1
|
Nishikawa M, Hayashi S, Nakayama A, Nishio Y, Shiraki A, Ito H, Maruyama K, Muramatsu Y, Ogi T, Mizuno S, Nagata KI. Pathophysiological significance of the p.E31G variant in RAC1 responsible for a neurodevelopmental disorder with microcephaly. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167520. [PMID: 39307291 DOI: 10.1016/j.bbadis.2024.167520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RAC1 encodes a Rho family small GTPase that regulates actin cytoskeletal reorganization and intracellular signaling pathways. Pathogenic RAC1 variants lead to a neurodevelopmental disorder with diverse phenotypic manifestations, including abnormalities in brain size and facial dysmorphism. However, the underlying pathophysiological mechanisms have yet to be elucidated. Here, we present the case of a school-aged male who exhibited global developmental delay, intellectual disability, and acquired microcephaly. Through whole exome sequencing, we identified a novel de novo variant in RAC1, (NM_006908.5): c.92 A > G,p.(E31G). We then examined the pathophysiological significance of the p.E31G variant by focusing on brain development. Biochemical analyses revealed that the recombinant RAC1-E31G had no discernible impact on the intrinsic GDP/GTP exchange activity. However, it exhibited a slight inhibitory effect on GTP hydrolysis. Conversely, it demonstrated a typical response to both a guanine-nucleotide exchange factor and a GTPase-activating protein. In transient expression analyses using COS7 cells, RAC1-E31G exhibited minimal interaction with the downstream effector PAK1, even in its GTP-bound state. Additionally, overexpression of RAC1-E31G was observed to exert a weak inhibitory effect on the differentiation of primary cultured hippocampal neurons. Moreover, in vivo studies employing in utero electroporation revealed that acute expression of RAC1-E31G resulted in impairments in axonal elongation and dendritic arborization in the young adult stage. These findings suggest that the p.E31G variant functions as a dominant-negative version in the PAK1-mediated signaling pathway and is responsible for the clinical features observed in the patient under investigation, namely microcephaly and intellectual disability.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Shin Hayashi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsushi Nakayama
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-cho, Nagoya 453-8511, Japan
| | - Yosuke Nishio
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kouichi Maruyama
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Seiji Mizuno
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan.
| |
Collapse
|
2
|
Namba T, Huttner WB. What Makes Us Human: Insights from the Evolution and Development of the Human Neocortex. Annu Rev Cell Dev Biol 2024; 40:427-452. [PMID: 39356810 DOI: 10.1146/annurev-cellbio-112122-032521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
"What makes us human?" is a central question of many research fields, notably anthropology. In this review, we focus on the development of the human neocortex, the part of the brain with a key role in cognition, to gain neurobiological insight toward answering this question. We first discuss cortical stem and progenitor cells and human-specific genes that affect their behavior. We thus aim to understand the molecular foundation of the expansion of the neocortex that occurred in the course of human evolution, as this expansion is generally thought to provide a basis for our unique cognitive abilities. We then review the emerging evidence pointing to differences in the development of the neocortex between present-day humans and Neanderthals, our closest relatives. Finally, we discuss human-specific genes that have been implicated in neuronal circuitry and offer a perspective for future studies addressing the question of what makes us human.
Collapse
Affiliation(s)
- Takashi Namba
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany;
| |
Collapse
|
3
|
Burkhalter MD, Stiff T, Maerz LD, Casar Tena T, Wiese H, Gerhards J, Sailer SA, Vu LAT, Duong Phu M, Donow C, Alupei M, Iben S, Groth M, Wiese S, Church JA, Jeggo PA, Philipp M. Cilia defects upon loss of WDR4 are linked to proteasomal hyperactivity and ubiquitin shortage. Cell Death Dis 2024; 15:660. [PMID: 39251572 PMCID: PMC11384789 DOI: 10.1038/s41419-024-07042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
The WD repeat-containing protein 4 (WDR4) has repeatedly been associated with primary microcephaly, a condition of impaired brain and skull growth. Often, faulty centrosomes cause microcephaly, yet aberrant cilia may also be involved. Here, we show using a combination of approaches in human fibroblasts, zebrafish embryos and patient-derived cells that WDR4 facilitates cilium formation. Molecularly, we associated WDR4 loss-of-function with increased protein synthesis and concomitant upregulation of proteasomal activity, while ubiquitin precursor pools are reduced. Inhibition of proteasomal activity as well as supplementation with free ubiquitin restored normal ciliogenesis. Proteasome inhibition ameliorated microcephaly phenotypes. Thus, we propose that WDR4 loss-of-function impairs head growth and neurogenesis via aberrant cilia formation, initially caused by disturbed protein and ubiquitin homeostasis.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lars D Maerz
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Teresa Casar Tena
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Heike Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Julian Gerhards
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Steffen A Sailer
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Linh Anna Trúc Vu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Cornelia Donow
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Marius Alupei
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Sebastian Iben
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Joseph A Church
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, 90033, USA
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany.
