1
|
Castellano G, Bonnet Da Silva J, Pietropaolo S. The role of gene-environment interactions in social dysfunction: Focus on preclinical evidence from mouse studies. Neuropharmacology 2024; 261:110179. [PMID: 39369849 DOI: 10.1016/j.neuropharm.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g., aggressive/antisocial personality disorder (ASPD), or autism spectrum disorder (ASD). Environmental stimulation (e.g., physical exercise, environmental enrichment) or adversity (e.g., chronic stress, social isolation) may respectively improve or impair social interactions. While the independent contribution of genetic and environmental factors to social behaviors has been assessed in a variety of human and animal studies, the impact of their interactive effects on social functions has been less extensively investigated. Genetic mutations and environmental changes can indeed influence each other through complex mutual effects, e.g., inducing synergistic, antagonistic or interactive behavioral outcomes. This complexity is difficult to be disentangled in human populations, thus encouraging studies in animal models, especially in the mouse species which is the most suitable for genetic manipulations. Here we review the available preclinical evidence on the impact of gene-environment interactions on social behaviors and their dysfunction, focusing on studies in laboratory mice. We included findings combining naturally occurring mutations, selectively bred or transgenic mice with multiple environmental manipulations, including positive (environmental enrichment, physical exercise) and aversive (social isolation, maternal separation, and stress) experiences. The impact of these results is critically discussed in terms of their generalizability across mouse models and social tests, as well as their implications for human studies on social dysfunction.
Collapse
Affiliation(s)
- Giulia Castellano
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | | |
Collapse
|
2
|
Tomasi J, Zai CC, Pouget JG, Tiwari AK, Kennedy JL. Heart rate variability: Evaluating a potential biomarker of anxiety disorders. Psychophysiology 2024; 61:e14481. [PMID: 37990619 DOI: 10.1111/psyp.14481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/19/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
Establishing quantifiable biological markers associated with anxiety will increase the objectivity of phenotyping and enhance genetic research of anxiety disorders. Heart rate variability (HRV) is a physiological measure reflecting the dynamic relationship between the sympathetic and parasympathetic nervous systems, and is a promising target for further investigation. This review summarizes evidence evaluating HRV as a potential physiological biomarker of anxiety disorders by highlighting literature related to anxiety and HRV combined with investigations of endophenotypes, neuroimaging, treatment response, and genetics. Deficient HRV shows promise as an endophenotype of pathological anxiety and may serve as a noninvasive index of prefrontal cortical control over the amygdala, and potentially aid with treatment outcome prediction. We propose that the genetics of HRV can be used to enhance the understanding of the genetics of pathological anxiety for etiological investigations and treatment prediction. Given the anxiety-HRV link, strategies are offered to advance genetic analytical approaches, including the use of polygenic methods, wearable devices, and pharmacogenetic study designs. Overall, HRV shows promising support as a physiological biomarker of pathological anxiety, potentially in a transdiagnostic manner, with the heart-brain entwinement providing a novel approach to advance anxiety treatment development.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Jennie G Pouget
- Molecular Brain Science Department, Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Morris SE, Sanislow CA, Pacheco J, Vaidyanathan U, Gordon JA, Cuthbert BN. Revisiting the seven pillars of RDoC. BMC Med 2022; 20:220. [PMID: 35768815 PMCID: PMC9245309 DOI: 10.1186/s12916-022-02414-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In 2013, a few years after the launch of the National Institute of Mental Health's Research Domain Criteria (RDoC) initiative, Cuthbert and Insel published a paper titled "Toward the future of psychiatric diagnosis: the seven pillars of RDoC." The RDoC project is a translational research effort to encourage new ways of studying psychopathology through a focus on disruptions in normal functions (such as reward learning or attention) that are defined jointly by observable behavior and neurobiological measures. The paper outlined the principles of the RDoC research framework, including emphases on research that acquires data from multiple measurement classes to foster integrative analyses, adopts dimensional approaches, and employs novel methods for ascertaining participants and identifying valid subgroups. DISCUSSION To mark the first decade of the RDoC initiative, we revisit the seven pillars and highlight new research findings and updates to the framework that are related to each. This reappraisal emphasizes the flexible nature of the RDoC framework and its application in diverse areas of research, new findings related to the importance of developmental trajectories within and across neurobehavioral domains, and the value of computational approaches for clarifying complex multivariate relations among behavioral and neurobiological systems. CONCLUSION The seven pillars of RDoC have provided a foundation that has helped to guide a surge of new studies that have examined neurobehavioral domains related to mental disorders, in the service of informing future psychiatric nosology. Building on this footing, future areas of emphasis for the RDoC project will include studying central-peripheral interactions, developing novel approaches to phenotyping for genomic studies, and identifying new targets for clinical trial research to facilitate progress in precision psychiatry.
