanitaria Puerta de Hierro Majadahonda (IDIPHIM)-Hospital Universitario Puerta de Hierro, Madrid, España
| | - Raquel Garcia-Lopez
- Centro de Salud Mental de Villalba, Departamento de Psiquiatría, Instituto de Investigación Sanitaria Puerta de Hierro Majadahonda (IDIPHIM)-Hospital Universitario Puerta de Hierro, Madrid, España
| | - Belen Poza-Cano
- Centro de Salud Mental de Villalba, Departamento de Psiquiatría, Instituto de Investigación Sanitaria Puerta de Hierro Majadahonda (IDIPHIM)-Hospital Universitario Puerta de Hierro, Madrid, España
| | | | - Victoria de Leon-Martinez
- Departamento de Psiquiatría, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, España
| | - Jose Otero-Perez
- Centro de Salud Mental de Villalba, Departamento de Psiquiatría, Instituto de Investigación Sanitaria Puerta de Hierro Majadahonda (IDIPHIM)-Hospital Universitario Puerta de Hierro, Madrid, España
| |
Collapse
|
17
|
Abstract
The etiology and pathogenesis of attention-deficit/hyperactivity disorder (ADHD) are unclear and a more valid diagnosis would certainly be welcomed. Starting from the literature, we built an hypothetical pyramid representing a putative set of biomarkers where, at the top, variants in DAT1 and DRD4 genes are the best candidates for their associations to neuropsychological tasks, activation in specific brain areas, methylphenidate response and gene expression levels. Interesting data come from the noradrenergic system (norepinephrine transporter, norepinephrine, 3-methoxy-4-hydroxyphenylglycol, monoamine oxidase, neuropeptide Y) for their altered peripheral levels, their association with neuropsychological tasks, symptomatology, drugs effect and brain function. Other minor putative genetic biomarkers could be dopamine beta hydroxylase and catechol-O-methyltransferase. In the bottom, we placed endophenotype biomarkers. A more deep integration of "omics" sciences along with more accurate clinical profiles and new high-throughput computational methods will allow us to identify a better list of biomarkers useful for diagnosis and therapies.
Collapse
Affiliation(s)
- Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | |
Collapse
|
18
|
Changes in the development of striatum are involved in repetitive behavior in autism. Biol Psychiatry 2014; 76:405-11. [PMID: 24090791 DOI: 10.1016/j.biopsych.2013.08.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Repetitive behavior is a core feature of autism and has been linked to differences in striatum. In addition, the brain changes associated with autism appear to vary with age. However, most studies investigating striatal differences in autism are cross-sectional, limiting inferences on development. In this study, we set out to 1) investigate striatal development in autism, using a longitudinal design; and 2) examine the relationship between striatal development and repetitive behavior. METHODS We acquired longitudinal structural magnetic resonance imaging scans from 86 individuals (49 children with autism, 37 matched control subjects). Each individual was scanned twice, with a mean scan interval time of 2.4 years. Mean age was 9.9 years at time 1 and 12.3 years at time 2. Striatal structures were traced manually with high reliability. Multivariate analyses of variance were used to investigate differences in brain development between diagnostic groups. To examine the relationship with behavior, correlations between changes in brain volumes and clinical measures were calculated. RESULTS Our results showed an increase in the growth rate of striatal structures for individuals with autism compared with control subjects. The effect was specific to caudate nucleus, where growth rate was doubled. Second, faster striatal growth was correlated with more severe repetitive behavior (insistence on sameness) at the preschool age. CONCLUSIONS This longitudinal study of brain development in autism confirms the involvement of striatum in repetitive behavior. Furthermore, it underscores the significance of brain development in autism, as the severity of repetitive behavior was related to striatal growth, rather than volume per se.
Collapse
|
19
|
Wu Z, Yang L, Wang Y. Applying Imaging Genetics to ADHD: the Promises and the Challenges. Mol Neurobiol 2014; 50:449-62. [DOI: 10.1007/s12035-014-8683-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/13/2014] [Indexed: 12/31/2022]
|
20
|
Drury SS, Brett ZH, Henry C, Scheeringa M. The association of a novel haplotype in the dopamine transporter with preschool age posttraumatic stress disorder. J Child Adolesc Psychopharmacol 2013; 23:236-43. [PMID: 23647133 PMCID: PMC3657285 DOI: 10.1089/cap.2012.0072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Significant evidence supports a genetic contribution to the development of posttraumatic stress disorder (PTSD). Three previous studies have demonstrated an association between PTSD and the nine repeat allele of the 3' untranslated region (3'UTR) variable number tandem repeat (VNTR) in the dopamine transporter (DAT, rs28363170). Recently a novel, functionally significant C/T single-nucleotide polymorphism (SNP) in the 3'UTR (rs27072) with putative interactions with the 3'VNTR, has been identified. To provide enhanced support for the role of DAT and striatal dopamine regulation in the development of PTSD, this study examined the impact of a haplotype defined by the C allele of rs27072 and the nine repeat allele of the 3'VNTR on PTSD diagnosis in young trauma-exposed children. METHODS DAT haplotypes were determined in 150 trauma-exposed 3-6 year-old children. PTSD was assessed with a semistructured interview. After excluding double heterozygotes, analysis was performed on 143 total subjects. Haplotype was examined in relation to categorical and continuous measures of PTSD, controlling for trauma type and race. Additional analysis within the two largest race categories was performed, as other means of controlling for ethnic stratification were not available. RESULTS The number of haplotypes (0, 1, or 2) defined by the presence of the nine repeat allele of rs28363170 (VNTR in the 3'UTR) and the C allele of rs27072 (SNP in the 3'UTR) was significantly associated with both the diagnosis of PTSD and total PTSD symptoms. Specifically, children with one or two copies of the haplotype had significantly more PTSD symptoms and were more likely to be diagnosed with PTSD than were children without this haplotype. CONCLUSIONS These findings extend previous findings associating genetic variation in the DAT with PTSD. The association of a haplotype in DAT with PTSD provides incremental traction for a model of genetic vulnerability to PTSD, a specific underlying mechanism implicating striatal dopamine regulation, and insight into potential future personalized interventions.