| |
Collapse
|
4
|
Ferretti A, Furlan M, Glinton KE, Fenger CD, Boschann F, Amlie-Wolf L, Zeidler S, Moretti R, Stoltenburg C, Tarquinio DC, Furia F, Parisi P, Rubboli G, Devinsky O, Mignot C, Gripp KW, Møller RS, Yang Y, Stankiewicz P, Gardella E. Epilepsy as a Novel Phenotype of BPTF-Related Disorders. Pediatr Neurol 2024; 158:17-25. [PMID: 38936258 DOI: 10.1016/j.pediatrneurol.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) is associated to BPTF gene haploinsufficiency. Epilepsy was not included in the initial descriptions of NEDDFL, but emerging evidence indicates that epileptic seizures occur in some affected individuals. This study aims to investigate the electroclinical epilepsy features in individuals with NEDDFL. METHODS We enrolled individuals with BPTF-related seizures or interictal epileptiform discharges (IEDs) on electroencephalography (EEG). Demographic, clinical, genetic, raw EEG, and neuroimaging data as well as response to antiseizure medication were assessed. RESULTS We studied 11 individuals with a null variant in BPTF, including five previously unpublished ones. Median age at last observation was 9 years (range: 4 to 43 years). Eight individuals had epilepsy, one had a single unprovoked seizure, and two showed IEDs only. Key features included (1) early childhood epilepsy onset (median 4 years, range: 10 months to 7 years), (2) well-organized EEG background (all cases) and brief bursts of spikes and slow waves (50% of individuals), and (3) developmental delay preceding seizure onset. Spectrum of epilepsy severity varied from drug-resistant epilepsy (27%) to isolated IEDs without seizures (18%). Levetiracetam was widely used and reduced seizure frequency in 67% of the cases. CONCLUSIONS Our study provides the first characterization of BPTF-related epilepsy. Early-childhood-onset epilepsy occurs in 19% of subjects, all presenting with a well-organized EEG background associated with generalized interictal epileptiform abnormalities in half of these cases. Drug resistance is rare.
Collapse
Affiliation(s)
- Alessandro Ferretti
- Pediatrics Unit, Faculty of Medicine and Psychology, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy; Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Margherita Furlan
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Kevin E Glinton
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Amplexa Genetics A/S, Odense, Denmark
| | - Felix Boschann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Louise Amlie-Wolf
- Division of Medical Genetics, Nemours Children's Health, Wilmington, Delaware
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Raffaella Moretti
- APHP-Sorbonne Université, Département de Génétique, Hôpital Trousseau et Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Corinna Stoltenburg
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Sozialpädiatrisches Zentrum Neuropädiatrie, Berlin, Germany
| | - Daniel C Tarquinio
- Rett Syndrome Clinic, Center for Rare Neurological Diseases, Norcross, Georgia
| | - Francesca Furia
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Faculty of Health Sciences, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Pasquale Parisi
- Pediatrics Unit, Faculty of Medicine and Psychology, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Member of ERN EpiCARE
| | - Orrin Devinsky
- NYU Langone Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York City, New York
| | - Cyril Mignot
- APHP-Sorbonne Université, Département de Génétique, Hôpital Trousseau et Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Health, Wilmington, Delaware
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Faculty of Health Sciences, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Yaping Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas; AiLife Diagnostics, Pearland, Texas
| | - Pawel Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Elena Gardella
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Faculty of Health Sciences, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE.
| |
Collapse
|
5
|
Sukenik-Halevy R, Mevorach N, Basel-Salmon L, Matar RT, Kahana S, Klein K, Agmon-Fishman I, Levy M, Maya I. Chromosomal microarray testing yield in 829 cases of microcephaly: a clinical characteristics-based analysis for prenatal and postnatal cases. Arch Gynecol Obstet 2024; 310:1547-1554. [PMID: 38494511 PMCID: PMC11366728 DOI: 10.1007/s00404-024-07388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Microcephaly, characterized by abnormal head growth, can often serve as an initial indicator of congenital, genetic, or acquired disorders. In this study, we sought to evaluate the effectiveness of chromosomal microarray (CMA) testing in detecting abnormalities in both prenatal and postnatal cases of microcephaly. MATERIALS AND METHODS CMA Testing: We conducted CMA testing on 87 prenatally-detected microcephaly cases and 742 postnatal cases at a single laboratory. We evaluated the CMA yield in relation to specific clinical characteristics. RESULTS In prenatal cases, pathogenic and likely pathogenic (LP) results were identified in 4.6% of cases, a significantly higher rate compared to low-risk pregnancies. The male-to-female ratio in this cohort was 3, and the CMA yield was not influenced by gender or other clinical parameters. For postnatal cases, the CMA yield was 15.0%, with a significantly higher detection rate associated with dysmorphism, hypotonia, epilepsy, congenital heart malformations (CHM), learning disabilities (LD), and a history of Fetal growth restriction (FGR). No specific recurrent copy number variations (CNVs) were observed, and the rate of variants of unknown significance was 3.9%. CONCLUSIONS The yield of CMA testing in prenatal microcephaly is lower than in postnatal cases (4.6% vs. 15%). The presence of microcephaly, combined with dysmorphism, hypotonia, epilepsy, CHD, LD, and FGR, significantly increases the likelihood of an abnormal CMA result.
Collapse
Affiliation(s)
- Rivka Sukenik-Halevy
- Genetic Institute, Meir Medical Center, Kfar Saba, Israel.
