1
|
Rancelis T, Domarkiene I, Ambrozaityte L, Utkus A. Implementing Core Genes and an Omnigenic Model for Behaviour Traits Prediction in Genomics. Genes (Basel) 2023; 14:1630. [PMID: 37628681 PMCID: PMC10454355 DOI: 10.3390/genes14081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
A high number of genome variants are associated with complex traits, mainly due to genome-wide association studies (GWAS). Using polygenic risk scores (PRSs) is a widely accepted method for calculating an individual's complex trait prognosis using such data. Unlike monogenic traits, the practical implementation of complex traits by applying this method still falls behind. Calculating PRSs from all GWAS data has limited practical usability in behaviour traits due to statistical noise and the small effect size from a high number of genome variants involved. From a behaviour traits perspective, complex traits are explored using the concept of core genes from an omnigenic model, aiming to employ a simplified calculation version. Simplification may reduce the accuracy compared to a complete PRS encompassing all trait-associated variants. Integrating genome data with datasets from various disciplines, such as IT and psychology, could lead to better complex trait prediction. This review elucidates the significance of clear biological pathways in understanding behaviour traits. Specifically, it highlights the essential role of genes related to hormones, enzymes, and neurotransmitters as robust core genes in shaping these traits. Significant variations in core genes are prominently observed in behaviour traits such as stress response, impulsivity, and substance use.
Collapse
Affiliation(s)
- Tautvydas Rancelis
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, LT-08661 Vilnius, Lithuania; (I.D.); (L.A.); (A.U.)
| | | | | | | |
Collapse
|
2
|
Carter SE, Gibbons FX, Beach SRH. Measuring the Biological Embedding of Racial Trauma Among Black Americans Utilizing the RDoC Approach. Dev Psychopathol 2021; 33:1849-1863. [PMID: 35586028 PMCID: PMC9109960 DOI: 10.1017/s0954579421001073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The NIMH Research Domain Criteria (RDoC) initiative aims to understand the mechanisms influencing psychopathology through a dimensional approach. Limited research thus far has considered potential racial/ethnic differences in RDoC constructs that are influenced by developmental and contextual processes. A growing body of research has demonstrated that racial trauma is a pervasive chronic stressor that impacts the health of Black Americans across the life course. In this review article, we examine the ways that an RDOC framework could allow us to better understand the biological embedding of racial trauma among Black Americans. We also specifically examine the Negative Valence System domain of RDoC to explore how racial trauma is informed by and can help expand our understanding of this domain. We end the review by providing some additional research considerations and future research directives in the area of racial trauma that build on the RDoC initiative.
Collapse
Affiliation(s)
| | | | - Steven R H Beach
- Department of Psychology and Center for Family Research, University of Georgia
| |
Collapse
|
3
|
La Buissonniere-Ariza V, Fitzgerald K, Meoded A, Williams LL, Liu G, Goodman WK, Storch EA. Neural correlates of cognitive behavioral therapy response in youth with negative valence disorders: A systematic review of the literature. J Affect Disord 2021; 282:1288-1307. [PMID: 33601708 DOI: 10.1016/j.jad.2020.12.182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 11/25/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cognitive-behavioral therapy (CBT) is the gold-standard psychotherapeutic treatment for pediatric negative valence disorders. However, some youths do not respond optimally to treatment, which may be due to variations in neural functioning. METHODS We systematically reviewed functional magnetic resonance imaging studies in youths with negative valence disorders to identify pre- and post-treatment neural correlates of CBT response. RESULTS A total of 21 studies were identified, of overall weak to moderate quality. The most consistent findings across negative valence disorders consisted of associations of treatment response with pre- and post-treatment task-based activation and/or functional connectivity within and between the prefrontal cortex, the medial temporal lobe, and other limbic regions. Associations of CBT response with baseline and/or post-treatment activity in the striatum, precentral and postcentral gyri, medial and posterior cingulate cortices, and parietal cortex, connectivity within and between the default-mode, cognitive control, salience, and frontoparietal networks, and metrics of large-scale brain network organization, were also reported, although less consistently. LIMITATIONS The poor quality and limited number of studies and the important heterogeneity of study designs and results considerably limit the conclusions that can be drawn from this literature. CONCLUSIONS Despite these limitations, these findings provide preliminary evidence suggesting youths presenting certain patterns of brain function may respond better to CBT, whereas others may benefit from alternative or augmented forms of treatment.
