1
|
Zaidi MAA, Kushwaha S, Udaykumar N, Dethe P, Sachdeva M, Sen J. Interplay of canonical and LIMK mediated non-canonical BMP signaling is essential for regulating differential thickness and invagination during chick forebrain roof plate morphogenesis. Dev Biol 2025; 520:125-134. [PMID: 39824242 DOI: 10.1016/j.ydbio.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Telencephalic hemisphere formation is a complex and precisely timed process, which begins in the chick forebrain with an invagination in the middle of the roof plate. However, the factor(s) that determine the position/site of invagination in the roof plate remain to be elucidated. In this study, we have demonstrated that as development proceeds, a region of lower thickness appears in the middle of the roof plate, which marks the position where the invagination begins. Our investigations have implicated an interplay between the canonical (pSMAD 1/5/9 dependent) and the non-canonical (LIMK dependent) arms of BMP signaling in regulating this process. We have demonstrated that LIMK dependent non-canonical BMP signaling induces high levels of phosphorylated Cofilin (pCofilin) in the middle of the roof plate, which in turn alters Actin cytoskeleton dynamics, resulting in this region being thinner than the lateral regions. This study has provided the first mechanistic insight into how forebrain roof plate invagination begins and has thrown light on the role played by BMP signaling in this process.
Collapse
Affiliation(s)
- Mohd Ali Abbas Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sweta Kushwaha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Niveda Udaykumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Department of Hematology, Division of Experimental Hematology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Pallavi Dethe
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Meenu Sachdeva
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Mehta Family Center for Engineering in Medicine (MFCEM), Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
2
|
Galeotti A, De Vincentiis GC, Sitzia E, Marzo G, Maldonato W, Bompiani G, Chiarini Testa MB, Putrino A, Bartuli A, Festa P. Use of an Orthodontic and Otolaryngological Approach in an Infant with Holoprosencephaly. CHILDREN (BASEL, SWITZERLAND) 2024; 11:554. [PMID: 38790549 PMCID: PMC11119934 DOI: 10.3390/children11050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Holoprosencephaly is a complex human brain malformation resulting from incomplete cleavage of the prosencephalon into both hemispheres. Congenital nasal pyriform aperture stenosis (CNPAS) is sometimes found in patients with mild forms of holoprosencephaly. Surgical treatment is required. Low-invasive surgical approaches involve balloon dilation of the pyriform opening. We present the case of an 8-day-old girl diagnosed with holoprosencephaly, CNPAS, and the presence of a solitary median maxillary central incisor. Once examined by neonatologist, geneticist, pneumologist, otolaryngologist, and pediatric dentist, a combined otolaryngological-orthodontic approach was used. The obstruction of the right nasal cavity was treated by widening the nasal cavities and stabilizing them with a balloon dilation technique. After surgery, the respiratory space was increased by applying a neonatal palatal expander plate (NPEP) considering the palatal deformity: ogival shaped, anterior vertex growth direction, reduction of transverse diameters. The NPEP promoted distraction of the median palatine suture and assisted the nasal dilation. Therefore, after the insertion of NPEP, the physiological sucking-swallowing mechanism was activated. In infants with CNPAS, NPEP can be useful to ensure the safe stability of nasal dilation. A multidisciplinary approach is fundamental. In our experience, the close collaboration between an otolaryngologist and orthodontist is essential for the management of the patient with CNPAS.
Collapse
Affiliation(s)
- Angela Galeotti
- Dentistry Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy
| | | | - Emanuela Sitzia
- Otolaryngology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy
| | - Giuseppe Marzo
- Department of Life, Health, Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Wanda Maldonato
- Dentistry Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy
| | - Gaia Bompiani
- Dentistry Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy
| | - Maria Beatrice Chiarini Testa
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Sleep and Long-Term Ventilation Unit, Acdemic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy
| | - Alessandra Putrino
- Dentistry Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy
| | - Paola Festa
- Dentistry Unit, AORN Santobono-Pausilipon, 80100 Naples, Italy;
| |
Collapse
|
3
|
Saumweber E, Mzoughi S, Khadra A, Werberger A, Schumann S, Guccione E, Schmeisser MJ, Kühl SJ. Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis. Front Cell Dev Biol 2024; 12:1316048. [PMID: 38444828 PMCID: PMC10912572 DOI: 10.3389/fcell.2024.1316048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Mutations in PRDM15 lead to a syndromic form of holoprosencephaly (HPE) known as the Galloway-Mowat syndrome (GAMOS). While a connection between PRDM15, a zinc finger transcription factor, and WNT/PCP signaling has been established, there is a critical need to delve deeper into their contributions to early development and GAMOS pathogenesis. We used the South African clawed frog Xenopus laevis as the vertebrate model organism and observed that prdm15 was enriched in the tissues and organs affected in GAMOS. Furthermore, we generated a morpholino oligonucleotide-mediated prdm15 knockdown model showing that the depletion of Prdm15 leads to abnormal eye, head, and brain development, effectively recapitulating the anterior neural features in GAMOS. An analysis of the underlying molecular basis revealed a reduced expression of key genes associated with eye, head, and brain development. Notably, this reduction could be rescued by the introduction of wnt4 RNA, particularly during the induction of the respective tissues. Mechanistically, our data demonstrate that Prdm15 acts upstream of both canonical and non-canonical Wnt4 signaling during anterior neural development. Our findings describe severe ocular and anterior neural abnormalities upon Prdm15 depletion and elucidate the role of Prdm15 in canonical and non-canonical Wnt4 signaling.
Collapse
Affiliation(s)
- Ernestine Saumweber
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Slim Mzoughi
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Arin Khadra
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Anja Werberger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ernesto Guccione
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
5
|
Casey MA, Lusk S, Kwan KM. Eye Morphogenesis in Vertebrates. Annu Rev Vis Sci 2023; 9:221-243. [PMID: 37040791 DOI: 10.1146/annurev-vision-100720-111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Proper eye structure is essential for visual function: Multiple essential eye tissues must take shape and assemble into a precise three-dimensional configuration. Accordingly, alterations to eye structure can lead to pathological conditions of visual impairment. Changes in eye shape can also be adaptive over evolutionary time. Eye structure is first established during development with the formation of the optic cup, which contains the neural retina, retinal pigment epithelium, and lens. This crucial yet deceptively simple hemispherical structure lays the foundation for all later elaborations of the eye. Building on descriptions of the embryonic eye that started with hand drawings and micrographs, the field is beginning to identify mechanisms driving dynamic changes in three-dimensional cell and tissue shape. A combination of molecular genetics, imaging, and pharmacological approaches is defining connections among transcription factors, signaling pathways, and the intracellular machinery governing the emergence of this crucial structure.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| |
Collapse
|
6
|
Udaykumar N, Zaidi MAA, Rai A, Sen J. CNKSR2, a downstream mediator of retinoic acid signaling, modulates the Ras/Raf/MEK pathway to regulate patterning and invagination of the chick forebrain roof plate. Development 2023; 150:286897. [PMID: 36734326 DOI: 10.1242/dev.200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
During embryonic development, the forebrain roof plate undergoes invagination, leading to separation of the cerebral hemispheres. Any defects in this process, in humans, lead to middle interhemispheric holoprosencephaly (MIH-HPE). In this study, we have identified a previously unreported downstream mediator of retinoic acid (RA) signaling, CNKSR2, which is expressed in the forebrain roof plate in the chick embryo. Knockdown of CNKSR2 affects invagination, cell proliferation and patterning of the roof plate, similar to the phenotypes observed upon inhibition of RA signaling. We further demonstrate that CNKSR2 functions by modulating the Ras/Raf/MEK signaling. This appears to be crucial for patterning of the forebrain roof plate and its subsequent invagination, leading to the formation of the cerebral hemispheres. Thus, a set of novel molecular players have been identified that regulate the morphogenesis of the avian forebrain.
Collapse
Affiliation(s)
- Niveda Udaykumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Mohd Ali Abbas Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Aishwarya Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
- Mehta Family Center for Engineering in Medicine (MFCEM), Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
7
|
Chee JM, Lanoue L, Clary D, Higgins K, Bower L, Flenniken A, Guo R, Adams DJ, Bosch F, Braun RE, Brown SDM, Chin HJG, Dickinson ME, Hsu CW, Dobbie M, Gao X, Galande S, Grobler A, Heaney JD, Herault Y, de Angelis MH, Mammano F, Nutter LMJ, Parkinson H, Qin C, Shiroishi T, Sedlacek R, Seong JK, Xu Y, Brooks B, McKerlie C, Lloyd KCK, Westerberg H, Moshiri A. Genome-wide screening reveals the genetic basis of mammalian embryonic eye development. BMC Biol 2023; 21:22. [PMID: 36737727 PMCID: PMC9898963 DOI: 10.1186/s12915-022-01475-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.
Collapse
Affiliation(s)
- Justine M Chee
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Dave Clary
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Kendall Higgins
- University of Miami: Miller School of Medicine, Miami, FL, USA
| | - Lynette Bower
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Ann Flenniken
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Ruolin Guo
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Steve D M Brown
- Medical Research Council Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, UK
| | - H-J Genie Chin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Taipei City, Taiwan
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Michael Dobbie
- Phenomics Australia, The John Curtin School of Medical Research, Canberra, Australia
| | - Xiang Gao
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Sanjeev Galande
- Indian Institutes of Science Education and Research, Pune, India
| | - Anne Grobler
- Faculty of Health Sciences, PCDDP North-West University, Potchefstroom, South Africa
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabio Mammano
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Monterotondo Scalo, Italy
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Helen Parkinson
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Chuan Qin
- National Laboratory Animal Center, National Applied Research Laboratories, Beijing, China
| | | | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - J-K Seong
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Brian Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Colin McKerlie
- The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - K C Kent Lloyd
- Mouse Biology Program, University of California Davis, Davis, CA, USA
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Henrik Westerberg
- Medical Research Council Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, UK
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, CA, USA.