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Nir Mevorach
- Genetic Institute, Meir Medical Center, Kfar Saba, Israel
| | - Lina Basel-Salmon
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
- Pediatric Genetics Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | | | - Sarit Kahana
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| | - Kochav Klein
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| | | | - Michal Levy
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| | - Idit Maya
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
6
|
Alrifai MT, Alrumayyan Y, Baarmah D, Alrumayyan A, Altuwaijri W, AlMuqbil M, Eyaid W, Swaid A, Almutairi F, Alfadhel M. Genetic Microcephaly in a Saudi Population: Unique Spectrum of Affected Genes Including a Novel One. J Child Neurol 2024; 39:209-217. [PMID: 38847106 DOI: 10.1177/08830738241252848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Background: Genetic microcephaly is linked to an increased risk of developmental disabilities, epilepsy, and motor impairment. The aim of this study is to describe the spectrum of identifiable genetic etiologies, clinical characteristics, and radiologic features of genetic microcephaly in patients referred to a tertiary center in Saudi Arabia. Method: This is a retrospective chart review study of all patients with identifiable genetic microcephaly presenting to a tertiary center in Saudi Arabia. The patients' demographics, clinical, laboratory, radiologic, and molecular findings were collected. Results: Of the total 128 cases referred, 52 cases (40%) had identifiable genetic causes. Monogenic disorders were found in 48 cases (92%), whereas chromosomal disorders were found in only 4 cases (8%). Developmental disability was observed in 40 cases (84%), whereas only 8 cases (16%) had borderline IQ or mild developmental delay. Epilepsy was seen in 29 cases (56%), and motor impairment was seen in 26 cases (50%). Brain magnetic resonance imaging (MRI) revealed abnormalities in 26 (50%) of the cohort. Hereditary neurometabolic disorders were seen in 7 (15%) of the 48 cases with monogenic disorders. The most common gene defect was ASPM, which is responsible for primary microcephaly type 5 and was seen in 10 cases (19%). A novel PLK1 gene pathogenic mutation was seen in 3 cases (6%). Conclusion: Single gene defect is common in this Saudi population, with the ASPM gene being the most common. Hereditary neurometabolic disorders are a common cause of genetic microcephaly. Furthermore, we propose the PKL1 gene mutation as a possible novel cause of genetic microcephaly.
Collapse
Affiliation(s)
- Muhammad Talal Alrifai
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Yousof Alrumayyan
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Duaa Baarmah
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ahmed Alrumayyan
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Waleed Altuwaijri
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Mohammed AlMuqbil
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Wafaa Eyaid
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Abdulrahman Swaid
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Fuad Almutairi
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Fishburn AT, Florio CJ, Lopez NJ, Link NL, Shah PS. Molecular functions of ANKLE2 and its implications in human disease. Dis Model Mech 2024; 17:dmm050554. [PMID: 38691001 PMCID: PMC11103583 DOI: 10.1242/dmm.050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Ankyrin repeat and LEM domain-containing 2 (ANKLE2) is a scaffolding protein with established roles in cell division and development, the dysfunction of which is increasingly implicated in human disease. ANKLE2 regulates nuclear envelope disassembly at the onset of mitosis and its reassembly after chromosome segregation. ANKLE2 dysfunction is associated with abnormal nuclear morphology and cell division. It regulates the nuclear envelope by mediating protein-protein interactions with barrier to autointegration factor (BANF1; also known as BAF) and with the kinase and phosphatase that modulate the phosphorylation state of BAF. In brain development, ANKLE2 is crucial for proper asymmetric division of neural progenitor cells. In humans, pathogenic loss-of-function mutations in ANKLE2 are associated with primary congenital microcephaly, a condition in which the brain is not properly developed at birth. ANKLE2 is also linked to other disease pathologies, including congenital Zika syndrome, cancer and tauopathy. Here, we review the molecular roles of ANKLE2 and the recent literature on human diseases caused by its dysfunction.
Collapse
Affiliation(s)
- Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cole J. Florio
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nick J. Lopez
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nichole L. Link
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
8
|
Szalai R, Till A, Gyenesei A, Bene J, Hadzsiev K. Importance and application of WES in fetal genetic diagnostics: Identification of novel ASPM mutation in a fetus with microcephaly. Mol Genet Metab Rep 2024; 38:101056. [PMID: 38469100 PMCID: PMC10926227 DOI: 10.1016/j.ymgmr.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Background Prenatal whole exome sequencing (WES) approaches can provide genetic diagnosis with rapid turnaround time and high diagnostic rate when conventional tests are negative. Here we report a family with multiple pregnancy loss and with repeated occurrence of fetal microcephaly. Methods and results Because of positive family history and recurrent structural abnormality during the pregnancies that may lead postnatal neurodevelopmental consequences, WES analysis was indicated. Umbilical cord blood sampling was carried out and WES was performed using Twist Human Core Exome Kit and Illumina sequencing technology. The presence of pathogenic variants was confirmed by Sanger sequencing. WES analysis revealed a known pathogenic c.8506_8507delCA (p.Gln2836Glufs*35, rs587783280) and a novel pathogenic c.3134_3135delTC (p.Leu1045Glnfs*17) ASPM mutations in the fetus in compound heterozygous state. The c.3134_3135delTC has never been reported in the literature. Conclusions Our findings serve additional evidence that WES can be an efficient and relevant tool to diagnose certain genetic disorders with appropriate indication and to assess the recurrence risk of a disease. With the application of WES in combination with pre-implantation genetic tests, we can avoid the transmission of pathogenic mutations and we can achieve a decreased abortion rate in obstetric care.
Collapse
Affiliation(s)
- Renata Szalai
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| | - Agnes Till
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| | - Attila Gyenesei
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Judit Bene
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| | - Kinga Hadzsiev
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| |
Collapse
|
9
|
Zhou Y, Xu MF, Chen J, Zhang JL, Wang XY, Huang MH, Wei YL, She ZY. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest. Exp Cell Res 2024; 436:113975. [PMID: 38367657 DOI: 10.1016/j.yexcr.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Xin-Yao Wang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Min-Hui Huang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
10
|
Chien SC, Chen CP. Genetic Counseling of Fetal Microcephaly. J Med Ultrasound 2024; 32:1-7. [PMID: 38665355 PMCID: PMC11040482 DOI: 10.4103/jmu.jmu_18_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 04/28/2024] Open
Abstract
Fetal microcephaly is a small head with various losses of cerebral cortical volume. The affected cases may suffer from a wide range in severity of impaired cerebral development from slight to severe mental retardation. It can be an isolated finding or with other anomalies depending on the heterogeneous causes including genetic mutations, chromosomal abnormalities, congenital infectious diseases, maternal alcohol consumption, and metabolic disorders during pregnancy. It is often a lifelong and incurable condition. Thus, early detection of fetal microcephaly and identification of the underlying causes are important for clinical staff to provide appropriate genetic counseling to the parents and accurate management.