Collapse
Affiliation(s)
- Sarah E Morris
- National Institute of Mental Health, Neuroscience Center, 6001 Executive Blvd, Bethesda, MD, 20892, USA.
| | | | - Jenni Pacheco
- National Institute of Mental Health, Neuroscience Center, 6001 Executive Blvd, Bethesda, MD, 20892, USA
| | - Uma Vaidyanathan
- National Institute of Mental Health, Neuroscience Center, 6001 Executive Blvd, Bethesda, MD, 20892, USA.,Present affiliation: Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Joshua A Gordon
- National Institute of Mental Health, Neuroscience Center, 6001 Executive Blvd, Bethesda, MD, 20892, USA
| | - Bruce N Cuthbert
- National Institute of Mental Health, Neuroscience Center, 6001 Executive Blvd, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Epigenome-wide association study of posttraumatic stress disorder identifies novel loci in U.S. military veterans. Transl Psychiatry 2022; 12:65. [PMID: 35177594 PMCID: PMC8854688 DOI: 10.1038/s41398-022-01822-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 01/23/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and disabling psychiatric disorder prevalent in military veterans. Epigenetic mechanisms have been implicated in the etiology of PTSD, with DNA methylation being the most studied to identify novel molecular biomarkers associated with this disorder. We performed one of the largest single-sample epigenome-wide association studies (EWAS) of PTSD to date. Our sample included 1135 male European-American U.S. veterans who participated in the National Health and Resilience in Veterans Study (NHRVS). DNA was collected from saliva samples and the Illumina HumanMethylation EPIC BeadChip was used for the methylation analysis. PTSD was assessed using the PTSD Checklist. An EWAS was conducted using linear regression adjusted for age, cell-type proportions, first 10 principal components, and smoking status. After Bonferroni correction, we identified six genome-wide significant (GWS) CpG sites associated with past-month PTSD and three CpGs with lifetime PTSD (prange = 10-10-10-8). These CpG sites map to genes involved in immune function, transcription regulation, axonal guidance, cell signaling, and protein binding. Among these, SENP7, which is involved in transcription regulation and has been linked to risk-taking behavior and alcohol consumption in genome-wide association studies, replicated in an independent veteran cohort and was downregulated in medial orbitofrontal cortex of PTSD postmortem brain tissue. These findings suggest potential epigenetic biomarkers of PTSD that may help inform the pathophysiology of this disorder in veterans and other trauma-affected populations.
Collapse
|
5
|
Ask H, Cheesman R, Jami ES, Levey DF, Purves KL, Weber H. Genetic contributions to anxiety disorders: where we are and where we are heading. Psychol Med 2021; 51:2231-2246. [PMID: 33557968 DOI: 10.1017/s0033291720005486] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anxiety disorders are among the most common psychiatric disorders worldwide. They often onset early in life, with symptoms and consequences that can persist for decades. This makes anxiety disorders some of the most debilitating and costly disorders of our time. Although much is known about the synaptic and circuit mechanisms of fear and anxiety, research on the underlying genetics has lagged behind that of other psychiatric disorders. However, alongside the formation of the Psychiatric Genomic Consortium Anxiety workgroup, progress is rapidly advancing, offering opportunities for future research.Here we review current knowledge about the genetics of anxiety across the lifespan from genetically informative designs (i.e. twin studies and molecular genetics). We include studies of specific anxiety disorders (e.g. panic disorder, generalised anxiety disorder) as well as those using dimensional measures of trait anxiety. We particularly address findings from large-scale genome-wide association studies and show how such discoveries may provide opportunities for translation into improved or new therapeutics for affected individuals. Finally, we describe how discoveries in anxiety genetics open the door to numerous new research possibilities, such as the investigation of specific gene-environment interactions and the disentangling of causal associations with related traits and disorders.We discuss how the field of anxiety genetics is expected to move forward. In addition to the obvious need for larger sample sizes in genome-wide studies, we highlight the need for studies among young people, focusing on specific underlying dimensional traits or components of anxiety.