- UC Davis Eye Center, 4860 Y St., Ste. 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
8
|
Akula SK, Marciano JH, Lim Y, Exposito-Alonso D, Hylton NK, Hwang GH, Neil JE, Dominado N, Bunton-Stasyshyn RK, Song JHT, Talukdar M, Schmid A, Teboul L, Mo A, Shin T, Finander B, Beck SG, Yeh RC, Otani A, Qian X, DeGennaro EM, Alkuraya FS, Maddirevula S, Cascino GD, Giannini C, Burrage LC, Rosenfield JA, Ketkar S, Clark GD, Bacino C, Lewis RA, Segal RA, Bazan JF, Smith KA, Golden JA, Cho G, Walsh CA. TMEM161B regulates cerebral cortical gyration, Sonic Hedgehog signaling, and ciliary structure in the developing central nervous system. Proc Natl Acad Sci U S A 2023; 120:e2209964120. [PMID: 36669111 PMCID: PMC9942790 DOI: 10.1073/pnas.2209964120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/14/2022] [Indexed: 01/22/2023] Open
Abstract
Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.
Collapse
Affiliation(s)
- Shyam K. Akula
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Jack H. Marciano
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Youngshin Lim
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Norma K. Hylton
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Grace H. Hwang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Nicole Dominado
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC3010, Australia
| | | | - Janet H. T. Song
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Maya Talukdar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Aloisia Schmid
- Department of Physics/Electron Microscopy Core, Northeastern University, Boston, MA02115
| | - Lydia Teboul
- Mary Lyon Centre, United Kingdom Medical Research Council Harwell, Didcot, Oxfordshire,OX11 0RD, UK
| | - Alisa Mo
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Taehwan Shin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Benjamin Finander
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Samantha G. Beck
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Rebecca C. Yeh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Aoi Otani
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Xuyu Qian
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Ellen M. DeGennaro
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, 11564 Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, 11564 Riyadh, Saudi Arabia
| | | | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN55905
| | | | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Jill A. Rosenfield
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Gary D. Clark
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Carlos Bacino
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Richard A. Lewis
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Rosalind A. Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - J. Fernando Bazan
- Unit for Structural Biology, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, 9052Ghent, Belgium
| | - Kelly A. Smith
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Jeffrey A. Golden
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Ginam Cho
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
9
|
Everson JL, Eberhart JK. Gene-alcohol interactions in birth defects. Curr Top Dev Biol 2022; 152:77-113. [PMID: 36707215 PMCID: PMC9897481 DOI: 10.1016/bs.ctdb.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most human birth defects are thought to result from complex interactions between combinations of genetic and environmental factors. This is true even for conditions that, at face value, may appear simple and straightforward, like fetal alcohol spectrum disorders (FASD). FASD describe the full range of structural and neurological disruptions that result from prenatal alcohol exposure. While FASD require alcohol exposure, evidence from human and animal model studies demonstrate that additional genetic and/or environmental factors can influence the embryo's susceptibility to alcohol. Only a limited number of alcohol interactions in birth defects have been identified, with many sensitizing genetic and environmental factors likely yet to be identified. Because of this, while unsatisfying, there is no definitively "safe" dose of alcohol for all pregnancies. Determining these other factors, as well as mechanistically characterizing known interactions, is critical for better understanding and preventing FASD and requires combined scrutiny of human and model organism studies.
Collapse
Affiliation(s)
- Joshua L Everson
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States; Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States.
| | - Johann K Eberhart
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States; Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
10
|
Transcriptional Profile of the Developing Subthalamic Nucleus. eNeuro 2022; 9:9/5/ENEURO.0193-22.2022. [PMID: 36257692 PMCID: PMC9581575 DOI: 10.1523/eneuro.0193-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, excitatory nucleus that regulates the output of basal ganglia motor circuits. The functions of the STN and its role in the pathophysiology of Parkinson's disease are now well established. However, some basic characteristics like the developmental origin and molecular phenotype of neuronal subpopulations are still being debated. The classical model of forebrain development attributed the origin of STN within the diencephalon. Recent studies of gene expression patterns exposed shortcomings of the classical model. To accommodate these findings, the prosomeric model was developed. In this concept, STN develops within the hypothalamic primordium, which is no longer a part of the diencephalic primordium. This concept is further supported by the expression patterns of many transcription factors. It is interesting to note that many transcription factors involved in the development of the STN are also involved in the pathogenesis of neurodevelopmental disorders. Thus, the study of neurodevelopmental disorders could provide us with valuable information on the roles of these transcription factors in the development and maintenance of STN phenotype. In this review, we summarize historical theories about the developmental origin of the STN and interpret the gene expression data within the prosomeric conceptual framework. Finally, we discuss the importance of neurodevelopmental disorders for the development of the STN and its potential role in the pathophysiology of neurodevelopmental disorders.
Collapse
|
11
|
Takebayashi-Suzuki K, Uchida M, Suzuki A. Zbtb21 is required for the anterior-posterior patterning of neural tissue in the early Xenopus embryo. Biochem Biophys Res Commun 2022; 630:190-197. [PMID: 36166855 DOI: 10.1016/j.bbrc.2022.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
Abstract
The vertebrate body is organized along the dorsal-ventral (DV) and anterior-posterior (AP) axes by the BMP and Wnt pathways, respectively. We previously reported that Xenopus Zbtb14 promotes dorsalization (neural induction) of ectoderm by inhibiting BMP signaling and also posteriorizes neural tissue by activating Wnt signaling, thereby coordinating the patterning of the DV and AP axes during early development. Although it has been reported that human ZBTB21 binds to ZBTB14 and is involved in gene expression in cultured mammalian cells, the function of Zbtb21 in early embryonic development remains unknown. Here, we show that Xenopus Zbtb21 plays an essential role in AP axis formation in the early Xenopus embryo. zbtb21 and zbtb14 are co-expressed in the dorsal region of embryos during gastrulation. Simultaneous overexpression of Zbtb21 and Zbtb14 in ectodermal explants enhances the neural-inducing activity of Zbtb14. Moreover, knockdown experiments showed that Zbtb21 is required for the formation of posterior neural tissue and the suppression of anterior neural development. Collectively, these results suggest that in cooperation with Zbtb14, Zbtb21 has a crucial function in AP patterning during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Misa Uchida
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Atsushi Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
12
|
Spadari F, Pulicari F, Pellegrini M, Scribante A, Garagiola U. Multidisciplinary approach to Gorlin-Goltz syndrome: from diagnosis to surgical treatment of jawbones. Maxillofac Plast Reconstr Surg 2022; 44:25. [PMID: 35843976 PMCID: PMC9288940 DOI: 10.1186/s40902-022-00355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gorlin syndrome, also known as Gorlin-Goltz syndrome (GGS) or basal cell nevus syndrome (BCNS) or nevoid basal cell carcinoma syndrome (NBCCS), is an autosomal dominant familial cancer syndrome. It is characterized by the presence of numerous basal cell carcinomas (BCCs), along with skeletal, ophthalmic, and neurological abnormalities. It is essential to anticipate the diagnosis by identifying the pathology through the available diagnostic tests, clinical signs, and radiological manifestations, setting up an adequate treatment plan. MAIN BODY In the first part, we searched recent databases including MEDLINE (PubMed), Embase, and the Cochrane Library by analyzing the etiopathogenesis of the disease, identifying the genetic alterations underlying them. Subsequently, we defined what are, to date, the major and minor clinical diagnostic criteria, the possible genetic tests to be performed, and the pathologies with which to perform differential diagnosis. The radiological investigations were reviewed based on the most recent literature, and in the second part, we performed a review regarding the existing jawbone protocols, treating simple enucleation, enucleation with bone curettage in association or not with topical use of cytotoxic chemicals, and "en bloc" resection followed by possible bone reconstruction, marsupialization, decompression, and cryotherapy. CONCLUSION To promote the most efficient and accurate management of GGS, this article summarizes the clinical features of the disease, pathogenesis, diagnostic criteria, differential diagnosis, and surgical protocols. To arrive at an early diagnosis of the syndrome, it would be advisable to perform radiographic and clinical examinations from the young age of the patient. The management of the patient with GGS requires a multidisciplinary approach ensuring an adequate quality of life and effective treatment of symptoms.
Collapse
Affiliation(s)
- Francesco Spadari
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Federica Pulicari
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Matteo Pellegrini
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences Section of Dentistry, University of Pavia, Pavia, Italy
| | - Andrea Scribante
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences Section of Dentistry, University of Pavia, Pavia, Italy
| | - Umberto Garagiola
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Ohtsuka D, Kida N, Lee SW, Kawahira N, Morishita Y. Cell disorientation by loss of SHH-dependent mechanosensation causes cyclopia. SCIENCE ADVANCES 2022; 8:eabn2330. [PMID: 35857502 PMCID: PMC9278851 DOI: 10.1126/sciadv.abn2330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The physical causes of organ malformation remain largely unclear in most cases due to a lack of information on tissue/cell dynamics. Here, we address this issue by considering onset of cyclopia in sonic hedgehog (SHH)-inhibited chick embryos. We show that ventral forebrain-specific self-organization ability driven by SHH-dependent polarized patterns in cell shape, phosphorylated myosin localization, and collective cell motion promotes optic vesicle elongation during normal development. Stress loading tests revealed that these polarized dynamics result from mechanical responses. In particular, stress and active tissue deformation satisfy orthogonality, defining an SHH-regulated morphogenetic law. Without SHH signaling, cells cannot detect the direction of stress and move randomly, leading to insufficient optic vesicle elongation and consequently a cyclopia phenotype. Since polarized tissue/cell dynamics are common in organogenesis, cell disorientation caused by loss of mechanosensation could be a pathogenic mechanism for other malformations.