Collapse
Affiliation(s)
| | - Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Heide M, Huttner WB. Causes of microcephaly in human-theoretical considerations. Front Neurosci 2023; 17:1306166. [PMID: 38075281 PMCID: PMC10701273 DOI: 10.3389/fnins.2023.1306166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023] Open
Abstract
As is evident from the theme of the Research Topic “Small Size, Big Problem: Understanding the Molecular Orchestra of Brain Development from Microcephaly,” the pathomechanisms leading to mirocephaly in human are at best partially understood. As molecular cell biologists and developmental neurobiologists, we present here a treatise with theoretical considerations that systematically dissect possible causes of microcephaly, which we believe is timely. Our considerations address the cell types affected in microcephaly, that is, the cortical stem and progenitor cells as well as the neurons and macroglial cell generated therefrom. We discuss issues such as progenitor cell types, cell lineages, modes of cell division, cell proliferation and cell survival. We support our theoretical considerations by discussing selected examples of factual cases of microcephaly, in order to point out that there is a much larger range of possible pathomechanisms leading to microcephaly in human than currently known.
Collapse
Affiliation(s)
- Michael Heide
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
12
|
Bergwell M, Smith A, Smith E, Dierlam C, Duran R, Haastrup E, Napier-Jameson R, Seidel R, Potter W, Norris A, Iyer J. A primary microcephaly-associated sas-6 mutation perturbs centrosome duplication, dendrite morphogenesis, and ciliogenesis in Caenorhabditis elegans. Genetics 2023; 224:iyad105. [PMID: 37279547 PMCID: PMC10411591 DOI: 10.1093/genetics/iyad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
The human SASS6(I62T) missense mutation has been linked with the incidence of primary microcephaly in a Pakistani family, although the mechanisms by which this mutation causes disease remain unclear. The SASS6(I62T) mutation corresponds to SAS-6(L69T) in Caenorhabditis elegans. Given that SAS-6 is highly conserved, we modeled this mutation in C. elegans and examined the sas-6(L69T) effect on centrosome duplication, ciliogenesis, and dendrite morphogenesis. Our studies revealed that all the above processes are perturbed by the sas-6(L69T) mutation. Specifically, C. elegans carrying the sas-6(L69T) mutation exhibit an increased failure of centrosome duplication in a sensitized genetic background. Further, worms carrying this mutation also display shortened phasmid cilia, an abnormal phasmid cilia morphology, shorter phasmid dendrites, and chemotaxis defects. Our data show that the centrosome duplication defects caused by this mutation are only uncovered in a sensitized genetic background, indicating that these defects are mild. However, the ciliogenesis and dendritic defects caused by this mutation are evident in an otherwise wild-type background, indicating that they are stronger defects. Thus, our studies shed light on the novel mechanisms by which the sas-6(L69T) mutation could contribute to the incidence of primary microcephaly in humans.
Collapse
Affiliation(s)
- Mary Bergwell
- Oklahoma Medical Research Foundation, Cell Cycle & Cancer Biology Research Program, Oklahoma City, OK 73104, USA
| | - Amy Smith
- Pfizer Inc., Pharmaceutical R&D – Drug Product Design & Development, Chesterfield, MO 63017, USA
| | - Ellie Smith
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Carter Dierlam
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Ramon Duran
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Erin Haastrup
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | | | - Rory Seidel
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - William Potter
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Adam Norris
- Southern Methodist University, Department of Biological Sciences, Dallas, TX 75275, USA
| | - Jyoti Iyer
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| |
Collapse
|
13
|
Dawood M, Akay G, Mitani T, Marafi D, Fatih JM, Gezdirici A, Najmabadi H, Kahrizi K, Punetha J, Grochowski CM, Du H, Jolly A, Li H, Coban-Akdemir Z, Sedlazeck FJ, Hunter JV, Jhangiani SN, Muzny D, Pehlivan D, Posey JE, Carvalho CM, Gibbs RA, Lupski JR. A biallelic frameshift indel in PPP1R35 as a cause of primary microcephaly. Am J Med Genet A 2023; 191:794-804. [PMID: 36598158 PMCID: PMC9928800 DOI: 10.1002/ajmg.a.63080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/05/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023]
Abstract
Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis.