Collapse
Affiliation(s)
- Helga Ask
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Rosa Cheesman
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eshim S Jami
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut
| | - Kirstin L Purves
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Heike Weber
- Department of Psychology, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Zhang TH, Tang XC, Xu LH, Wei YY, Hu YG, Cui HR, Tang YY, Chen T, Li CB, Zhou LL, Wang JJ. Imbalance Model of Heart Rate Variability and Pulse Wave Velocity in Psychotic and Nonpsychotic Disorders. Schizophr Bull 2021; 48:154-165. [PMID: 34313787 PMCID: PMC8781329 DOI: 10.1093/schbul/sbab080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Patients with psychiatric disorders have an increased risk of cardiovascular pathologies. A bidirectional feedback model between the brain and heart exists widely in both psychotic and nonpsychotic disorders. The aim of this study was to compare heart rate variability (HRV) and pulse wave velocity (PWV) functions between patients with psychotic and nonpsychotic disorders and to investigate whether subgroups defined by HRV and PWV features improve the transdiagnostic psychopathology of psychiatric classification. METHODS In total, 3448 consecutive patients who visited psychiatric or psychological health services with psychotic (N = 1839) and nonpsychotic disorders (N = 1609) and were drug-free for at least 2 weeks were selected. HRV and PWV indicators were measured via finger photoplethysmography during a 5-minute period of rest. Canonical variates were generated through HRV and PWV indicators by canonical correlation analysis (CCA). RESULTS All HRV indicators but none of the PWV indicators were significantly reduced in the psychotic group relative to those in the nonpsychotic group. After adjusting for age, gender, and body mass index, many indices of HRV were significantly reduced in the psychotic group compared with those in the nonpsychotic group. CCA analysis revealed 2 subgroups defined by distinct and relatively homogeneous patterns along HRV and PWV dimensions and comprising 19.0% (subgroup 1, n = 655) and 80.9% (subgroup 2, n = 2781) of the sample, each with distinctive features of HRV and PWV functions. CONCLUSIONS HRV functions are significantly impaired among psychiatric patients, especially in those with psychosis. Our results highlight important subgroups of psychiatric patients that have distinct features of HRV and PWV which transcend current diagnostic boundaries.
Collapse
Affiliation(s)
- Tian Hong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Xiao Chen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Li Hua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yan Yan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Ye Gang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Hui Ru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Ying Ying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Waterloo, ON, Canada,Labor and Worklife Program, Harvard University, Boston, MA, USA,Niacin (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Chun Bo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Lin Lin Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Ji Jun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China,To whom correspondence should be addressed; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China; tel: +86-21-34773065, fax: +86-21-64387986, e-mail:
| |
Collapse
|
7
|
Wendt FR, Pathak GA, Tylee DS, Goswami A, Polimanti R. Heterogeneity and Polygenicity in Psychiatric Disorders: A Genome-Wide Perspective. ACTA ACUST UNITED AC 2020; 4:2470547020924844. [PMID: 32518889 PMCID: PMC7254587 DOI: 10.1177/2470547020924844] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have been performed for many psychiatric disorders and revealed a complex polygenic architecture linking mental and physical health phenotypes. Psychiatric diagnoses are often heterogeneous, and several layers of trait heterogeneity may contribute to detection of genetic risks per disorder or across multiple disorders. In this review, we discuss these heterogeneities and their consequences on the discovery of risk loci using large-scale genetic data. We primarily highlight the ways in which sex and diagnostic complexity contribute to risk locus discovery in schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorder, posttraumatic stress disorder, major depressive disorder, obsessive-compulsive disorder, Tourette’s syndrome and chronic tic disorder, anxiety disorders, suicidality, feeding and eating disorders, and substance use disorders. Genetic data also have facilitated discovery of clinically relevant subphenotypes also described here. Collectively, GWAS of psychiatric disorders revealed that the understanding of heterogeneity, polygenicity, and pleiotropy is critical to translate genetic findings into treatment strategies.
Collapse
Affiliation(s)
- Frank R Wendt
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| |
Collapse
|
8
|
Tomasi J, Lisoway AJ, Zai CC, Harripaul R, Müller DJ, Zai GCM, McCabe RE, Richter MA, Kennedy JL, Tiwari AK. Towards precision medicine in generalized anxiety disorder: Review of genetics and pharmaco(epi)genetics. J Psychiatr Res 2019; 119:33-47. [PMID: 31563039 DOI: 10.1016/j.jpsychires.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Generalized anxiety disorder (GAD) is a prevalent and chronic mental disorder that elicits widespread functional impairment. Given the high degree of non-response/partial response among patients with GAD to available pharmacological treatments, there is a strong need for novel approaches that can optimize outcomes, and lead to medications that are safer and more effective. Although investigations have identified interesting targets predicting treatment response through pharmacogenetics (PGx), pharmaco-epigenetics, and neuroimaging methods, these studies are often solitary, not replicated, and carry several limitations. This review provides an overview of the current status of GAD genetics and PGx and presents potential strategies to improve treatment response by combining better phenotyping with PGx and improved analytical methods. These strategies carry the dual benefit of delivering data on biomarkers of treatment response as well as pointing to disease mechanisms through the biology of the markers associated with response. Overall, these efforts can serve to identify clinical, genetic, and epigenetic factors that can be incorporated into a pharmaco(epi)genetic test that may ultimately improve treatment response and reduce the socioeconomic burden of GAD.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Amanda J Lisoway