Collapse
Affiliation(s)
- Daisuke Ohtsuka
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
- Corresponding author. (Y.M.); (D.O.)
| | - Naoki Kida
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Sang-Woo Lee
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Naofumi Kawahira
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
- Department of Molecular Cell Developmental Biology, School of Life Science, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
- Corresponding author. (Y.M.); (D.O.)
| |
Collapse
|
14
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
15
|
Henker LC, Lorenzett MP, Piva MM, Wronski JG, de Andrade DGA, Borges AS, Driemeier D, Oliveira-Filho JP, Pavarini SP. Alobar holoprosencephaly in an aborted American Quarter Horse fetus. J Equine Vet Sci 2022; 112:103898. [PMID: 35150851 DOI: 10.1016/j.jevs.2022.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Abstract
Holoprosencephaly is a central nervous system malformation, characterized by incomplete or total lack of division of prosencephalon hemispheres, which is commonly accompanied by craniofacial malformations. A 9-month-gestation aborted American Quarter Horse fetus was submitted for postmortem examination. The fetus lacked haircoat and had severe facial malformations including marked shortening/absence of the maxillary, incisive and nasal bones, bilateral anophthalmia, and pre-maxillary agenesis. The prosencephalon was small and nearly spherical, represented by a single lobe, with no visible separation between cerebral hemispheres. The olfactory bulbs, piriform lobes, and the optic chiasm were absent. At cross-sectioning of the prosencephalon, the inner structures of the brain were completely absent, and replaced by a monoventricle lined by the remaining compressed cortex, and the thalami were fused. Since mutations in the sonic hedgehog (SHH) gene have been associated with human holoprosencephaly, the three coding SHH exons were sequenced using liver DNA of the aborted foal. The obtained SHH sequence was similar to the Equus caballus SHH mRNA sequence deposited in GenbankTM (XM_023640069.1); therefore, no polymorphism in the coding region of this gene justifying the phenotype was observed. This is the first report of alobar holoprosencephaly in horses.
Collapse
Affiliation(s)
- Luan Cleber Henker
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil.
| | - Marina Paula Lorenzett
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| | - Manoela Marchezan Piva
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| | - Júlia Gabriela Wronski
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| | - Danilo Giorgi Abranches de Andrade
- São Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Department of Veterinary Clinical Science,18618-681 Botucatu, Brazil
| | - Alexandre Secorun Borges
- São Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Department of Veterinary Clinical Science,18618-681 Botucatu, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| | - José Paes Oliveira-Filho
- São Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Department of Veterinary Clinical Science,18618-681 Botucatu, Brazil
| | - Saulo Petinatti Pavarini
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| |
Collapse
|
16
|
Barratt KS, Drover KA, Thomas ZM, Arkell RM. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech Dis 2022; 14:e1552. [PMID: 35137563 DOI: 10.1002/wsbm.1552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Kristen S Barratt
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyle A Drover
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zoe M Thomas
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Fernandes Y, Lovely CB. Zebrafish models of fetal alcohol spectrum disorders. Genesis 2021; 59:e23460. [PMID: 34739740 DOI: 10.1002/dvg.23460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) describes a wide range of structural deficits and cognitive impairments. FASD impacts up to 5% of children born in the United States each year, making ethanol one of the most common teratogens. Due to limitations and ethical concerns, studies in humans are limited in their ability to study FASD. Animal models have proven critical in identifying and characterizing the mechanisms underlying FASD. In this review, we will focus on the attributes of zebrafish that make it a strong model in which to study ethanol-induced developmental defects. Zebrafish have several attributes that make it an ideal model in which to study FASD. Zebrafish produced large numbers of externally fertilized, translucent embryos. With a high degree of genetic amenability, zebrafish are at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Work from multiple labs has shown that embryonic ethanol exposures result in defects in craniofacial, cardiac, ocular, and neural development. In addition to structural defects, ethanol-induced cognitive and behavioral impairments have been studied in zebrafish. Building upon these studies, work has identified ethanol-sensitive loci that underlie the developmental defects. However, analyses show there is still much to be learned of these gene-ethanol interactions. The zebrafish is ideally suited to expand our understanding of gene-ethanol interactions and their impact on FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| | - C Ben Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
18
|
Marczenke M, Sunaga-Franze DY, Popp O, Althaus IW, Sauer S, Mertins P, Christ A, Allen BL, Willnow TE. GAS1 is required for NOTCH-dependent facilitation of SHH signaling in the ventral forebrain neuroepithelium. Development 2021; 148:272617. [PMID: 34698766 PMCID: PMC8627604 DOI: 10.1242/dev.200080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.
Collapse
Affiliation(s)
- Maike Marczenke
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany
| | | | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Irene W Althaus
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sascha Sauer
- Genomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Annabel Christ
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas E Willnow
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
19
|
Light-Induced Differentiation of Forebrain Organoids by NVOC-SAG. Methods Mol Biol 2021. [PMID: 34562253 DOI: 10.1007/978-1-0716-1701-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Hedgehog signaling pathway shapes our body by regulating proliferation and differentiation of cells. The spatial and temporal distribution pattern of its ligands finely controls the activity of the Hedgehog pathway during development. To mimic the active regulation of Hedgehog pathway, we have developed a light-inducible Hedgehog signaling activator 6-nitroveratryloxy-carbonyl Smoothened agonist (NVOC-SAG). Here we describe a method to selectively induce ventral differentiation of human iPS cell-derived forebrain organoids in a light-dependent manner. This article describes preparation of NVOC-SAG, culture of iPS cell-derived forebrain organoids, light irradiation, and downstream analyses.
Collapse
|
20
|
Sitzia E, Santarsiero S, Tucci FM, De Vincentiis G, Galeotti A, Festa P. Balloon dilation and rapid maxillary expansion: a novel combination treatment for congenital nasal pyriform aperture stenosis in an infant. Ital J Pediatr 2021; 47:189. [PMID: 34530869 PMCID: PMC8447711 DOI: 10.1186/s13052-021-01124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Congenital nasal pyriform aperture stenosis (CNPAS) is a rare condition that may occur alone or as part of a multi-formative syndrome. Management remains difficult. There is no specific treatment protocol. Traditional surgery would be anachronistic; a non-invasive or minimally invasive therapeutic option is required. However, the rarity of the disease and the infantile context render randomised clinical trials difficult. CASE PRESENTATION We present the case of a one-month-old Caucasian boy with CNPAS. He presented to the Emergency Department of the Bambino Gesù Pediatric Hospital with nasal obstruction, noisy breathing, feeding difficulties, and suspected sleep apnoea. During hospitalisation, he underwent overnight pulse oximetry, airway endoscopy, and maxillofacial computed tomography (CT); the final diagnosis was CNPAS with moderate obstructive sleep apnoea syndrome. We successfully treated the patient using an innovative strategy that involved collaboration between ear-nose-and-throat surgeons and orthodontists. CONCLUSIONS A combination of minimally invasive balloon surgery and placement of a palatal device may successfully treat CNPAS; it may also treat other types of nasal bone stenosis. Future studies may allow the development of practice consensus treatment strategies.
Collapse
Affiliation(s)
- Emanuela Sitzia
- Unit of Otolaryngology, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Sara Santarsiero
- Unit of Otolaryngology, Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Filippo Maria Tucci
- Unit of Otolaryngology, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | | | - Angela Galeotti
- Unit of Dentistry, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Paola Festa
- Unit of Dentistry, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| |
Collapse
|
21
|
Loo CKC, Pearen MA, Ramm GA. The Role of Sonic Hedgehog in Human Holoprosencephaly and Short-Rib Polydactyly Syndromes. Int J Mol Sci 2021; 22:ijms22189854. [PMID: 34576017 PMCID: PMC8468456 DOI: 10.3390/ijms22189854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
The Hedgehog (HH) signalling pathway is one of the major pathways controlling cell differentiation and proliferation during human development. This pathway is complex, with HH function influenced by inhibitors, promotors, interactions with other signalling pathways, and non-genetic and cellular factors. Many aspects of this pathway are not yet clarified. The main features of Sonic Hedgehog (SHH) signalling are discussed in relation to its function in human development. The possible role of SHH will be considered using examples of holoprosencephaly and short-rib polydactyly (SRP) syndromes. In these syndromes, there is wide variability in phenotype even with the same genetic mutation, so that other factors must influence the outcome. SHH mutations were the first identified genetic causes of holoprosencephaly, but many other genes and environmental factors can cause malformations in the holoprosencephaly spectrum. Many patients with SRP have genetic defects affecting primary cilia, structures found on most mammalian cells which are thought to be necessary for canonical HH signal transduction. Although SHH signalling is affected in both these genetic conditions, there is little overlap in phenotype. Possible explanations will be canvassed, using data from published human and animal studies. Implications for the understanding of SHH signalling in humans will be discussed.
Collapse
Affiliation(s)
- Christine K. C. Loo
- South Eastern Area Laboratory Services, Department of Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-93829015
| | - Michael A. Pearen
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
| | - Grant A. Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
22
|
Mecklenburg N, Kowalczyk I, Witte F, Görne J, Laier A, Mamo TM, Gonschior H, Lehmann M, Richter M, Sporbert A, Purfürst B, Hübner N, Hammes A. Identification of disease-relevant modulators of the SHH pathway in the developing brain. Development 2021; 148:272000. [PMID: 34463328 DOI: 10.1242/dev.199307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.