Collapse
Affiliation(s)
- Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - He Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fritz J. Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill V. Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, 77030, USA
- E.B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
14
|
Sukenik-Halevy R, Golbary Kinory E, Laron Kenet T, Brabbing-Goldstein D, Gilboa Y, Basel-Salmon L, Perlman S. Prenatal gender-customized head circumference nomograms result in reclassification of microcephaly and macrocephaly. AJOG GLOBAL REPORTS 2023; 3:100171. [PMID: 36864987 PMCID: PMC9972400 DOI: 10.1016/j.xagr.2023.100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Local and worldwide prenatal charts for estimated fetal weight and postnatal charts for head circumference are gender specific. However, prenatal head circumference nomograms are not gender customized. OBJECTIVE This study aimed to create gender-customized curves to assess between-gender head circumference differences and to study the clinical significance of using such gender-customized curves. STUDY DESIGN A single-center retrospective study was conducted between June 2012 and December 2020. Prenatal head circumference measurements were obtained from routine estimated fetal weight ultrasound scans. Postnatal head circumference measurement at birth and gender were retrieved from computerized neonatal files. Head circumference curves were created, and the normal range was defined for the male and female subpopulations. After applying gender-specific curves, we analyzed the outcome of cases classified as microcephaly and macrocephaly according to non-gender-customized curves, which were reclassified as normal according to gender-specific curves. For these cases, clinical information and postnatal long-term outcomes were retrieved from patients' medical records. RESULTS The cohort included 11,404 participants (6000 males and 5404 females). The curve for male head circumference was significantly higher than the female curve for all gestational weeks (P<.0001). Applying gender customized curves resulted in fewer cases of male fetuses defined as 2 standard deviations above the normal range and female fetuses defined as 2 standard deviations below of the normal range. Cases reclassified as normal head circumference after the application of gender-customized curves were not related to increased adverse postnatal outcomes. The rate of neurocognitive phenotypes was not higher than the expected rate in both male and female cohorts. Polyhydramnios and gestational diabetes mellitus were more common in the normalized male cohort, whereas oligohydramnios, fetal growth restriction, and cesarean delivery were more common in the normalized female cohort. CONCLUSION Prenatal gender-customized curves for head circumference can reduce the overdiagnosis of microcephaly in females and macrocephaly in males. According to our results, gender-customized curves did not affect the clinical yield of prenatal measurements. Therefore, we suggest that gender-specific curves be used to avoid unnecessary workup and parental anxiety.
Collapse
Affiliation(s)
- Rivka Sukenik-Halevy
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel (Prof. Sukenik-Halevy, Dr Brabbing-Goldstein, and Prof. Basel-Salmon)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Prof. Sukenik-Halevy, Dr. Ms Gollbary Kinory, Prof. Gilboa, Basel-Salmon, and Perlman)
- Genetic Institute, Meir Medical Center, Kfar Saba, Israel (Prof. Sukenik-Halevy)
- Corresponding author: Rivka Sukenik-Halevy, MD
| | - Ella Golbary Kinory
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Prof. Sukenik-Halevy, Dr. Ms Gollbary Kinory, Prof. Gilboa, Basel-Salmon, and Perlman)
| | - Tamar Laron Kenet
- Neonatal Department, Helen Schneider Hospital for Women, Rabin Medical Center, Petah Tikva, Israel (Dr Laron Kenet)
| | - Dana Brabbing-Goldstein
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel (Prof. Sukenik-Halevy, Dr Brabbing-Goldstein, and Prof. Basel-Salmon)
- Ultrasound Unit, Helen Schneider Hospital for Women, Rabin Medical Center, Petah Tikva, Israel (Dr Brabbing-Goldstein, Prof. Gilboa, and Perlman)
| | - Yinon Gilboa
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Prof. Sukenik-Halevy, Dr. Ms Gollbary Kinory, Prof. Gilboa, Basel-Salmon, and Perlman)
- Ultrasound Unit, Helen Schneider Hospital for Women, Rabin Medical Center, Petah Tikva, Israel (Dr Brabbing-Goldstein, Prof. Gilboa, and Perlman)
| | - Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel (Prof. Sukenik-Halevy, Dr Brabbing-Goldstein, and Prof. Basel-Salmon)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Prof. Sukenik-Halevy, Dr. Ms Gollbary Kinory, Prof. Gilboa, Basel-Salmon, and Perlman)
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petah Tikva, Israel (Prof. Basel-Salmon)
- Felsenstein Medical Research Center, Petah Tikva, Israel (Prof. Basel-Salmon)
| | - Sharon Perlman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Prof. Sukenik-Halevy, Dr. Ms Gollbary Kinory, Prof. Gilboa, Basel-Salmon, and Perlman)
- Ultrasound Unit, Helen Schneider Hospital for Women, Rabin Medical Center, Petah Tikva, Israel (Dr Brabbing-Goldstein, Prof. Gilboa, and Perlman)
| |
Collapse
|
15
|
Grange LJ, Reynolds JJ, Ullah F, Isidor B, Shearer RF, Latypova X, Baxley RM, Oliver AW, Ganesh A, Cooke SL, Jhujh SS, McNee GS, Hollingworth R, Higgs MR, Natsume T, Khan T, Martos-Moreno GÁ, Chupp S, Mathew CG, Parry D, Simpson MA, Nahavandi N, Yüksel Z, Drasdo M, Kron A, Vogt P, Jonasson A, Seth SA, Gonzaga-Jauregui C, Brigatti KW, Stegmann APA, Kanemaki M, Josifova D, Uchiyama Y, Oh Y, Morimoto A, Osaka H, Ammous Z, Argente J, Matsumoto N, Stumpel CTRM, Taylor AMR, Jackson AP, Bielinsky AK, Mailand N, Le Caignec C, Davis EE, Stewart GS. Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy. Nat Commun 2022; 13:6664. [PMID: 36333305 PMCID: PMC9636423 DOI: 10.1038/s41467-022-34349-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.