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ricardo Harripaul
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel J Müller
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gwyneth C M Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Randi E McCabe
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Margaret A Richter
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Wang J, Sun W, Tang X, Xu L, Wei Y, Cui H, Tang Y, Hui L, Jia Q, Zhu H, Wang J, Zhang T. Transdiagnostic Dimensions towards Personality Pathology and Childhood Traumatic Experience in a Clinical Sample: Subtype Classification by a Cross-sectional Analysis. Sci Rep 2019; 9:11248. [PMID: 31375755 PMCID: PMC6677786 DOI: 10.1038/s41598-019-47754-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are highly heterogeneous syndromes often explained by underlying and internalized personality disorder(PD) traits that are affected by externalized childhood trauma experiences(CTE). The present study investigated the differential subtype model by examining the association between PD traits and CTE in a clinical sample with transdiagnostic psychopathology. Outpatients(n = 2090) presenting for psychiatric treatment completed self-reported measures of PD traits(Personality Diagnostic Questionnaire) and the childhood adversity(Child Trauma Questionnaire). Canonical variates were generated by canonical correlation analysis(CCA) and then used for hierarchical cluster analysis to produce subtypes. A support vector machine(SVM) model was used and validated using a linear kernel to assess the utility of the extracted subtypes of outpatients in clinical diagnosis classifications. The CCA determined two linear combinations: emotional abuse related dissociality PD traits(antisocial and paranoid PD) and emotional neglect related sociality PD traits(schizoid, passive-aggressive, depressive, histrionic, and avoidant PD). A cluster analysis revealed three subtypes defined by distinct and relatively homogeneous patterns along two dimensions, and comprising 17.5%(cluster-1, n = 365), 34.8%(cluster-2, n = 727), and 47.8%(cluster-3, n = 998) of the sample, each with distinctive features of PD traits and CTE. These subtypes suggest more distinct PD trait correlates of CTE manifestations than were captured by clinical phenomenological diagnostic definitions. Our results highlight important subtypes of psychiatric patients that highlight PD traits and CTE that transcend current diagnostic boundaries. The three different subtypes reflect significant differences in PD and CTE characteristics and lend support to efforts to develop PD and childhood trauma targeted psychotherapy that extends to clinical diagnosis-based interventions.
Collapse
Affiliation(s)
- JunJie Wang
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow Unversity, Soochow Unversity, Suzhou, Jiangsu, 215137, China
| | - Wei Sun
- Department of Neurosurgery, Pu Nan Hospital, Shanghai, 200125, China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, P.R. China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, P.R. China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, P.R. China
| | - HuiRu Cui
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, P.R. China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, P.R. China
| | - Li Hui
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow Unversity, Soochow Unversity, Suzhou, Jiangsu, 215137, China
| | - QiuFang Jia
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow Unversity, Soochow Unversity, Suzhou, Jiangsu, 215137, China
| | - Hongliang Zhu
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow Unversity, Soochow Unversity, Suzhou, Jiangsu, 215137, China.
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, P.R. China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai, P.R. China. .,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, P.R. China.
| |
Collapse
|
10
|
Schmidt U, Vermetten E. Integrating NIMH Research Domain Criteria (RDoC) into PTSD Research. Curr Top Behav Neurosci 2019; 38:69-91. [PMID: 28341942 DOI: 10.1007/7854_2017_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three and a half decades of research on posttraumatic stress disorder (PTSD) has produced substantial knowledge on the pathobiology of this frequent and debilitating disease. However, despite all research efforts, so far no drug that has specifically targeted PTSD core symptoms progressed to clinical use. Instead, although not overly efficient, serotonin re-uptake inhibitors continue to be considered the gold standard of PTSD pharmacotherapy. The psychotherapeutic treatment and symptom-oriented drug therapy options available for PTSD treatment today show some efficacy, although not in all PTSD patients, in particular not in a substantial percent of those suffering from the detrimental sequelae of repeated childhood trauma or in veterans with combat related PTSD. PTSD has this in common with other psychiatric disorders - in particular effective treatment for incapacitating conditions such as resistant major depression, chronic schizophrenia, and frequently relapsing obsessive-compulsive disorder as well as dementia has not yet been developed through modern neuropsychiatric research.In response to this conundrum, the National Institute of Mental Health launched the Research Domain Criteria (RDoC) framework which aims to leave diagnosis-oriented psychiatric research behind and to move on to the use of research domains overarching the traditional diagnosis systems. To the best of our knowledge, the paper at hand is the first that has systematically assessed the utility of the RDoC system for PTSD research. Here, we review core findings in neurobiological PTSD research and match them to the RDoC research domains and units of analysis. Our synthesis reveals that several core findings in PTSD such as amygdala overactivity have been linked to all RDoC domains without further specification of their distinct role in the pathophysiological pathways associated with these domains. This circumstance indicates that the elucidation of the cellular and molecular processes ultimately decisive for regulation of psychic processes and for the expression of psychopathological symptoms is still grossly incomplete. All in all, we find the RDoC research domains to be useful but not sufficient for PTSD research. Hence, we suggest adding two novel domains, namely stress and emotional regulation and maintenance of consciousness. As both of these domains play a role in various if not in all psychiatric diseases, we judge them to be useful not only for PTSD research but also for psychiatric research in general.