Collapse
Affiliation(s)
- Nora Mecklenburg
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Izabela Kowalczyk
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Franziska Witte
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Jessica Görne
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Alena Laier
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tamrat M Mamo
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Hannes Gonschior
- Cellular Imaging, Light Microscopy, Leibniz-Research Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Martin Lehmann
- Cellular Imaging, Light Microscopy, Leibniz-Research Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Matthias Richter
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Bettina Purfürst
- Electron microscopy technology platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Annette Hammes
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| |
Collapse
|
23
|
Obara-Moszyńska M, Budny B, Kałużna M, Zawadzka K, Jamsheer A, Rohde A, Ruchała M, Ziemnicka K, Niedziela M. CDON gene contributes to pituitary stalk interruption syndrome associated with unilateral facial and abducens nerve palsy. J Appl Genet 2021; 62:621-629. [PMID: 34235642 PMCID: PMC8571149 DOI: 10.1007/s13353-021-00649-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/06/2022]
Abstract
The relationship between congenital defects of the brain and facial anomalies was proven. The Hedgehog signaling pathway plays a fundamental role in normal craniofacial development in humans. Mutations in the sonic hedgehog (SHH) signaling gene CDON have been recently reported in patients with holoprosencephaly and with pituitary stalk interruption syndrome (PSIS). This study’s aim was an elucidation of an 18-year-old patient presenting PSIS, multiple pituitary hormone deficiency, and congenital unilateral facial and abducens nerve palsy. Additionally, bilateral sensorineural hearing loss, dominating at the right site, was diagnosed. From the second year of life, growth deceleration was observed, and from the age of eight, anterior pituitary hormone deficiencies were gradually confirmed and substituted. At the MRI, characteristic triad for PSIS (anterior pituitary hypoplasia, interrupted pituitary stalk and ectopic posterior lobe) was diagnosed. We performed a comprehensive genomic screening, including microarrays for structural rearrangements and whole-exome sequencing for a monogenic defect. A novel heterozygous missense variant in the CDON gene (c.1814G > T; p.Gly605Val) was identified. The variant was inherited from the mother, who, besides short stature, did not show any disease symptoms. The variant was absent in control databases and 100 healthy subjects originating from the same population. We report a novel variant in the CDON gene associated with PSIS and congenital cranial nerve palsy. The variant revealed autosomal dominant inheritance with incomplete penetrance in concordance with previous studies reporting CDON defects.
Collapse
Affiliation(s)
- Monika Obara-Moszyńska
- Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, 27/33 Szpitalna Str, 60-572, Poznan, Poland.
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Str., 60-355, Poznan, Poland
| | - Małgorzata Kałużna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Str., 60-355, Poznan, Poland
| | - Katarzyna Zawadzka
- MNM Diagnostics Sp. z o.o., 64 Macieja Rataja Str., 61-695, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, 8 Rokietnicka Str, 60-806, Poznan, Poland
| | - Anna Rohde
- Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, 27/33 Szpitalna Str, 60-572, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Str., 60-355, Poznan, Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Str., 60-355, Poznan, Poland
| | - Marek Niedziela
- Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, 27/33 Szpitalna Str, 60-572, Poznan, Poland
| |
Collapse
|
24
|
Turgut AÇ, Hall WA, Turgut M. Three mythic giants for common fetal malformation called "cyclopia": Polyphemus, Tepegöz, and Grendel. Childs Nerv Syst 2021; 37:725-726. [PMID: 31115646 DOI: 10.1007/s00381-019-04207-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Ali Ç Turgut
- Hacettepe University School of Medicine, Ankara, Turkey
| | - Walter A Hall
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydın, Turkey.,Department of Histology and Embryology, Adnan Menderes University Health Sciences Institute, Aydın, Turkey
| |
Collapse
|
25
|
Braun M, Lehmbecker A, Eikelberg D, Hellige M, Beineke A, Metzger J, Distl O. De novo ZIC2 frameshift variant associated with frontonasal dysplasia in a Limousin calf. BMC Genomics 2021; 22:1. [PMID: 33388042 PMCID: PMC7777292 DOI: 10.1186/s12864-020-07350-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background Bovine frontonasal dysplasias like arhinencephaly, synophthalmia, cyclopia and anophthalmia are sporadic congenital facial malformations. In this study, computed tomography, necropsy, histopathological examinations and whole genome sequencing on an Illumina NextSeq500 were performed to characterize a stillborn Limousin calf with frontonasal dysplasia. In order to identify private genetic and structural variants, we screened whole genome sequencing data of the affected calf and unaffected relatives including parents, a maternal and paternal halfsibling. Results The stillborn calf exhibited severe craniofacial malformations. Nose and maxilla were absent, mandibles were upwardly curved and a median cleft palate was evident. Eyes, optic nerve and orbital cavities were not developed and the rudimentary orbita showed hypotelorism. A defect centrally in the front skull covered with a membrane extended into the intracranial cavity. Aprosencephaly affected telencephalic and diencephalic structures and cerebellum. In addition, a shortened tail was seen. Filtering whole genome sequencing data revealed a private frameshift variant within the candidate gene ZIC2 in the affected calf. This variant was heterozygous mutant in this case and homozygous wild type in parents, half-siblings and controls. Conclusions We found a novel ZIC2 frameshift mutation in an aprosencephalic Limousin calf. The origin of this variant is most likely due to a de novo mutation in the germline of one parent or during very early embryonic development. To the authors’ best knowledge, this is the first identified mutation in cattle associated with bovine frontonasal dysplasia. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07350-y.
Collapse
Affiliation(s)
- Marina Braun
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Annika Lehmbecker
- Department for Pathology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Deborah Eikelberg
- Department for Pathology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Maren Hellige
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Andreas Beineke
- Department for Pathology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.
| |
Collapse
|
26
|
Abstract
Pituitary stalk interruption syndrome (PSIS) is a distinct developmental defect of the pituitary gland identified by magnetic resonance imaging and characterized by a thin, interrupted, attenuated or absent pituitary stalk, hypoplasia or aplasia of the adenohypophysis, and an ectopic posterior pituitary. The precise etiology of PSIS still remains elusive or incompletely confirmed in most cases. Adverse perinatal events, including breech delivery and hypoxia, were initially proposed as the underlying mechanism affecting the hypothalamic-pituitary axis. Nevertheless, recent findings have uncovered a wide variety of PSIS-associated molecular defects in genes involved in pituitary development, holoprosencephaly (HPE), neural development, and other important cellular processes such as cilia function. The application of whole exome sequencing (WES) in relatively large cohorts has identified an expanded pool of potential candidate genes, mostly related to the Wnt, Notch, and sonic hedgehog signaling pathways that regulate pituitary growth and development during embryogenesis. Importantly, WES has revealed coexisting pathogenic variants in a significant number of patients; therefore, pointing to a multigenic origin and inheritance pattern of PSIS. The disorder is characterized by inter- and intrafamilial variability and incomplete or variable penetrance. Overall, PSIS is currently viewed as a mild form of an expanded HPE spectrum. The wide and complex clinical manifestations include evolving pituitary hormone deficiencies (with variable timing of onset and progression) and extrapituitary malformations. Severe and life-threatening symptomatology is observed in a subset of patients with complete pituitary hormone deficiency during the neonatal period. Nevertheless, most patients are referred later in childhood for growth retardation. Prompt and appropriate hormone substitution therapy constitutes the cornerstone of treatment. Further studies are needed to uncover the etiopathogenesis of PSIS.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Department of Pediatrics, School of Medicine, Democritus University of Thrace, Alexandroupolis, Thrace, Greece.
| |
Collapse
|
27
|
Andreu-Cervera A, Catala M, Schneider-Maunoury S. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol Dis 2020; 150:105236. [PMID: 33383187 DOI: 10.1016/j.nbd.2020.105236] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.
Collapse
Affiliation(s)
- Abraham Andreu-Cervera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France; Instituto de Neurociencias, Universidad Miguel Hernández - CSIC, Campus de San Juan; Avda. Ramón y Cajal s/n, 03550 Alicante, Spain
| | - Martin Catala
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
28
|
Echevarría-Andino ML, Allen BL. The hedgehog co-receptor BOC differentially regulates SHH signaling during craniofacial development. Development 2020; 147:dev.189076. [PMID: 33060130 DOI: 10.1242/dev.189076] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
The Hedgehog (HH) pathway controls multiple aspects of craniofacial development. HH ligands signal through the canonical receptor PTCH1, and three co-receptors: GAS1, CDON and BOC. Together, these co-receptors are required during embryogenesis to mediate proper HH signaling. Here, we investigated the individual and combined contributions of GAS1, CDON and BOC to HH-dependent mammalian craniofacial development. Notably, individual deletion of either Gas1 or Cdon results in variable holoprosencephaly phenotypes in mice, even on a congenic background. In contrast, we find that Boc deletion results in facial widening that correlates with increased HH target gene expression. In addition, Boc deletion in a Gas1 null background partially ameliorates the craniofacial defects observed in Gas1 single mutants; a phenotype that persists over developmental time, resulting in significant improvements to a subset of craniofacial structures. This contrasts with HH-dependent phenotypes in other tissues that significantly worsen following combined deletion of Gas1 and Boc Together, these data indicate that BOC acts as a multi-functional regulator of HH signaling during craniofacial development, alternately promoting or restraining HH pathway activity in a tissue-specific fashion.