Collapse
Affiliation(s)
- Laura J Grange
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Farid Ullah
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Robert F Shearer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Antony W Oliver
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, UK
| | - Anil Ganesh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sophie L Cooke
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gavin S McNee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert Hollingworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
| | - Tahir Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, Guy's Hospital, King's College London, London, UK
| | - Nahid Nahavandi
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Zafer Yüksel
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Mojgan Drasdo
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Anja Kron
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Petra Vogt
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Annemarie Jonasson
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | | | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Masato Kanemaki
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | | | - Yuri Uchiyama
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukiko Oh
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Akira Morimoto
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA Alimentación/IMDEA Food, Madrid, Spain
| | - Naomichi Matsumoto
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Constance T R M Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cedric Le Caignec
- Centre Hospitalier Universitaire Toulouse, Service de Génétique Médicale and ToNIC, Toulouse NeuroImaging Center, Inserm, UPS, Université de Toulouse, Toulouse, France.
| | - Erica E Davis
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Department of Pediatrics; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
16
|
Caraffi SG, Pollazzon M, Farooq M, Fatima A, Larsen LA, Zuntini R, Napoli M, Garavelli L. MCPH1: A Novel Case Report and a Review of the Literature. Genes (Basel) 2022; 13:genes13040634. [PMID: 35456440 PMCID: PMC9032034 DOI: 10.3390/genes13040634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Microcephaly primary hereditary (MCPH) is a congenital disease characterized by nonsyndromic reduction in brain size due to impaired neurogenesis, often associated with a variable degree of intellectual disability (ID). The genetic etiology of MCPH is heterogeneous and comprises more than 20 loci, nearly all following a recessive inheritance pattern. The first causative gene identified, MCPH1 or Microcephalin, encodes a centrosomal protein that modulates chromosome condensation and cell cycle progression. It is also involved in DNA damage response and telomere maintenance in the nucleus. Despite numerous studies on MCPH1 function, MCPH1-affected individuals are rare and the available clinical reports are not sufficient to define the natural history of the disease. Here, we present a novel patient with congenital microcephaly, ID, language delay, short stature, and other minor features such as strabismus. magnetic resonance imaging revealed ventriculomegaly, simplified gyral pattern in the frontal lobes, and a neuronal migration defect. Genetic testing detected a homozygous deletion of exons 1–8 of MCPH1. We compare the patients’ characteristics with a list of features from MCPH1 cases described in the literature, in an effort to provide additional clues for a comprehensive definition of disease presentation and evolution.
Collapse
Affiliation(s)
- Stefano Giuseppe Caraffi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.P.); (R.Z.); (L.G.)
- Correspondence: ; Tel.: +39-0522-296802
| | - Marzia Pollazzon
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.P.); (R.Z.); (L.G.)
| | - Muhammad Farooq
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.F.); (L.A.L.)
| | - Ambrin Fatima
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.F.); (L.A.L.)
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Lars Allan Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.F.); (L.A.L.)
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.P.); (R.Z.); (L.G.)
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.P.); (R.Z.); (L.G.)
| |
Collapse
|
17
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
18
|
Vanoevelen JM, Bierau J, Grashorn JC, Lambrichs E, Kamsteeg EJ, Bok LA, Wevers RA, van der Knaap MS, Bugiani M, Frisk JH, Colnaghi R, O'Driscoll M, Hellebrekers DMEI, Rodenburg R, Ferreira CR, Brunner HG, van den Wijngaard A, Abdel-Salam GMH, Wang L, Stumpel CTRM. DTYMK is essential for genome integrity and neuronal survival. Acta Neuropathol 2022; 143:245-262. [PMID: 34918187 PMCID: PMC8742820 DOI: 10.1007/s00401-021-02394-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Nucleotide metabolism is a complex pathway regulating crucial cellular processes such as nucleic acid synthesis, DNA repair and proliferation. This study shows that impairment of the biosynthesis of one of the building blocks of DNA, dTTP, causes a severe, early-onset neurodegenerative disease. Here, we describe two unrelated children with bi-allelic variants in DTYMK, encoding dTMPK, which catalyzes the penultimate step in dTTP biosynthesis. The affected children show severe microcephaly and growth retardation with minimal neurodevelopment. Brain imaging revealed severe cerebral atrophy and disappearance of the basal ganglia. In cells of affected individuals, dTMPK enzyme activity was minimal, along with impaired DNA replication. In addition, we generated dtymk mutant zebrafish that replicate this phenotype of microcephaly, neuronal cell death and early lethality. An increase of ribonucleotide incorporation in the genome as well as impaired responses to DNA damage were observed in dtymk mutant zebrafish, providing novel pathophysiological insights. It is highly remarkable that this deficiency is viable as an essential component for DNA cannot be generated, since the metabolic pathway for dTTP synthesis is completely blocked. In summary, by combining genetic and biochemical approaches in multiple models we identified loss-of-function of DTYMK as the cause of a severe postnatal neurodegenerative disease and highlight the essential nature of dTTP synthesis in the maintenance of genome stability and neuronal survival.
Collapse
Affiliation(s)
- Jo M Vanoevelen
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands.
- GROW-School for Oncology and Developmental Biology, 6229 ER, Maastricht, The Netherlands.