Collapse
Affiliation(s)
- Ulrike Schmidt
- Trauma Outpatient Unit and RG Molecular Psychotraumatology, Clinical Department, Max Planck Institute of Psychiatry, Kraepelinstrasse 10, Munich, 80804, Germany
| | - Eric Vermetten
- Department Psychiatry, Leiden University Medical Center Utrecht, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands.
- Arq Psychotruama Research Group, Diemen, The Netherlands.
| |
Collapse
|
11
|
Esposito G, Azhari A, Borelli JL. Gene × Environment Interaction in Developmental Disorders: Where Do We Stand and What's Next? Front Psychol 2018; 9:2036. [PMID: 30416467 PMCID: PMC6212589 DOI: 10.3389/fpsyg.2018.02036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/03/2018] [Indexed: 02/01/2023] Open
Abstract
Although the field of psychiatry has witnessed the proliferation of studies on Gene × Environment (G×E) interactions, still limited is the knowledge we possess of G×E interactions regarding developmental disorders. In this perspective paper, we discuss why G×E interaction studies are needed to broaden our knowledge of developmental disorders. We also discuss the different roles of hazardous versus self-generated environmental factors and how these types of factors may differentially engage with an individual's genetic background in predicting a resulting phenotype. Then, we present examplar studies that highlight the role of G×E in predicting atypical developmental trajectories as well as provide insight regarding treatment outcomes. Supported by these examples, we explore the need to move beyond merely examining statistical interactions between genes and the environment, and the motivation to investigate specific genetic susceptibility and environmental contexts that drive developmental disorders. We propose that further parsing of genetic and environmental components is required to fully understand the unique contribution of each factor to the etiology of developmental disorders. Finally, with a greater appreciation of the complexities of G×E interaction, this discussion will converge upon the potential implications for clinical and translational research.
Collapse
Affiliation(s)
- Gianluca Esposito
- Psychology Program, Nanyang Technological University, Singapore, Singapore
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Atiqah Azhari
- Psychology Program, Nanyang Technological University, Singapore, Singapore
| | - Jessica L. Borelli
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
12
|
Unraveling the Genetics of Major Depression and Stress-Related Psychiatric Disorders: Is It Time for a Paradigm Shift? Biol Psychiatry 2018; 84:82-84. [PMID: 31178063 DOI: 10.1016/j.biopsych.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
|
13
|
Yang S, Wynn GH, Ursano RJ. A Clinician's Guide to PTSD Biomarkers and Their Potential Future Use. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2018; 16:143-152. [PMID: 31975909 DOI: 10.1176/appi.focus.20170045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
No clinically validated biomarkers have yet been found to assist in the diagnosis and treatment of posttraumatic stress disorder (PTSD). Innovation in clinical trial design, however, has led to the study of biomarkers as part of testing new medications and psychotherapies. There may soon be viable biomarkers to assist in diagnosis of PTSD and prediction of illness trajectory, severity, and functional outcomes; subtyping; and treatment selection. Processes for the identification and validation of biomarker findings are complex, involving several stages of clinical testing before use. The authors provide an overview of issues regarding the clinical use of PTSD biomarkers and examine a set of genetic, epigenetic, and other blood-based markers along with physiological markers currently proposed as candidate tests for PTSD. Studies that have identified candidate biomarkers with relevance to treatment selection in PTSD are discussed as a promising area of research that may lead to changes in clinical practice.