Collapse
Affiliation(s)
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Narumi R, Liu S, Ikeda N, Morita O, Tasaki J. Chemical-Induced Cleft Palate Is Caused and Rescued by Pharmacological Modulation of the Canonical Wnt Signaling Pathway in a Zebrafish Model. Front Cell Dev Biol 2020; 8:592967. [PMID: 33381503 PMCID: PMC7767894 DOI: 10.3389/fcell.2020.592967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Cleft palate is one of the most frequent birth defects worldwide. It causes severe problems regarding eating and speaking and requires long-term treatment. Effective prenatal treatment would contribute to reducing the risk of cleft palate. The canonical Wnt signaling pathway is critically involved in palatogenesis, and genetic or chemical disturbance of this signaling pathway leads to cleft palate. Presently, preventative treatment for cleft palate during prenatal development has limited efficacy, but we expect that zebrafish will provide a useful high-throughput chemical screening model for effective prevention. To achieve this, the zebrafish model should recapitulate cleft palate development and its rescue by chemical modulation of the Wnt pathway. Here, we provide proof of concept for a zebrafish chemical screening model. Zebrafish embryos were treated with 12 chemical reagents known to induce cleft palate in mammals, and all 12 chemicals induced cleft palate characterized by decreased proliferation and increased apoptosis of palatal cells. The cleft phenotype was enhanced by combinatorial treatment with Wnt inhibitor and teratogens. Furthermore, the expression of tcf7 and lef1 as a readout of the pathway was decreased. Conversely, cleft palate was prevented by Wnt agonist and the cellular defects were also prevented. In conclusion, we provide evidence that chemical-induced cleft palate is caused by inhibition of the canonical Wnt pathway. Our results indicate that this zebrafish model is promising for chemical screening for prevention of cleft palate as well as modulation of the Wnt pathway as a therapeutic target.
Collapse
Affiliation(s)
- Rika Narumi
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Shujie Liu
- R&D, Safety Science Research, Kao Corporation, Ichikai-machi, Japan
| | - Naohiro Ikeda
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Osamu Morita
- R&D, Safety Science Research, Kao Corporation, Ichikai-machi, Japan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| |
Collapse
|
30
|
Diaz C, Puelles L. Developmental Genes and Malformations in the Hypothalamus. Front Neuroanat 2020; 14:607111. [PMID: 33324176 PMCID: PMC7726113 DOI: 10.3389/fnana.2020.607111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus is a heterogeneous rostral forebrain region that regulates physiological processes essential for survival, energy metabolism, and reproduction, mainly mediated by the pituitary gland. In the updated prosomeric model, the hypothalamus represents the rostralmost forebrain, composed of two segmental regions (terminal and peduncular hypothalamus), which extend respectively into the non-evaginated preoptic telencephalon and the evaginated pallio-subpallial telencephalon. Complex genetic cascades of transcription factors and signaling molecules rule their development. Alterations of some of these molecular mechanisms acting during forebrain development are associated with more or less severe hypothalamic and pituitary dysfunctions, which may be associated with brain malformations such as holoprosencephaly or septo-optic dysplasia. Studies on transgenic mice with mutated genes encoding critical transcription factors implicated in hypothalamic-pituitary development are contributing to understanding the high clinical complexity of these pathologies. In this review article, we will analyze first the complex molecular genoarchitecture of the hypothalamus resulting from the activity of previous morphogenetic signaling centers and secondly some malformations related to alterations in genes implicated in the development of the hypothalamus.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
31
|
Reis LM, Basel D, McCarrier J, Weinberg DV, Semina EV. Compound heterozygous splicing CDON variants result in isolated ocular coloboma. Clin Genet 2020; 98:486-492. [PMID: 32729136 PMCID: PMC8341436 DOI: 10.1111/cge.13824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Ocular coloboma is caused by failure of optic fissure closure during development and recognized as part of the microphthalmia, anophthalmia, and coloboma (MAC) spectrum. While many genes are known to cause colobomatous microphthalmia, relatively few have been reported in coloboma with normal eye size. Genetic analysis including trio exome sequencing and Sanger sequencing was undertaken in a family with two siblings affected with bilateral coloboma of the iris, retina, and choroid. Pathogenic variants in MAC genes were excluded. Trio analysis identified compound heterozygous donor splice site variants in CDON, a cell-surface receptor known to function in the Sonic Hedgehog pathway, c.928 + 1G > A and c.2650 + 1G > T, in both affected individuals. Heterozygous missense and truncating CDON variants are associated with dominant holoprosencephaly (HPE) with incomplete penetrance and Cdon-/- mice display variable HPE and coloboma. A homozygous nonsense allele of uncertain significance was recently identified in a consanguineous patient with coloboma and a second molecular diagnosis. We report the first compound heterozygous variants in CDON as a cause of isolated coloboma. CDON is the first HPE gene identified to cause recessive coloboma. Given the phenotypic overlap, further examination of HPE genes in coloboma is indicated.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226
| | - Donald Basel
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226
| | - Julie McCarrier
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226
| | - David V Weinberg
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Elena V Semina
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
32
|
Addissie YA, Troia A, Wong ZC, Everson JL, Kozel BA, Muenke M, Lipinski RJ, Malecki KMC, Kruszka P. Identifying environmental risk factors and gene-environment interactions in holoprosencephaly. Birth Defects Res 2020; 113:63-76. [PMID: 33111505 DOI: 10.1002/bdr2.1834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Holoprosencephaly is the most common malformation of the forebrain (1 in 250 embryos) with severe consequences for fetal and child development. This study evaluates nongenetic factors associated with holoprosencephaly risk, severity, and gene-environment interactions. METHODS For this retrospective case control study, we developed an online questionnaire focusing on exposures to common and rare toxins/toxicants before and during pregnancy, nutritional factors, maternal health history, and demographic factors. Patients with holoprosencephaly were primarily ascertained from our ongoing genetic and clinical studies of holoprosencephaly. Controls included children with Williams-Beuren syndrome (WBS) ascertained through online advertisements in a WBD support group and fliers. RESULTS Difference in odds of exposures between cases and controls as well as within cases with varying holoprosencephaly severity were studied. Cases included children born with holoprosencephaly (n = 92) and the control group consisted of children with WBS (n = 56). Pregnancy associated risk associated with holoprosencephaly included maternal pregestational diabetes (9.2% of cases and 0 controls, p = .02), higher alcohol consumption (adjusted odds ratio [aOR], 1.73; 95% CI, 0.88-15.71), and exposure to consumer products such as aerosols or sprays including hair sprays (aOR, 2.46; 95% CI, 0.89-7.19). Significant gene-environment interactions were identified including for consumption of cheese (p < .05) and espresso drinks (p = .03). CONCLUSION The study identifies modifiable risk factors and gene-environment interactions that should be considered in future prevention of holoprosencephaly. Studies with larger HPE cohorts will be needed to confirm these findings.
Collapse
Affiliation(s)
- Yonit A Addissie
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Angela Troia
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Zoe C Wong
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Beth A Kozel
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristen M C Malecki
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Everson JL, Batchu R, Eberhart JK. Multifactorial Genetic and Environmental Hedgehog Pathway Disruption Sensitizes Embryos to Alcohol-Induced Craniofacial Defects. Alcohol Clin Exp Res 2020; 44:1988-1996. [PMID: 32767777 PMCID: PMC7692922 DOI: 10.1111/acer.14427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is perhaps the most common environmental cause of human birth defects. These exposures cause a range of structural and neurological defects, including facial dysmorphologies, collectively known as fetal alcohol spectrum disorders (FASD). While PAE causes FASD, phenotypic outcomes vary widely. It is thought that multifactorial genetic and environmental interactions modify the effects of PAE. However, little is known of the nature of these modifiers. Disruption of the Hedgehog (Hh) signaling pathway has been suggested as a modifier of ethanol teratogenicity. In addition to regulating the morphogenesis of craniofacial tissues commonly disrupted in FASD, a core member of the Hh pathway, Smoothened, is susceptible to modulation by structurally diverse chemicals. These include environmentally prevalent teratogens like piperonyl butoxide (PBO), a synergist found in thousands of pesticide formulations. METHODS Here, we characterize multifactorial genetic and environmental interactions using a zebrafish model of craniofacial development. RESULTS We show that loss of a single allele of shha sensitized embryos to both alcohol- and PBO-induced facial defects. Co-exposure of PBO and alcohol synergized to cause more frequent and severe defects. The effects of this co-exposure were even more profound in the genetically susceptible shha heterozygotes. CONCLUSIONS Together, these findings shed light on the multifactorial basis of alcohol-induced craniofacial defects. In addition to further implicating genetic disruption of the Hh pathway in alcohol teratogenicity, our findings suggest that co-exposure to environmental chemicals that perturb Hh signaling may be important variables in FASD and related craniofacial disorders.
Collapse
Affiliation(s)
- Joshua L. Everson
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| | - Rithik Batchu
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Johann K. Eberhart
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
34
|
Nagai-Tanima M, Hong S, Hu P, Carrington B, Sood R, Roessler E, Muenke M. Rare hypomorphic human variation in the heptahelical domain of SMO contributes to holoprosencephaly phenotypes. Hum Mutat 2020; 41:2105-2118. [PMID: 32906187 DOI: 10.1002/humu.24103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Holoprosencephaly (HPE) is the most common congenital anomaly affecting the forebrain and face in humans and occurs as frequently as 1:250 conceptions or 1:10,000 livebirths. Sonic Hedgehog signaling molecule is one of the best characterized HPE genes that plays crucial roles in numerous developmental processes including midline neural patterning and craniofacial development. The Frizzled class G-protein coupled receptor Smoothened (SMO), whose signaling activity is tightly regulated, is the sole obligate transducer of Hedgehog-related signals. However, except for previous reports of somatic oncogenic driver mutations in human cancers (or mosaic tumors in rare syndromes), any potential disease-related role of SMO genetic variation in humans is largely unknown. To our knowledge, ours is the first report of a human hypomorphic variant revealed by functional testing of seven distinct nonsynonymous SMO variants derived from HPE molecular and clinical data. Here we describe several zebrafish bioassays developed and guided by a systems biology analysis. This analysis strategy, and detection of hypomorphic variation in human SMO, demonstrates the necessity of integrating the genomic variant findings in HPE probands with other components of the Hedgehog gene regulatory network in overall medical interpretations.