Collapse
Affiliation(s)
- Valerie La Buissonniere-Ariza
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA.
| | - Kate Fitzgerald
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Avner Meoded
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Laurel L Williams
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA
| | - Gary Liu
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Merz CJ, Lonsdorf TB. Methodische Anmerkungen und Anwendungsbereiche der Furchtkonditionierung in verschiedenen psychologischen Disziplinen. PSYCHOLOGISCHE RUNDSCHAU 2020. [DOI: 10.1026/0033-3042/a000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Die Furchtkonditionierung stellt ein bedeutsames Paradigma zur Untersuchung von emotionalen Lern- und Gedächtnisprozessen dar. Nach einer ungefähr hundertjährigen Geschichte wird deutlich, dass die Furchtkonditionierung nicht nur einen wichtigen Beitrag zur speziesübergreifenden Grundlagenforschung liefert, sondern auch unterschiedliche Anwendungsfelder zu neuen Erkenntnissen inspirieren kann. In diesem Übersichtartikel soll das grundlegende Paradigma mit verschiedenen methodischen Überlegungen zur experimentellen Durchführung vorgestellt werden. Im Anschluss werden ausgewählte Anwendungsbereiche der Furchtkonditionierung innerhalb der psychologischen Disziplinen dargestellt: die Allgemeine Psychologie wird bezüglich allgemeingültiger Gesetzmäßigkeiten von Lern- und Gedächtnisprozessen angesprochen, die Differentielle Psychologie wegen bedeutsamer interindividueller Unterschiede, die Biologische Psychologie und Neuropsychologie in Bezug auf physiologische und anatomische Grundlagen der Furchtkonditionierung, die Sozialpsychologie im Zuge der Einstellungsforschung, die Entwicklungspsychologie aufgrund altersspezifischer Aspekte sowie die Klinische Psychologie und Psychotherapie im Hinblick auf die Pathogenese von Angsterkrankungen und der Expositionstherapie. Insgesamt betrachtet hat die Furchtkonditionierung das Potenzial nicht nur unterschiedliche Disziplinen der Psychologie in synergistischer Weise zusammenzubringen, sondern auch die verschiedenen inhaltlichen Schwerpunkte zu unterstreichen.
Collapse
Affiliation(s)
| | - Tina B. Lonsdorf
- Institut für systemische Neurowissenschaften, Universitätsklinikum Hamburg-Eppendorf
| |
Collapse
|
5
|
Haaker J, Maren S, Andreatta M, Merz CJ, Richter J, Richter SH, Meir Drexler S, Lange MD, Jüngling K, Nees F, Seidenbecher T, Fullana MA, Wotjak CT, Lonsdorf TB. Making translation work: Harmonizing cross-species methodology in the behavioural neuroscience of Pavlovian fear conditioning. Neurosci Biobehav Rev 2019; 107:329-345. [PMID: 31521698 PMCID: PMC7822629 DOI: 10.1016/j.neubiorev.2019.09.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
Abstract
Translational neuroscience bridges insights from specific mechanisms in rodents to complex functions in humans and is key to advance our general understanding of central nervous function. A prime example of translational research is the study of cross-species mechanisms that underlie responding to learned threats, by employing Pavlovian fear conditioning protocols in rodents and humans. Hitherto, evidence for (and critique of) these cross-species comparisons in fear conditioning research was based on theoretical viewpoints. Here, we provide a perspective to substantiate these theoretical concepts with empirical considerations of cross-species methodology. This meta-research perspective is expected to foster cross-species comparability and reproducibility to ultimately facilitate successful transfer of results from basic science into clinical applications.