Collapse
Affiliation(s)
- Suzanne Yang
- The authors are with the Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University, Bethesda, Maryland. Dr. Yang is also with the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Gary H Wynn
- The authors are with the Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University, Bethesda, Maryland. Dr. Yang is also with the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Robert J Ursano
- The authors are with the Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University, Bethesda, Maryland. Dr. Yang is also with the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| |
Collapse
|
14
|
Polimanti R, Kaufman J, Zhao H, Kranzler HR, Ursano RJ, Kessler RC, Stein MB, Gelernter J, Heeringa S, Wagner J, Cox K, Aliaga PA, Benedek COLDM, Campbell‐Sills L, Fullerton CS, Gebler N, Gifford RK, Hurwitz PE, Jain S, Lewandowski‐Romps L, Herberman Mash H, McCarroll JE, Naifeh JA, Hinz Ng TH, Nock MK, Santiago P, Wynn GH, Zaslavsky AM. Trauma exposure interacts with the genetic risk of bipolar disorder in alcohol misuse of US soldiers. Acta Psychiatr Scand 2018; 137:148-156. [PMID: 29230810 PMCID: PMC6110087 DOI: 10.1111/acps.12843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate whether trauma exposure moderates the genetic correlation between substance use disorders and psychiatric disorders, we tested whether trauma exposure modifies the association of genetic risks for mental disorders with alcohol misuse and nicotine dependence (ND) symptoms. METHODS High-resolution polygenic risk scores (PRSs) were calculated for 10 732 US Army soldiers (8346 trauma-exposed and 2386 trauma-unexposed) based on genome-wide association studies of bipolar disorder (BD), major depressive disorder, and schizophrenia. RESULTS The main finding was a significant BD PRS-by-trauma interaction with respect to alcohol misuse (P = 6.07 × 10-3 ). We observed a positive correlation between BD PRS and alcohol misuse in trauma-exposed soldiers (r = 0.029, P = 7.5 × 10-3 ) and a negative correlation in trauma-unexposed soldiers (r = -0.071, P = 5.61 × 10-4 ). Consistent (nominally significant) result with concordant effect, directions were observed in the schizophrenia PRS-by-trauma interaction analysis. The variants included in the BD PRS-by-trauma interaction showed significant enrichments for gene ontologies related to high voltage-gated calcium channel activity (GO:0008331, P = 1.51 × 10-5 ; GO:1990454, P = 4.49 × 10-6 ; GO:0030315, P = 2.07 × 10-6 ) and for Beta1/Beta2 adrenergic receptor signaling pathways (P = 2.61 × 10-4 ). CONCLUSIONS These results indicate that the genetic overlap between alcohol misuse and BD is significantly moderated by trauma exposure. This provides molecular insight into the complex mechanisms that link substance abuse, psychiatric disorders, and trauma exposure.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Joan Kaufman
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute, Baltimore, MD, USA;,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA;,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine and VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA, USA
| | - Robert J. Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Murray B. Stein
- Departments of Psychiatry and of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA;,VA San Diego Healthcare System, San Diego, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA;,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA;,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A genome-wide gene-by-trauma interaction study of alcohol misuse in two independent cohorts identifies PRKG1 as a risk locus. Mol Psychiatry 2018; 23:154-160. [PMID: 28265120 PMCID: PMC5589475 DOI: 10.1038/mp.2017.24] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Traumatic life experiences are associated with alcohol use problems, an association that is likely to be moderated by genetic predisposition. To understand these interactions, we conducted a gene-by-environment genome-wide interaction study (GEWIS) of alcohol use problems in two independent samples, the Army STARRS (STARRS, N=16 361) and the Yale-Penn (N=8084) cohorts. Because the two cohorts were assessed using different instruments, we derived separate dimensional alcohol misuse scales and applied a proxy-phenotype study design. In African-American subjects, we identified an interaction of PRKG1 rs1729578 with trauma exposure in the STARRS cohort and replicated its interaction with trauma exposure in the Yale-Penn cohort (discovery-replication meta-analysis: z=5.64, P=1.69 × 10-8). PRKG1 encodes cyclic GMP-dependent protein kinase 1, which is involved in learning, memory and circadian rhythm regulation. Considering the loci identified in stage-1 that showed same effect directions in stage-2, the gene ontology (GO) enrichment analysis showed several significant results, including calcium-activated potassium channels (GO:0016286; P=2.30 × 10-5), cognition (GO:0050890; P=1.90 × 10-6), locomotion (GO:0040011; P=6.70 × 10-5) and Stat3 protein regulation (GO:0042517; P=6.4 × 10-5). To our knowledge, this is the largest GEWIS performed in psychiatric genetics, and the first GEWIS examining risk for alcohol misuse. Our results add to a growing body of literature highlighting the dynamic impact of experience on individual genetic risk.
Collapse
|
16
|
Liu J, Gong J, Nie G, He Y, Xiao B, Shen Y, Luo X. The mediating effects of childhood neglect on the association between schizotypal and autistic personality traits and depression in a non-clinical sample. BMC Psychiatry 2017; 17:352. [PMID: 29065890 PMCID: PMC5655952 DOI: 10.1186/s12888-017-1510-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 10/15/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Autistic personality traits (APT) and schizotypal personality traits (SPT) are associated with depression. However, mediating factors within these relationships have not yet been explored. Thus, the focus of the current study was to examine the effects of childhood neglect on the relationship between APT/SPT and depression. METHODS This cross-sectional study was conducted on first-year students (N = 2469) at Hunan University of Chinese Medicine and Hengyang Normal College (Changsha, China). Participants completed surveys on APT, SPT, childhood neglect, abuse and depression. RESULTS Through correlational analyses, APT and SPT traits were positively correlated with childhood neglect and depression (p < 0.05). In a hierarchical regression analysis, among types of childhood maltreatment, emotional neglect (β = 0.112, p < 0.001) and physical neglect (β = 0.105, p < 0.001) were the strongest predictors of depression. Childhood neglect did not account for the relationships between APT/SPT and depression. Further analysis found that childhood neglect mediated the relationship between SPT and depression but not APT and depression. CONCLUSIONS Among types of childhood maltreatment, neglect was the strongest predicting factor for depression. Neglect did not account for the relationship between APT/SPT and depression but was a strong mediating factor between SPT and depression.