Collapse
Affiliation(s)
- Momoko Nagai-Tanima
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Blake Carrington
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raman Sood
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Gounongbé C, Marangoni M, Gouder de Beauregard V, Delaunoy M, Jissendi P, Cassart M, Désir J. Middle interhemispheric variant of holoprosencephaly: First prenatal report of a ZIC2 missense mutation. Clin Case Rep 2020; 8:1287-1292. [PMID: 32695376 PMCID: PMC7364085 DOI: 10.1002/ccr3.2896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
We present a case of a middle interhemispheric variant of antenatal discovery associated with a de novo missense variant (NM_007129.5: c.1109G>A p.(Cys370Tyr)) in the ZIC2 gene. Our case represents the first prenatal description of a ZIC2 missense mutation found in association with syntelencephaly.
Collapse
Affiliation(s)
| | - Martina Marangoni
- Center of Human GeneticsHôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | | | - Mélanie Delaunoy
- Center of Human GeneticsHôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Patrice Jissendi
- Department of RadiologyHôpitaux Iris Sud and CHU Saint‐PierreBrusselsBelgium
| | - Marie Cassart
- Department of Fetal MedicineCHU Saint‐PierreBrusselsBelgium
- Department of RadiologyHôpitaux Iris Sud and CHU Saint‐PierreBrusselsBelgium
| | - Julie Désir
- Center of Human GeneticsHôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
- Department of RadiologyHôpitaux Iris Sud and CHU Saint‐PierreBrusselsBelgium
| |
Collapse
|
36
|
Addissie YA, Kruszka P, Troia A, Wong ZC, Everson JL, Kozel BA, Lipinski RJ, Malecki KMC, Muenke M. Prenatal exposure to pesticides and risk for holoprosencephaly: a case-control study. Environ Health 2020; 19:65. [PMID: 32513280 PMCID: PMC7278164 DOI: 10.1186/s12940-020-00611-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/19/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Pesticide exposure during susceptible windows and at certain doses are linked to numerous birth defects. Early experimental evidence suggests an association between active ingredients in pesticides and holoprosencephaly (HPE), the most common malformation of the forebrain in humans (1 in 250 embryos). No human studies to date have examined the association. This study investigated pesticides during multiple windows of exposure and fetal risk for HPE. It is hypothesized that pre-conception and early pregnancy, the time of brain development in utero, are the most critical windows of exposure. METHODS A questionnaire was developed for this retrospective case-control study to estimate household, occupational, and environmental pesticide exposures. Four windows of exposure were considered: preconception, early, mid and late pregnancy. Cases were identified through the National Human Genome Research Institute's ongoing clinical studies of HPE. Similarly, controls were identified as children with Williams-Beuren syndrome, a genetic syndrome also characterized by congenital malformations, but etiologically unrelated to HPE. We assessed for differences in odds of exposures to pesticides between cases and controls. RESULTS Findings from 91 cases and 56 controls showed an increased risk for HPE with reports of maternal exposure during pregnancy to select pesticides including personal insect repellants (adjusted odds ratio (aOR) 2.89, confidence interval (CI): 0.96-9.50) and insecticides and acaricides for pets (aOR 3.84, CI:1.04-16.32). Exposure to household pest control products during the preconception period or during pregnancy was associated with increased risk for HPE (aOR 2.60, OR: 0.84-8.68). No associations were found for occupational exposures to pesticides during pregnancy (aOR: 1.15, CI: 0.11-11.42), although exposure rates were low. Higher likelihood for HPE was also observed with residency next to an agricultural field (aOR 3.24, CI: 0.94-12.31). CONCLUSIONS Observational findings are consistent with experimental evidence and suggest that exposure to personal, household, and agricultural pesticides during pregnancy may increase risk for HPE. Further investigations of gene by environment interactions are warranted.
Collapse
Affiliation(s)
- Yonit A Addissie
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, MD, USA.
| | - Angela Troia
- National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Zoë C Wong
- National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Beth A Kozel
- National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristen M C Malecki
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Kisipan ML, Nyaga SN, Thuo JN, Nyakego PO, Orenge CO, Ojoo RO. Lobar holoprosencephaly with craniofacial defects in a Friesian calf: A case report. Vet Med Sci 2020; 6:454-461. [PMID: 31972069 PMCID: PMC7397892 DOI: 10.1002/vms3.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/04/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Holoprosencephaly is a forebrain deformity that results from varying degrees of separation failure of cerebral hemispheres. The condition is classified based on the degree of non-separation of the hemispheres which, in turn, determines its severity. Holoprosencephaly is usually accompanied by craniofacial defects whose severity tends to reflect the extent of brain deformities. In humans, holoprosencephaly is one of the commonest congenital brain anomalies but in animals, reported cases are scarce. The condition has multifactorial aetiology that involves interactions between several genetic and environmental factors. CASE PRESENTATION A 4-day-old female Friesian calf with a deformed face was reported to the Faculty of veterinary medicine and surgery, Egerton University. The calf and the dam were sired by the same bull. On clinical and radiographic examination, the calf had a short snout that curved dorsally with bilateral cleft lip, right-sided cleft jaw and a largely absent primary palate. Anatomopathological examination revealed brain deformities which included ventral fusion of frontal lobes of cerebral hemispheres, large merged lateral ventricles without septum pellucidum and fornix, hypoplastic corpus callosum, high degree of non-separation between diencephalic structures, poorly developed hippocampal formation and hypoplastic olfactory lobe, optic chiasma, and nerve. CONCLUSION The case was confirmed as lobar holoprosencephaly based on characteristic anatomopathological findings. The aetiology of the defects in the present case could not be determined though they are thought to be either a result of recessive inheritance or exposure to teratogenic steroid alkaloids through materials fed to the dam during early pregnancy.
Collapse
Affiliation(s)
- Mosiany L Kisipan
- Department of Veterinary Anatomy and Physiology, Egerton University, Egerton, Kenya
| | - Samuel N Nyaga
- Department of Veterinary Anatomy and Physiology, Egerton University, Egerton, Kenya
| | - Jesse N Thuo
- Department of Veterinary Anatomy and Physiology, Egerton University, Egerton, Kenya
| | - Phillip O Nyakego
- Department of Veterinary Anatomy and Physiology, Egerton University, Egerton, Kenya
| | - Caleb O Orenge
- Department of Veterinary Anatomy and Physiology, Egerton University, Egerton, Kenya
| | - Rodi O Ojoo
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
38
|
Zohn IE. Hsp90 and complex birth defects: A plausible mechanism for the interaction of genes and environment. Neurosci Lett 2020; 716:134680. [PMID: 31821846 DOI: 10.1016/j.neulet.2019.134680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
How genes and environment interact to cause birth defects is not well understood, but key to developing new strategies to modify risk. The threshold model has been proposed to represent this complex interaction. This model stipulates that while environmental exposure or genetic mutation alone may not result in a defect, factors in combination increase phenotypic variability resulting in more individuals crossing the disease threshold where birth defects manifest. Many environmental factors that contribute to birth defects induce widespread cellular stress and misfolding of proteins. Yet, the impact of the stress response on the threshold model is not typically considered in discephering the etiology of birth defects. This mini-review will explore a potential mechanism for gene-environment interactions co-opted from studies of evolution. This model stipulates that heat shock proteins that mediate the stress response induced by environmental factors can influence the number of individuals that cross disease thresholds resulting in increased incidence of birth defects. Studies in the field of evolutionary biology have demonstrated that heat shock proteins and Hsp90 in particular provide a link between environmental stress, genotype and phenotype. Hsp90 is a highly expressed molecular chaperone that assists a wide variety of protein clients with folding and conformational changes needed for proper function. Hsp90 also chaperones client proteins with potentially deleterious amino acid changes to suppress variation caused by genetic mutations. However, upon exposure to stress, Hsp90 abandons its normal physiological clients and is diverted to assist with the misfolded protein response. This can impact the activity of signaling pathways that involve Hsp90 clients as well as unmask suppressed protein variation, essentially creating complex traits in a single step. In this capacity Hsp90 acts as an evolutionary capacitor allowing stored variation to accumulate and then become expressed in times of stress. This mechanism provides a substrate which natural selection can act upon at the population level allowing survival of the species with selective pressure. However, at the level of the individual, this mechanism can result in simultaneous expression of deleterious variants as well as reduced activity of a variety of Hsp90 chaperoned pathways, potentially shifting phenotypic variability over the disease threshold resulting in birth defects.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, 20010, USA.
| |
Collapse
|
39
|
Loss-of-Function Variants in PPP1R12A: From Isolated Sex Reversal to Holoprosencephaly Spectrum and Urogenital Malformations. Am J Hum Genet 2020; 106:121-128. [PMID: 31883643 DOI: 10.1016/j.ajhg.2019.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 02/01/2023] Open
Abstract
In two independent ongoing next-generation sequencing projects for individuals with holoprosencephaly and individuals with disorders of sex development, and through international research collaboration, we identified twelve individuals with de novo loss-of-function (LoF) variants in protein phosphatase 1, regulatory subunit 12a (PPP1R12A), an important developmental gene involved in cell migration, adhesion, and morphogenesis. This gene has not been previously reported in association with human disease, and it has intolerance to LoF as illustrated by a very low observed-to-expected ratio of LoF variants in gnomAD. Of the twelve individuals, midline brain malformations were found in five, urogenital anomalies in nine, and a combination of both phenotypes in two. Other congenital anomalies identified included omphalocele, jejunal, and ileal atresia with aberrant mesenteric blood supply, and syndactyly. Six individuals had stop gain variants, five had a deletion or duplication resulting in a frameshift, and one had a canonical splice acceptor site loss. Murine and human in situ hybridization and immunostaining revealed PPP1R12A expression in the prosencephalic neural folds and protein localization in the lower urinary tract at critical periods for forebrain division and urogenital development. Based on these clinical and molecular findings, we propose the association of PPP1R12A pathogenic variants with a congenital malformations syndrome affecting the embryogenesis of the brain and genitourinary systems and including disorders of sex development.