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Janine C Grashorn
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Ellen Lambrichs
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | - Levinus A Bok
- Department of Pediatrics, Màxima Medical Center, 5504 DB, Veldhoven, The Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | | | - Marianna Bugiani
- Department of Neuropathology, VUMC, 1105 AZ, Amsterdam, The Netherlands
| | - Junmei Hu Frisk
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Rita Colnaghi
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RH, UK
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RH, UK
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Richard Rodenburg
- Translational Metabolic Laboratory, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
- Department of Human Genetics, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
- GROW-School for Oncology and Developmental Biology, 6229 ER, Maastricht, The Netherlands
- MHENS School of Neuroscience, 6229 ER, Maastricht, The Netherlands
- Donders Institute of Neuroscience, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Kristofova M, Ori A, Wang ZQ. Multifaceted Microcephaly-Related Gene MCPH1. Cells 2022; 11:cells11020275. [PMID: 35053391 PMCID: PMC8774270 DOI: 10.3390/cells11020275] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
MCPH1, or BRIT1, is often mutated in human primary microcephaly type 1, a neurodevelopmental disorder characterized by a smaller brain size at birth, due to its dysfunction in regulating the proliferation and self-renewal of neuroprogenitor cells. In the last 20 years or so, genetic and cellular studies have identified MCPH1 as a multifaceted protein in various cellular functions, including DNA damage signaling and repair, the regulation of chromosome condensation, cell-cycle progression, centrosome activity and the metabolism. Yet, genetic and animal model studies have revealed an unpredicted essential function of MPCH1 in gonad development and tumorigenesis, although the underlying mechanism remains elusive. These studies have begun to shed light on the role of MPCH1 in controlling various pathobiological processes of the disorder. Here, we summarize the biological functions of MCPH1, and lessons learnt from cellular and mouse models of MCPH1.
Collapse
Affiliation(s)
- Martina Kristofova
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Bachstrasse 18k, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-3641-656415; Fax: +49-3641-656335
| |
Collapse
|
21
|
Exome Sequencing Reveals Novel Variants and Expands the Genetic Landscape for Congenital Microcephaly. Genes (Basel) 2021; 12:genes12122014. [PMID: 34946966 PMCID: PMC8700965 DOI: 10.3390/genes12122014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Congenital microcephaly causes smaller than average head circumference relative to age, sex and ethnicity and is most usually associated with a variety of neurodevelopmental disorders. The underlying etiology is highly heterogeneous and can be either environmental or genetic. Disruption of any one of multiple biological processes, such as those underlying neurogenesis, cell cycle and division, DNA repair or transcription regulation, can result in microcephaly. This etiological heterogeneity manifests in a clinical variability and presents a major diagnostic and therapeutic challenge, leaving an unacceptably large proportion of over half of microcephaly patients without molecular diagnosis. To elucidate the clinical and genetic landscapes of congenital microcephaly, we sequenced the exomes of 191 clinically diagnosed patients with microcephaly as one of the features. We established a molecular basis for microcephaly in 71 patients (37%), and detected novel variants in five high confidence candidate genes previously unassociated with this condition. We report a large number of patients with mutations in tubulin-related genes in our cohort as well as higher incidence of pathogenic mutations in MCPH genes. Our study expands the phenotypic and genetic landscape of microcephaly, facilitating differential clinical diagnoses for disorders associated with most commonly disrupted genes in our cohort.
Collapse
|
22
|
Xu J, Wen Z. Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells Int 2021; 2021:5902824. [PMID: 34539790 PMCID: PMC8448601 DOI: 10.1155/2021/5902824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
With the rapid development of stem cell technology, the advent of three-dimensional (3D) cultured brain organoids has opened a new avenue for studying human neurodevelopment and neurological disorders. Brain organoids are stem-cell-derived 3D suspension cultures that self-assemble into an organized structure with cell types and cytoarchitectures recapitulating the developing brain. In recent years, brain organoids have been utilized in various aspects, ranging from basic biology studies, to disease modeling, and high-throughput screening of pharmaceutical compounds. In this review, we overview the establishment and development of brain organoid technology, its recent progress, and translational applications, as well as existing limitations and future directions.
Collapse
Affiliation(s)
- Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Vogt G, Verheyen S, Schwartzmann S, Ehmke N, Potratz C, Schwerin-Nagel A, Plecko B, Holtgrewe M, Seelow D, Blatterer J, Speicher MR, Kornak U, Horn D, Mundlos S, Fischer-Zirnsak B, Boschann F. Biallelic truncating variants in ATP9A cause a novel neurodevelopmental disorder involving postnatal microcephaly and failure to thrive. J Med Genet 2021; 59:662-668. [PMID: 34379057 PMCID: PMC9252857 DOI: 10.1136/jmedgenet-2021-107843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/20/2021] [Indexed: 12/04/2022]
Abstract
Background Genes implicated in the Golgi and endosomal trafficking machinery are crucial for brain development, and mutations in them are particularly associated with postnatal microcephaly (POM). Methods Exome sequencing was performed in three affected individuals from two unrelated consanguineous families presenting with delayed neurodevelopment, intellectual disability of variable degree, POM and failure to thrive. Patient-derived fibroblasts were tested for functional effects of the variants. Results We detected homozygous truncating variants in ATP9A. While the variant in family A is predicted to result in an early premature termination codon, the variant in family B affects a canonical splice site. Both variants lead to a substantial reduction of ATP9A mRNA expression. It has been shown previously that ATP9A localises to early and recycling endosomes, whereas its depletion leads to altered gene expression of components from this compartment. Consistent with previous findings, we also observed overexpression of ARPC3 and SNX3, genes strongly interacting with ATP9A. Conclusion In aggregate, our findings show that pathogenic variants in ATP9A cause a novel autosomal recessive neurodevelopmental disorder with POM. While the physiological function of endogenous ATP9A is still largely elusive, our results underline a crucial role of this gene in endosomal transport in brain tissue.