Collapse
Affiliation(s)
- Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Marta Andreatta
- Department of Psychology, University of Würzburg, Würzburg, Germany; Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Netherlands
| | - Christian J Merz
- Ruhr University Bochum, Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Germany
| | - Jan Richter
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Shira Meir Drexler
- Ruhr University Bochum, Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Germany
| | - Maren D Lange
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Miquel A Fullana
- Institute of Neurosciences, Hospital Clinic, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Tomasi J, Lisoway AJ, Zai CC, Harripaul R, Müller DJ, Zai GCM, McCabe RE, Richter MA, Kennedy JL, Tiwari AK. Towards precision medicine in generalized anxiety disorder: Review of genetics and pharmaco(epi)genetics. J Psychiatr Res 2019; 119:33-47. [PMID: 31563039 DOI: 10.1016/j.jpsychires.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Generalized anxiety disorder (GAD) is a prevalent and chronic mental disorder that elicits widespread functional impairment. Given the high degree of non-response/partial response among patients with GAD to available pharmacological treatments, there is a strong need for novel approaches that can optimize outcomes, and lead to medications that are safer and more effective. Although investigations have identified interesting targets predicting treatment response through pharmacogenetics (PGx), pharmaco-epigenetics, and neuroimaging methods, these studies are often solitary, not replicated, and carry several limitations. This review provides an overview of the current status of GAD genetics and PGx and presents potential strategies to improve treatment response by combining better phenotyping with PGx and improved analytical methods. These strategies carry the dual benefit of delivering data on biomarkers of treatment response as well as pointing to disease mechanisms through the biology of the markers associated with response. Overall, these efforts can serve to identify clinical, genetic, and epigenetic factors that can be incorporated into a pharmaco(epi)genetic test that may ultimately improve treatment response and reduce the socioeconomic burden of GAD.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Amanda J Lisoway
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ricardo Harripaul
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel J Müller
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gwyneth C M Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Randi E McCabe
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Margaret A Richter
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Del Pozzo J, Athineos C, Zar T, Cruz LN, King CM. Frustrative Non-reward and Lab-Based Paradigms for Advancing the Study of Aggression in Persons with Psychosis. Curr Behav Neurosci Rep 2019. [DOI: 10.1007/s40473-019-00173-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Nees F, Witt SH, Flor H. Neurogenetic Approaches to Stress and Fear in Humans as Pathophysiological Mechanisms for Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:810-820. [PMID: 29454655 DOI: 10.1016/j.biopsych.2017.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
In this review article, genetic variation associated with brain responses related to acute and chronic stress reactivity and fear learning in humans is presented as an important mechanism underlying posttraumatic stress disorder. We report that genes related to the regulation of the hypothalamic-pituitary-adrenal axis, as well as genes that modulate serotonergic, dopaminergic, and neuropeptidergic functions or plasticity, play a role in this context. The strong overlap of the genetic targets involved in stress and fear learning suggests that a dimensional and mechanistic model of the development of posttraumatic stress disorder based on these constructs is promising. Genome-wide genetic analyses on fear and stress mechanisms are scarce. So far, reliable replication is still lacking for most of the molecular genetic findings, and the proportion of explained variance is rather small. Further analysis of neurogenetic stress and fear learning needs to integrate data from animal and human studies.
Collapse
Affiliation(s)
- Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.
| |
Collapse
|
9
|
Psychophysiological and Behavioral Responses to a Novel Intruder Threat Task for Children on the Autism Spectrum. J Autism Dev Disord 2018. [PMID: 28646372 DOI: 10.1007/s10803-017-3195-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We measured skin conductance response (SCR) to escalating levels of a direct social threat from a novel, ecologically-relevant experimental paradigm, the Intruder Threat Task. We simultaneously evaluated the contribution of social symptom severity and behavioral movement. Children with AS group showed less psychophysiological reactivity to social threat than controls across all three phases of the experiment. In the AS group, greater social impairment was significantly associated with reduced SCR. However, movement activity predicted SCR while diagnosis did not. Research and treatment need to account for the complex interplay of emotional reactivity and social behavior in AS. Psychophysiology studies of AS should consider the impact of possible confounds such as movement.
Collapse
|
10
|
MacQueen DA, Young JW, Cope ZA. Cognitive Phenotypes for Biomarker Identification in Mental Illness: Forward and Reverse Translation. Curr Top Behav Neurosci 2018; 40:111-166. [PMID: 29858983 DOI: 10.1007/7854_2018_50] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Psychiatric illness has been acknowledged for as long as people were able to describe behavioral abnormalities in the general population. In modern times, these descriptions have been codified and continuously updated into manuals by which clinicians can diagnose patients. None of these diagnostic manuals have attempted to tie abnormalities to neural dysfunction however, nor do they necessitate the quantification of cognitive function despite common knowledge of its ties to functional outcome. In fact, in recent years the National Institute of Mental Health released a novel transdiagnostic classification, the Research Domain Criteria (RDoC), which utilizes quantifiable behavioral abnormalities linked to neurophysiological processes. This reclassification highlights the utility of RDoC constructs as potential cognitive biomarkers of disease state. In addition, with RDoC and cognitive biomarkers, the onus of researchers utilizing animal models no longer necessitates the recreation of an entire disease state, but distinct processes. Here, we describe the utilization of constructs from the RDoC initiative to forward animal research on these cognitive and behavioral processes, agnostic of disease. By linking neural processes to these constructs, identifying putative abnormalities in diseased patients, more targeted therapeutics can be developed.