Collapse
|
40
|
Mzoughi S, Di Tullio F, Low DHP, Motofeanu CM, Ong SLM, Wollmann H, Wun CM, Kruszka P, Muenke M, Hildebrandt F, Dunn NR, Messerschmidt DM, Guccione E. PRDM15 loss of function links NOTCH and WNT/PCP signaling to patterning defects in holoprosencephaly. SCIENCE ADVANCES 2020; 6:eaax9852. [PMID: 31950080 PMCID: PMC6954057 DOI: 10.1126/sciadv.aax9852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/30/2019] [Indexed: 05/15/2023]
Abstract
Holoprosencephaly (HPE) is a congenital forebrain defect often associated with embryonic lethality and lifelong disabilities. Currently, therapeutic and diagnostic options are limited by lack of knowledge of potential disease-causing mutations. We have identified a new mutation in the PRDM15 gene (C844Y) associated with a syndromic form of HPE in multiple families. We demonstrate that C844Y is a loss-of-function mutation impairing PRDM15 transcriptional activity. Genetic deletion of murine Prdm15 causes anterior/posterior (A/P) patterning defects and recapitulates the brain malformations observed in patients. Mechanistically, PRDM15 regulates the transcription of key effectors of the NOTCH and WNT/PCP pathways to preserve early midline structures in the developing embryo. Analysis of a large cohort of patients with HPE revealed potentially damaging mutations in several regulators of both pathways. Our findings uncover an unexpected link between NOTCH and WNT/PCP signaling and A/P patterning and set the stage for the identification of new HPE candidate genes.
Collapse
Affiliation(s)
- Slim Mzoughi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Federico Di Tullio
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Diana H. P. Low
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Corina-Mihaela Motofeanu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sheena L. M. Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheng Mun Wun
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - N. Ray Dunn
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel M. Messerschmidt
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding author.
| |
Collapse
|
41
|
Abstract
Neuroimaging enables the evaluation of many aspects of brain maturation, and detection of abnormalities such as malformation and injury. MRI is integral to the diagnostic work-up of congenital and acquired disorders of the central nervous system in newborns, and imaging findings are central to prognostication. This paper reviews techniques to optimize assessment of maturity of the neonatal brain, as well as abnormalities and injuries of the newborn brain that are associated with abnormal neurocognitive development.
Collapse
|
42
|
Lovely CB. Animal models of gene-alcohol interactions. Birth Defects Res 2019; 112:367-379. [PMID: 31774246 DOI: 10.1002/bdr2.1623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022]
Abstract
Most birth defects arise from complex interactions between multiple genetic and environmental factors. However, our current understanding of how these interactions and their contributions affect birth defects remains incomplete. Human studies are limited in their ability to identify the fundamental causes of birth defects due to ethical and practical limitations. Animal models provide a great number of resources not available to human studies and they have been critical in advancing our understanding of birth defects and the complex interactions that underlie them. In this review, we discuss the use of animal models in the context of gene-environment interactions that underlie birth defects. We focus on alcohol which is the most common environmental factor associated with birth defects. Prenatal alcohol exposure leads to a wide range of cognitive impairments and structural deficits broadly termed fetal alcohol spectrum disorders (FASD). We discuss the broad impact of prenatal alcohol exposure on the developing embryo and elaborate on the current state of gene-alcohol interactions. Additionally, we discuss how animal models have informed our understanding of the genetics of FASD. Ultimately, these topics will provide insight into the use of animal models in understanding gene-environment interactions and their subsequent impact on birth defects.
Collapse
Affiliation(s)
- Charles Benjamin Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
43
|
Severe head dysgenesis resulting from imbalance between anterior and posterior ontogenetic programs. Cell Death Dis 2019; 10:812. [PMID: 31649239 PMCID: PMC6813351 DOI: 10.1038/s41419-019-2040-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Head dysgenesis is a major cause of fetal demise and craniofacial malformation. Although mutations in genes of the head ontogenetic program have been reported, many cases remain unexplained. Head dysgenesis has also been related to trisomy or amplification of the chromosomal region overlapping the CDX2 homeobox gene, a master element of the trunk ontogenetic program. Hence, we investigated the repercussion on head morphogenesis of the imbalance between the head and trunk ontogenetic programs, by means of ectopic rostral expression of CDX2 at gastrulation. This caused severe malformations affecting the forebrain and optic structures, and also the frontonasal process associated with defects in neural crest cells colonization. These malformations are the result of the downregulation of genes of the head program together with the abnormal induction of trunk program genes. Together, these data indicate that the imbalance between the anterior and posterior ontogenetic programs in embryos is a new possible cause of head dysgenesis during human development, linked to defects in setting up anterior neuroectodermal structures.
Collapse
|
44
|
Everson JL, Sun MR, Fink DM, Heyne GW, Melberg CG, Nelson KF, Doroodchi P, Colopy LJ, Ulschmid CM, Martin AA, McLaughlin MT, Lipinski RJ. Developmental Toxicity Assessment of Piperonyl Butoxide Exposure Targeting Sonic Hedgehog Signaling and Forebrain and Face Morphogenesis in the Mouse: An in Vitro and in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107006. [PMID: 31642701 PMCID: PMC6867268 DOI: 10.1289/ehp5260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Piperonyl butoxide (PBO) is a pesticide synergist used in residential, commercial, and agricultural settings. PBO was recently found to inhibit Sonic hedgehog (Shh) signaling, a key developmental regulatory pathway. Disruption of Shh signaling is linked to birth defects, including holoprosencephaly (HPE), a malformation of the forebrain and face thought to result from complex gene-environment interactions. OBJECTIVES The impact of PBO on Shh signaling in vitro and forebrain and face development in vivo was examined. METHODS The influence of PBO on Shh pathway transduction was assayed in mouse and human cell lines. To examine its teratogenic potential, a single dose of PBO (22-1,800mg/kg) was administered by oral gavage to C57BL/6J mice at gestational day 7.75, targeting the critical period for HPE. Gene-environment interactions were investigated using Shh+/- mice, which model human HPE-associated genetic mutations. RESULTS PBO attenuated Shh signaling in vitro through a mechanism similar to that of the known teratogen cyclopamine. In utero PBO exposure caused characteristic HPE facial dysmorphology including dose-dependent midface hypoplasia and hypotelorism, with a lowest observable effect level of 67mg/kg. Median forebrain deficiency characteristic of HPE was observed in severely affected animals, whereas all effective doses disrupted development of Shh-dependent transient forebrain structures that generate cortical interneurons. Normally silent heterozygous Shh null mutations exacerbated PBO teratogenicity at all doses tested, including 33mg/kg. DISCUSSION These findings demonstrate that prenatal PBO exposure can cause overt forebrain and face malformations or neurodevelopmental disruptions with subtle or no craniofacial dysmorphology in mice. By targeting Shh signaling as a sensitive mechanism of action and examining gene-environment interactions, this study defined a lowest observable effect level for PBO developmental toxicity in mice more than 30-fold lower than previously recognized. Human exposure to PBO and its potential contribution to etiologically complex birth defects should be rigorously examined. https://doi.org/10.1289/EHP5260.