Collapse
Affiliation(s)
- Jianbo Liu
- 0000 0001 0379 7164grid.216417.7Mental Health Institute of The Second Xiangya Hospital and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Central South University, Changsha, 410000 China
| | - Jingbo Gong
- grid.67293.39Department of Applied Psychology, Traditional Chinese Medicine University of Hunan, Changsha, 410208 China
| | - Guanghui Nie
- 0000 0004 1798 2653grid.256607.0School of Public Health, Guangxi Medical University, Nanning, 530000 China
| | - Yuqiong He
- 0000 0001 0379 7164grid.216417.7Mental Health Institute of The Second Xiangya Hospital and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Central South University, Changsha, 410000 China
| | - Bo Xiao
- 0000 0001 0379 7164grid.216417.7Mental Health Institute of The Second Xiangya Hospital and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Central South University, Changsha, 410000 China
| | - Yanmei Shen
- 0000 0001 0379 7164grid.216417.7Mental Health Institute of The Second Xiangya Hospital and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Central South University, Changsha, 410000 China
| | - Xuerong Luo
- Mental Health Institute of The Second Xiangya Hospital and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Central South University, Changsha, 410000, China.
| |
Collapse
|
17
|
Knop J, Joëls M, van der Veen R. The added value of rodent models in studying parental influence on offspring development: opportunities, limitations and future perspectives. Curr Opin Psychol 2017; 15:174-181. [DOI: 10.1016/j.copsyc.2017.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
|
18
|
An Attachment-Based Model of the Relationship Between Childhood Adversity and Somatization in Children and Adults. Psychosom Med 2017; 79:506-513. [PMID: 27941580 DOI: 10.1097/psy.0000000000000437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE An attachment model was used to understand how maternal sensitivity and adverse childhood experiences are related to somatization. METHODS We examined maternal sensitivity at 6 and 18 months and somatization at 5 years in 292 children in a longitudinal cohort study. We next examined attachment insecurity and somatization (health anxiety, physical symptoms) in four adult cohorts: healthy primary care patients (AC1, n = 67), ulcerative colitis in remission (AC2, n = 100), hospital workers (AC3, n = 157), and paramedics (AC4, n = 188). Recall of childhood adversity was measured in AC3 and AC4. Attachment insecurity was tested as a possible mediator between childhood adversity and somatization in AC3 and AC4. RESULTS In children, there was a significant negative relationship between maternal sensitivity at 18 months and somatization at age 5 years (B = -3.52, standard error = 1.16, t = -3.02, p = .003), whereas maternal sensitivity at 6 months had no significant relationship. In adults, there were consistent, significant relationships between attachment insecurity and somatization, with the strongest findings for attachment anxiety and health anxiety (AC1, β = 0.51; AC2, β = 0.43). There was a significant indirect effect of childhood adversity on physical symptoms mediated by attachment anxiety in AC3 and AC4. CONCLUSIONS Deficits in maternal sensitivity at 18 months of age are related to the emergence of somatization by age 5 years. Adult attachment insecurity is related to somatization. Insecure attachment may partially mediate the relationship between early adversity and somatization.