Collapse
Affiliation(s)
- David A MacQueen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Zackary A Cope
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Liu H, Lieberman L, Stevens E, Auerbach RP, Shankman SA. Using a cultural and RDoC framework to conceptualize anxiety in Asian Americans. J Anxiety Disord 2017; 48:63-69. [PMID: 27659553 PMCID: PMC5357192 DOI: 10.1016/j.janxdis.2016.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/21/2023]
Abstract
Asian Americans are one of the fastest growing minority groups in the United States; however, mental health within this population segment, particularly anxiety disorders, remains significantly understudied. Both the heterogeneity within the Asian American population and the multidimensional nature of anxiety contribute to difficulties in understanding anxiety in this population. The present paper reviewed two sources of heterogeneity within anxiety in Asian Americans: (1) cultural variables and (2) mechanisms or components of anxiety. Specifically, we examined four cultural variables most commonly found in research related to anxiety in Asian Americans: acculturation, loss of face, affect valuation, and individualism-collectivism. We also discussed ways to parse anxiety through a Research Domain Criteria (RDoC) framework, specifically focusing on sensitivity to acute and potential threat, constructs within the Negative Valence System. Previously unpublished preliminary data were presented to illustrate one way of examining ethnic differences in anxiety using an RDoC framework. Finally, this paper offered recommendations for future work in this area.
Collapse
Affiliation(s)
| | | | | | - Randy P. Auerbach
- Center for Depression, Anxiety and Stress Research, McLean Hospital; Department of Psychiatry, Harvard Medical School
| | | |
Collapse
|
12
|
Lonsdorf TB, Menz MM, Andreatta M, Fullana MA, Golkar A, Haaker J, Heitland I, Hermann A, Kuhn M, Kruse O, Meir Drexler S, Meulders A, Nees F, Pittig A, Richter J, Römer S, Shiban Y, Schmitz A, Straube B, Vervliet B, Wendt J, Baas JMP, Merz CJ. Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev 2017; 77:247-285. [PMID: 28263758 DOI: 10.1016/j.neubiorev.2017.02.026] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022]
Abstract
The so-called 'replicability crisis' has sparked methodological discussions in many areas of science in general, and in psychology in particular. This has led to recent endeavours to promote the transparency, rigour, and ultimately, replicability of research. Originating from this zeitgeist, the challenge to discuss critical issues on terminology, design, methods, and analysis considerations in fear conditioning research is taken up by this work, which involved representatives from fourteen of the major human fear conditioning laboratories in Europe. This compendium is intended to provide a basis for the development of a common procedural and terminology framework for the field of human fear conditioning. Whenever possible, we give general recommendations. When this is not feasible, we provide evidence-based guidance for methodological decisions on study design, outcome measures, and analyses. Importantly, this work is also intended to raise awareness and initiate discussions on crucial questions with respect to data collection, processing, statistical analyses, the impact of subtle procedural changes, and data reporting specifically tailored to the research on fear conditioning.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany.
| | - Mareike M Menz
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany
| | - Marta Andreatta
- University of Würzburg, Department of Psychology, Biological Psychology, Clinical Psychology and Psychotherapy, Würzburg, Germany
| | - Miguel A Fullana
- Anxiety Unit, Institute of Neuropsychiatry and Addictions, Hospital del Mar, CIBERSAM, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | - Armita Golkar
- Karolinska Institutet, Department of Clinical Neuroscience, Psychology Section, Stockholm, Sweden; University of Amsterdam, Department of Clinical Psychology, Amsterdam, Netherlands
| | - Jan Haaker
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany; Karolinska Institutet, Department of Clinical Neuroscience, Psychology Section, Stockholm, Sweden
| | - Ivo Heitland
- Utrecht University, Department of Experimental Psychology and Helmholtz Institute, Utrecht, The Netherlands
| | - Andrea Hermann
- Justus Liebig University Giessen, Department of Psychology, Psychotherapy and Systems Neuroscience, Giessen, Germany
| | - Manuel Kuhn
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany
| | - Onno Kruse
- Justus Liebig University Giessen, Department of Psychology, Psychotherapy and Systems Neuroscience, Giessen, Germany
| | - Shira Meir Drexler
- Ruhr-University Bochum, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Bochum, Germany
| | - Ann Meulders
- KU Leuven, Health Psychology, Leuven, Belgium; Maastricht University, Research Group Behavioral Medicine, Maastricht, The Netherlands
| | - Frauke Nees
- Heidelberg University, Medical Faculty Mannheim, Central Institute of Mental Health, Department of Cognitive and Clinical Neuroscience, Mannheim, Germany
| | - Andre Pittig
- Technische Universität Dresden, Institute of Clinical Psychology and Psychotherapy, Dresden, Germany
| | - Jan Richter
- University of Greifswald, Department of Physiological and Clinical Psychology/Psychotherapy, Greifswald, Germany
| | - Sonja Römer
- Saarland University, Department of Clinical Psychology and Psychotherapy, Saarbrücken, Germany