Collapse
Affiliation(s)
- Joshua L. Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dustin M. Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Galen W. Heyne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cal G. Melberg
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kia F. Nelson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Padydeh Doroodchi
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lydia J. Colopy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caden M. Ulschmid
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T. McLaughlin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
45
|
Kruszka P, Berger SI, Casa V, Dekker MR, Gaesser J, Weiss K, Martinez AF, Murdock DR, Louie RJ, Prijoles EJ, Lichty AW, Brouwer OF, Zonneveld-Huijssoon E, Stephan MJ, Hogue J, Hu P, Tanima-Nagai M, Everson JL, Prasad C, Cereda A, Iascone M, Schreiber A, Zurcher V, Corsten-Janssen N, Escobar L, Clegg NJ, Delgado MR, Hajirnis O, Balasubramanian M, Kayserili H, Deardorff M, Poot RA, Wendt KS, Lipinski RJ, Muenke M. Cohesin complex-associated holoprosencephaly. Brain 2019; 142:2631-2643. [PMID: 31334757 PMCID: PMC7245359 DOI: 10.1093/brain/awz210] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth I Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Jenna Gaesser
- Department of Pediatrics, Division of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin Weiss
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Murdock
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raymond J Louie
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Eloise J Prijoles
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Angie W Lichty
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Oebele F Brouwer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Stephan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jacob Hogue
- Division of Clinical Genetics, Department of Pediatrics, Madigan Army Hospital, Tacoma, WA, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Momoko Tanima-Nagai
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Chitra Prasad
- Children’s Health Research Institute, London, ON, Canada
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vickie Zurcher
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luis Escobar
- Peyton Manning Children’s Hospital at St. Vincent, Medical Genetics and Neurodevelopment Center, Indianapolis, IN, USA
| | - Nancy J Clegg
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Mauricio R Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics UT Southwestern Medical Center Dallas, TX, USA
| | - Omkar Hajirnis
- Pediatric Neurology, Synapses Child Neurology and Development Centre, Thane, Maharashtra, India
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children’s, NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, University of Sheffield, Sheffield, UK
| | - Hülya Kayserili
- Medical Genetics, Medical Faculty, Koç University, Istanbul, Turkey
| | - Matthew Deardorff
- The Division of Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Yi L, Liu Z, Deng C, Li X, Wang K, Deng K, Mu Y, Zhu J, Li Q, Wang Y, Dai L. Epidemiological characteristics of holoprosencephaly in China, 2007-2014: A retrospective study based on the national birth defects surveillance system. PLoS One 2019; 14:e0217835. [PMID: 31170204 PMCID: PMC6553724 DOI: 10.1371/journal.pone.0217835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/20/2019] [Indexed: 11/23/2022] Open
Abstract
Objective To describe the epidemiology of holoprosencephaly (HPE) in China with special reference to prevalence and associated anomalies. Methods Data were abstracted from the Chinese Birth Defects Monitoring Network for the period 2007–2014. Birth prevalence of HPE were assessed by birth year, fetal/infant sex, maternal age, and maternal residential area. Poisson regressions were used to calculate the crude and adjusted prevalence ratios (PR) and their 95% confidence intervals, and linear chi-square test was used to explore time trend for the prevalence of HPE. Results A total of 1222 HPE cases were identified in 13,284,142 births, yielding an overall prevalence of 0.92 per 10,000 births. The annual prevalence of HPE presented an upward trend (P<0.001), from 0.54 per 10,000 births in 2007 to 1.21 per 10,000 births in 2014. Higher prevalence was found in older maternal-age groups (30–34 years, adjusted PR: 1.19, 95% CI: 1.02–1.40; ≥35 years, adjusted PR: 1.53, 95% CI: 1.26–1.86) in comparison with the maternal-age group of 25 to 29 years. Higher prevalence was also found in infants born to mothers resided in urban areas (adjusted PR: 1.23, 95% CI: 1.08–1.39) and female infants (adjusted PR: 1.30, 95% CI: 1.15–1.47). Conclusions HPE is an important perinatal health issue because of its poor prognosis. This is the first study depicting a picture of epidemiological characteristics of HPE in China, which can provide useful references for future studies.
Collapse
Affiliation(s)
- Ling Yi
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhongqiang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Department of Pediatric Intensive Care Unit, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changfei Deng
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohong Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Wang
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kui Deng
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Mu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Zhu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Wang
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Dai
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Medical Big Data Center, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
47
|
Kruszka P, Berger SI, Weiss K, Everson JL, Martinez AF, Hong S, Anyane-Yeboa K, Lipinski RJ, Muenke M. A CCR4-NOT Transcription Complex, Subunit 1, CNOT1, Variant Associated with Holoprosencephaly. Am J Hum Genet 2019; 104:990-993. [PMID: 31006510 PMCID: PMC6506867 DOI: 10.1016/j.ajhg.2019.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Holoprosencephaly is the incomplete separation of the forebrain during embryogenesis. Both genetic and environmental etiologies have been determined for holoprosencephaly; however, a genetic etiology is not found in most cases. In this report, we present two unrelated individuals with semilobar holoprosencephaly who have the identical de novo missense variant in the gene CCR4-NOT transcription complex, subunit 1 (CNOT1). The variant (c.1603C>T [p.Arg535Cys]) is predicted to be deleterious and is not present in public databases. CNOT1 has not been previously associated with holoprosencephaly or other brain malformations. In situ hybridization analyses of mouse embryos show that Cnot1 is expressed in the prosencephalic neural folds at gestational day 8.25 during the critical period for subsequent forebrain division. Combining human and mouse data, we show that CNOT1 is associated with incomplete forebrain division.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth I Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Rare Disease Institute, Genetics and Metabolism, Children's National Health System, Washington, DC 20036, USA
| | - Karin Weiss
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwame Anyane-Yeboa
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Zakaria M, Ferent J, Hristovska I, Laouarem Y, Zahaf A, Kassoussi A, Mayeur ME, Pascual O, Charron F, Traiffort E. The Shh receptor Boc is important for myelin formation and repair. Development 2019; 146:146/9/dev172502. [PMID: 31048318 DOI: 10.1242/dev.172502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/28/2019] [Indexed: 12/25/2022]
Abstract
Myelination leads to the formation of myelin sheaths surrounding neuronal axons and is crucial for function, plasticity and repair of the central nervous system (CNS). It relies on the interaction of the axons and the oligodendrocytes: the glial cells producing CNS myelin. Here, we have investigated the role of a crucial component of the Sonic hedgehog (Shh) signalling pathway, the co-receptor Boc, in developmental and repairing myelination. During development, Boc mutant mice display a transient decrease in oligodendroglial cell density together with delayed myelination. Despite recovery of oligodendroglial cells at later stages, adult mutants still exhibit a lower production of myelin basic protein correlated with a significant decrease in the calibre of callosal axons and a reduced amount of the neurofilament NF-M. During myelin repair, the altered OPC differentiation observed in the mutant is reminiscent of the phenotype observed after blockade of Shh signalling. In addition, Boc mutant microglia/macrophages unexpectedly exhibit the apparent inability to transition from a highly to a faintly ramified morphology in vivo Altogether, these results identify Boc as an important component of myelin formation and repair.
Collapse
Affiliation(s)
- Mary Zakaria
- INSERM-University Paris-Sud/Paris-Saclay; Diseases and Hormones of the Nervous System, U1195, 80 rue du Général Leclerc, F-94276, Le Kremlin-Bicêtre, France
| | - Julien Ferent
- IRCM, Molecular Biology of Neural Development, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | - Ines Hristovska
- Institut NeuroMyoGène CNRS UMR 5310-INSERM U1217-Université Claude Bernard Lyon 1, Faculté de Médecine et de Pharmacie 69008 Lyon, France
| | - Yousra Laouarem
- INSERM-University Paris-Sud/Paris-Saclay; Diseases and Hormones of the Nervous System, U1195, 80 rue du Général Leclerc, F-94276, Le Kremlin-Bicêtre, France
| | - Amina Zahaf
- INSERM-University Paris-Sud/Paris-Saclay; Diseases and Hormones of the Nervous System, U1195, 80 rue du Général Leclerc, F-94276, Le Kremlin-Bicêtre, France
| | - Abdelmoumen Kassoussi
- INSERM-University Paris-Sud/Paris-Saclay; Diseases and Hormones of the Nervous System, U1195, 80 rue du Général Leclerc, F-94276, Le Kremlin-Bicêtre, France
| | - Marie-Eve Mayeur
- Institut NeuroMyoGène CNRS UMR 5310-INSERM U1217-Université Claude Bernard Lyon 1, Faculté de Médecine et de Pharmacie 69008 Lyon, France
| | - Olivier Pascual
- Institut NeuroMyoGène CNRS UMR 5310-INSERM U1217-Université Claude Bernard Lyon 1, Faculté de Médecine et de Pharmacie 69008 Lyon, France
| | - Frederic Charron
- IRCM, Molecular Biology of Neural Development, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-University Paris-Sud/Paris-Saclay; Diseases and Hormones of the Nervous System, U1195, 80 rue du Général Leclerc, F-94276, Le Kremlin-Bicêtre, France
| |
Collapse
|
49
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
50
|
Fu T, Pearson C, Towers M, Placzek M. Development of the basal hypothalamus through anisotropic growth. J Neuroendocrinol 2019; 31:e12727. [PMID: 31050853 PMCID: PMC6563594 DOI: 10.1111/jne.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
The adult hypothalamus is subdivided into distinct domains: pre-optic, anterior, tuberal and mammillary. Each domain harbours an array of neurones that act together to regulate homeostasis. The embryonic origins and the development of hypothalamic neurones, however, remain enigmatic. Here, we summarise recent studies in model organisms that challenge current views of hypothalamic development, which traditionally have attempted to map adult domains to correspondingly located embryonic domains. Instead, new studies indicate that hypothalamic neurones arise from progenitor cells that undergo anisotropic growth, expanding to a greater extent than other progenitors, and grow in different dimensions. We describe in particular how a multipotent Shh/ Fgf10-expressing progenitor population gives rise to progenitors throughout the basal hypothalamus that grow anisotropically and sequentially: first, a subset displaced rostrally give rise to anterior-ventral/tuberal neuronal progenitors; then a subset displaced caudally give rise to mammillary neuronal progenitors; and, finally, a subset(s) displaced ventrally give rise to tuberal infundibular glial progenitors. As this occurs, stable populations of Shh+ive and Fgf10+ive progenitors form. We describe current understanding of the mechanisms that induce Shh+ive /Fgf10+ive progenitors and begin to direct their differentiation to anterior-ventral/tuberal neuronal progenitors, mammillary neuronal progenitors and tuberal infundibular progenitors. Taken together, these studies suggest a new model for hypothalamic development that we term the "anisotropic growth model". We discuss the implications of the model for understanding the origins of adult hypothalamic neurones.
Collapse
Affiliation(s)
- Travis Fu
- Department of Biomedical ScienceBateson CentreUniversity of SheffieldSheffieldUK
| | - Caroline Pearson
- Department of Biomedical ScienceBateson CentreUniversity of SheffieldSheffieldUK
| | - Matthew Towers
- Department of Biomedical ScienceBateson CentreUniversity of SheffieldSheffieldUK
| | - Marysia Placzek
- Department of Biomedical ScienceBateson CentreUniversity of SheffieldSheffieldUK
| |
Collapse
|