Collapse
Affiliation(s)
- Stacy S Drury
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
21
|
Striatal sensitivity during reward processing in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2012; 51:722-732.e9. [PMID: 22721595 PMCID: PMC3763946 DOI: 10.1016/j.jaac.2012.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/13/2012] [Accepted: 05/02/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) has been linked to deficits in the dopaminergic reward-processing circuitry; yet, existing evidence is limited, and the influence of genetic variation affecting dopamine signaling remains unknown. We investigated striatal responsivity to rewards in ADHD combined type (ADHD-CT) using functional magnetic resonance imaging (fMRI), and whether it is modulated by variation in the dopamine transporter gene (DAT1). METHOD We tested 29 male adolescents with ADHD-CT and 30 age-, handedness-, and gender-matched healthy controls who were selected for DAT1(10/6) haplotype dosage. Based on previous research, we focused our analysis on the ventral striatum and the caudate nucleus. RESULTS Three main findings emerged. First, male adolescents with ADHD-CT did not differ from controls in terms of blood oxygen-level dependent (BOLD) fMRI response to reward-predicting cues (gain or loss-avoidance) in the ventral striatum. Second, male adolescents with ADHD-CT showed a relative increase, compared with controls, in the striatal BOLD response to successful outcomes. Third, DAT1(10/6) dosage differentially modulated neural activation to reward-predicting cues in the caudate nucleus in the ADHD-CT and control groups. CONCLUSIONS The findings challenge the idea of a deficit in anticipation-related activation in the ventral striatum in male adolescents with ADHD-CT, while suggesting that the processing of reward outcomes is dysfunctional, consistent with a recent neurobiological model of the disorder. Preliminary evidence suggests that polymorphic variations in genes affecting dopamine signaling need to be taken into consideration when investigating reward-related deficits in ADHD-CT.
Collapse
|
22
|
Qiao H, Zhu L, Lieberman BP, Zha Z, Plössl K, Kung HF. Synthesis and evaluation of novel tropane derivatives as potential PET imaging agents for the dopamine transporter. Bioorg Med Chem Lett 2012; 22:4303-6. [PMID: 22658558 DOI: 10.1016/j.bmcl.2012.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 11/16/2022]
Abstract
A novel series of tropane derivatives containing a fluorinated tertiary amino or amide at the 2β position was synthesized, labeled with the positron-emitter fluorine-18 (t(1/2)=109.8 min), and tested as potential in vivo dopamine transporter (DAT) imaging agents. The corresponding chlorinated analogs were prepared and employed as precursors for radiolabeling leading to the fluorine-18-labeled derivatives via a one-step nucleophilic aliphatic substitution reaction. In vitro binding results showed that the 2β-amino compounds 6b, 6d and 7b displayed moderately high affinities to DAT (K(i)<10nM). Biodistribution studies of [(18)F]6b and [(18)F]6d showed that the brain uptakes in rats were low. This is likely due to their low lipophilicities. Further structural modifications of these tropane derivatives will be needed to improve their in vivo properties as DAT imaging agents.
Collapse
Affiliation(s)
- Hongwen Qiao
- Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing 100875, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Diamond A. Biological and social influences on cognitive control processes dependent on prefrontal cortex. PROGRESS IN BRAIN RESEARCH 2011; 189:319-39. [PMID: 21489397 DOI: 10.1016/b978-0-444-53884-0.00032-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cognitive control functions ("executive functions" [EFs] such as attentional control, self-regulation, working memory, and inhibition) that depend on prefrontal cortex (PFC) are critical for success in school and in life. Many children begin school lacking needed EF skills. Disturbances in EFs occur in many mental health disorders, such as ADHD and depression. This chapter addresses modulation of EFs by biology (genes and neurochemistry) and the environment (including school programs) with implications for clinical disorders and for education. Unusual properties of the prefrontal dopamine system contribute to PFC's vulnerability to environmental and genetic variations that have little effect elsewhere. EFs depend on a late-maturing brain region (PFC), yet they can be improved even in infants and preschoolers, without specialists or fancy equipment. Research shows that activities often squeezed out of school curricula (play, physical education, and the arts) rather than detracting from academic achievement help improve EFs and enhance academic outcomes. Such practices may also head off problems before they lead to diagnoses of EF impairments, including ADHD. Many issues are not simply education issues or health issues; they are both.
Collapse
Affiliation(s)
- Adele Diamond
- Department of Psychiatry, University of British Columbia and Children’s Hospital, Vancouver, BC, Canada.
| |
Collapse
|