| | - Youssef Shiban
- University of Regensburg, Department of Psychology, Clinical Psychology and Psychotherapy, Regensburg, Germany
| | - Anja Schmitz
- University of Regensburg, Department of Psychology, Clinical Psychology and Psychotherapy, Regensburg, Germany
| | - Benjamin Straube
- Philipps-University Marburg, Department of Psychiatry and Psychotherapy, Marburg, Germany
| | - Bram Vervliet
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Leuven, Belgium; Center for Excellence on Generalization, University of Leuven, Leuven, Belgium; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Julia Wendt
- University of Greifswald, Department of Physiological and Clinical Psychology/Psychotherapy, Greifswald, Germany
| | - Johanna M P Baas
- Utrecht University, Department of Experimental Psychology and Helmholtz Institute, Utrecht, The Netherlands
| | - Christian J Merz
- Ruhr-University Bochum, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Bochum, Germany
| |
Collapse
|
13
|
Savage JE, Sawyers C, Roberson-Nay R, Hettema JM. The genetics of anxiety-related negative valence system traits. Am J Med Genet B Neuropsychiatr Genet 2017; 174:156-177. [PMID: 27196537 PMCID: PMC5349709 DOI: 10.1002/ajmg.b.32459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
NIMH's Research Domain Criteria (RDoC) domain of negative valence systems (NVS) captures constructs of negative affect such as fear and distress traditionally subsumed under the various internalizing disorders. Through its aims to capture dimensional measures that cut across diagnostic categories and are linked to underlying neurobiological systems, a large number of phenotypic constructs have been proposed as potential research targets. Since "genes" represent a central "unit of analysis" in the RDoC matrix, it is important for studies going forward to apply what is known about the genetics of these phenotypes as well as fill in the gaps of existing knowledge. This article reviews the extant genetic epidemiological data (twin studies, heritability) and molecular genetic association findings for a broad range of putative NVS phenotypic measures. We find that scant genetic epidemiological data is available for experimentally derived measures such as attentional bias, peripheral physiology, or brain-based measures of threat response. The molecular genetic basis of NVS phenotypes is in its infancy, since most studies have focused on a small number of candidate genes selected for putative association to anxiety disorders (ADs). Thus, more research is required to provide a firm understanding of the genetic aspects of anxiety-related NVS constructs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeanne E. Savage
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Roxann Roberson-Nay
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| | - John M. Hettema
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
14
|
Goddard AW. The Neurobiology of Panic: A Chronic Stress Disorder. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017736038. [PMID: 32440580 PMCID: PMC7219873 DOI: 10.1177/2470547017736038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Panic disorder is an often chronic and impairing human anxiety syndrome, which frequently results in serious psychiatric and medical comorbidities. Although, to date, there have been many advances in the diagnosis and treatment of panic disorder, its pathophysiology still remains to be elucidated. In this review, recent evidence for a neurobiological basis of panic disorder is reviewed with particular attention to risk factors such as genetic vulnerability, chronic stress, and temperament. In addition, neuroimaging data are reviewed which provides support for the concept of panic disorder as a fear network disorder. The potential impact of the National Institute of Mental Health Research Domain Criteria constructs of acute and chronic threats responses and their implications for the neurobiology of panic disorder are also discussed.
Collapse
Affiliation(s)
- Andrew W. Goddard
- UCSF Fresno Medical Education and
Research Program, University of California, San Francisco, USA
| |
Collapse
|
15
|
Research Domain Criteria versus DSM V: How does this debate affect attempts to model corticostriatal dysfunction in animals? Neurosci Biobehav Rev 2016; 76:301-316. [PMID: 27826070 DOI: 10.1016/j.neubiorev.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023]
Abstract
For decades, the nosology of mental illness has been based largely upon the descriptions in the Diagnostic and Statistical Manual of the American Psychiatric Association (DSM). A recent challenge to the DSM approach to psychiatric nosology from the National Institute on Mental Health (USA) defines Research Domain Criteria (RDoC) as an alternative. For RDoC, psychiatric illnesses are not defined as discrete categories, but instead as specific behavioral dysfunctions irrespective of DSM diagnostic categories. This approach was driven by two primary weaknesses noted in the DSM: (1) the same symptoms occur in very different disease states; and (2) DSM criteria lack grounding in the underlying biological causes of mental illness. RDoC intends to ground psychiatric nosology in those underlying mechanisms. This review addresses the suitability of RDoC vs. DSM from the view of modeling mental illness in animals. A consideration of all types of psychiatric dysfunction is beyond the scope of this review, which will focus on models of conditions associated with frontostriatal dysfunction.
Collapse
|