Collapse
|
19
|
Parker CC, Dickson PE, Philip VM, Thomas M, Chesler EJ. Systems Genetic Analysis in GeneNetwork.org. CURRENT PROTOCOLS IN NEUROSCIENCE 2017; 79:8.39.1-8.39.20. [PMID: 28398643 PMCID: PMC5548442 DOI: 10.1002/cpns.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) have emerged as a powerful tool to identify alleles and molecular pathways that influence susceptibility to psychiatric disorders and other diseases. Forward genetics using mouse mapping populations allows for a complementary approach that provides rigorous genetic and environmental control. In this unit, we describe techniques and tools that reduce the technical burden traditionally associated with genetic mapping in mice and enhance their translational utility to human psychiatric disorders. We provide guidance on choosing the appropriate mapping population, discuss the importance of phenotype, and offer detailed instructions on using the Web-based resource GeneNetwork to aid neuroscientists in better understanding the mechanisms through which genes influence behavior. We believe that the continued development of mouse mapping populations, genetic tools, bioinformatics resources, and statistical methodologies should remain a parallel strategy by which to investigate the genetic and environmental underpinnings of psychiatric disorders and other diseases in humans. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont
| | - Price E Dickson
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine
| | - Vivek M Philip
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine
| | - Mary Thomas
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont
| | - Elissa J Chesler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine
| |
Collapse
|
20
|
Research Domain Criteria versus DSM V: How does this debate affect attempts to model corticostriatal dysfunction in animals? Neurosci Biobehav Rev 2016; 76:301-316. [PMID: 27826070 DOI: 10.1016/j.neubiorev.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023]
Abstract
For decades, the nosology of mental illness has been based largely upon the descriptions in the Diagnostic and Statistical Manual of the American Psychiatric Association (DSM). A recent challenge to the DSM approach to psychiatric nosology from the National Institute on Mental Health (USA) defines Research Domain Criteria (RDoC) as an alternative. For RDoC, psychiatric illnesses are not defined as discrete categories, but instead as specific behavioral dysfunctions irrespective of DSM diagnostic categories. This approach was driven by two primary weaknesses noted in the DSM: (1) the same symptoms occur in very different disease states; and (2) DSM criteria lack grounding in the underlying biological causes of mental illness. RDoC intends to ground psychiatric nosology in those underlying mechanisms. This review addresses the suitability of RDoC vs. DSM from the view of modeling mental illness in animals. A consideration of all types of psychiatric dysfunction is beyond the scope of this review, which will focus on models of conditions associated with frontostriatal dysfunction.
Collapse
|
21
|
PTSD Symptom Severities, Interpersonal Traumas, and Benzodiazepines Are Associated with Substance-Related Problems in Trauma Patients. J Clin Med 2016; 5:jcm5080070. [PMID: 27517964 PMCID: PMC4999790 DOI: 10.3390/jcm5080070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 01/04/2023] Open
Abstract
Background: Trauma is commonly associated with substance-related problems, yet associations between specific substances and specific posttraumatic stress disorder symptoms (PTSSs) are understudied. We hypothesized that substance-related problems are associated with PTSS severities, interpersonal traumas, and benzodiazepine prescriptions. Methods: Using a cross-sectional survey methodology in a consecutive sample of adult outpatients with trauma histories (n = 472), we used logistic regression to examine substance-related problems in general (primary, confirmatory analysis), as well as alcohol, tobacco, and illicit drug problems specifically (secondary, exploratory analyses) in relation to demographics, trauma type, PTSSs, and benzodiazepine prescriptions. Results: After adjusting for multiple testing, several factors were significantly associated with substance-related problems, particularly benzodiazepines (AOR = 2.78; 1.99 for alcohol, 2.42 for tobacco, 8.02 for illicit drugs), DSM-5 PTSD diagnosis (AOR = 1.92; 2.38 for alcohol, 2.00 for tobacco, 2.14 for illicit drugs), most PTSSs (especially negative beliefs, recklessness, and avoidance), and interpersonal traumas (e.g., assaults and child abuse). Conclusion: In this clinical sample, there were consistent and strong associations between several trauma-related variables and substance-related problems, consistent with our hypotheses. We discuss possible explanations and implications of these findings, which we hope will stimulate further research, and improve screening and treatment.
Collapse
|
22
|
The role of genes involved in stress, neural plasticity, and brain circuitry in depressive phenotypes: Convergent findings in a mouse model of neglect. Behav Brain Res 2016; 315:71-4. [PMID: 27506655 DOI: 10.1016/j.bbr.2016.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/13/2016] [Accepted: 08/05/2016] [Indexed: 12/31/2022]
Abstract
Early life neglect increases risk for the development of psychopathologies during childhood and adulthood, including depression and anxiety disorders. We recently reported epigenetic changes in DNA derived from saliva in three genes predicted depression in a cohort of maltreated children: DNA-binding protein inhibitor ID-3 (ID3), Glutamate NMDA Receptor (GRIN1), and Tubulin Polymerization Promoting Protein (TPPP). To validate the role of these genes in depression risk, secondary analyses were conducted of gene expression data obtained from medial prefrontal cortex (mPFC) tissue of mice subjected to a model of maternal neglect which included maternal separation and early weaning (MSEW). Anxiety and depression-like phenotype data derived using the elevated plus maze (EPM) and forced swimming test (FST), respectively, were also available for secondary analyses. Behavioral tests were conducted in MSEW and control adult male mice when they were between 65 and 80days old. ID3, GRIN1 and TPPP gene expression in the mPFC were found to significantly predict behavioral differences in the EPM and FST. These results further support the role of these genes in the etiology of depressive and anxiety phenotypes following early life stress.
Collapse
|