Collapse
Affiliation(s)
- Guido Vogt
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Verheyen
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Sarina Schwartzmann
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelia Potratz
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anette Schwerin-Nagel
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Manuel Holtgrewe
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health, Berlin, Germany
| | - Dominik Seelow
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Bioinformatics and Translational Genetics, Berlin Institute of Health, Berlin, Germany
| | - Jasmin Blatterer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Gottingen, Germany
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,RG Development and Disease, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,RG Development and Disease, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Heide M, Huttner WB. Human-Specific Genes, Cortical Progenitor Cells, and Microcephaly. Cells 2021; 10:1209. [PMID: 34063381 PMCID: PMC8156310 DOI: 10.3390/cells10051209] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past few years, human-specific genes have received increasing attention as potential major contributors responsible for the 3-fold difference in brain size between human and chimpanzee. Accordingly, mutations affecting these genes may lead to a reduction in human brain size and therefore, may cause or contribute to microcephaly. In this review, we will concentrate, within the brain, on the cerebral cortex, the seat of our higher cognitive abilities, and focus on the human-specific gene ARHGAP11B and on the gene family comprising the three human-specific genes NOTCH2NLA, -B, and -C. These genes are thought to have significantly contributed to the expansion of the cerebral cortex during human evolution. We will summarize the evolution of these genes, as well as their expression and functional role during human cortical development, and discuss their potential relevance for microcephaly. Furthermore, we will give an overview of other human-specific genes that are expressed during fetal human cortical development. We will discuss the potential involvement of these genes in microcephaly and how these genes could be studied functionally to identify a possible role in microcephaly.
Collapse
Affiliation(s)
- Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| |
Collapse
|
25
|
Siskos N, Stylianopoulou E, Skavdis G, Grigoriou ME. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sci 2021; 11:brainsci11050581. [PMID: 33946187 PMCID: PMC8145766 DOI: 10.3390/brainsci11050581] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate.
Collapse
|
26
|
The microcephaly gene Donson is essential for progenitors of cortical glutamatergic and GABAergic neurons. PLoS Genet 2021; 17:e1009441. [PMID: 33739968 PMCID: PMC8011756 DOI: 10.1371/journal.pgen.1009441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/31/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Biallelic mutations in DONSON, an essential gene encoding for a replication fork protection factor, were linked to skeletal abnormalities and microcephaly. To better understand DONSON function in corticogenesis, we characterized Donson expression and consequences of conditional Donson deletion in the mouse telencephalon. Donson was widely expressed in the proliferation and differentiation zones of the embryonic dorsal and ventral telencephalon, which was followed by a postnatal expression decrease. Emx1-Cre-mediated Donson deletion in progenitors of cortical glutamatergic neurons caused extensive apoptosis in the early dorsomedial neuroepithelium, thus preventing formation of the neocortex and hippocampus. At the place of the missing lateral neocortex, these mutants exhibited a dorsal extension of an early-generated paleocortex. Targeting cortical neurons at the intermediate progenitor stage using Tbr2-Cre evoked no apparent malformations, whereas Nkx2.1-Cre-mediated Donson deletion in subpallial progenitors ablated 75% of Nkx2.1-derived cortical GABAergic neurons. Thus, the early telencephalic neuroepithelium depends critically on Donson function. Our findings help explain why the neocortex is most severely affected in individuals with DONSON mutations and suggest that DONSON-dependent microcephaly might be associated with so far unrecognized defects in cortical GABAergic neurons. Targeting Donson using an appropriate recombinase is proposed as a feasible strategy to ablate proliferating and nascent cells in experimental research. The cerebral cortex constitutes the largest part of the mammalian brain and is generated prenatally by highly proliferative progenitors. Genes encoding proteins that are essential for chromosomal segregation, mitotic division, DNA repair, and DNA damage response are frequently mutated in individuals diagnosed with microcephaly, a clinical condition characterized by cerebrocortical hypotrophy. Recent findings suggest that biallelic mutations in DONSON, a replication fork stabilization factor, cause microcephaly and skeletal defects, but this has not been formally tested. Here, we find that Cre-mediated Donson deletion in progenitors of cortical glutamatergic and cortical GABAergic neurons causes extensive programmed cell death at early stages of cortical development in mice. Cell death is induced in the proliferation zones and the postmitotic differentiation zones of the targeted progenitors. Mice undergoing Donson ablation in glutamatergic progenitors do not develop the hippocampus and dorsolateral neocortex, which leads to a dorsal shift of the early-generated piriform cortex. Donson deletion in GABAergic progenitors eliminates the vast majority of GABAergic neurons and oligodendrocyte precursors arising in the targeted lineage. We thus establish that Donson is essential for diverse early telencephalic progenitors. Targeting Donson might be used to kill off highly proliferating cells in experimental and probably therapeutic settings.
Collapse
|
27
|
Tolezano GC, da Costa SS, Scliar MDO, Fernandes WLM, Otto PA, Bertola DR, Rosenberg C, Vianna-Morgante AM, Krepischi ACV. Investigating Genetic Factors Contributing to Variable Expressivity of Class I 17p13.3 Microduplication. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 9:296-306. [PMID: 33688487 PMCID: PMC7936075 DOI: 10.22088/ijmcm.bums.9.4.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/02/2021] [Indexed: 11/13/2022]
Abstract
17p13.3 microduplications are rare copy number variations (CNVs) associated with variable phenotypes, including facial dysmorphism, developmental delay, intellectual disability, and autism. Typically, when a recognized pathogenic CNV is identified, other genetic factors are not considered. We investigated via whole-exome sequencing the presence of additional variants in four carriers of class I 17p13.3 microduplications. A 730 kb 17p13.3 microduplication was identified in two half-brothers with intellectual disability, but not in a third affected half-brother or blood cells from their normal mother (Family A), thus leading to the hypothesis of maternal germline mosaicism. No additional pathogenic variants were detected in Family A. Two affected siblings carried maternally inherited 450 kb 17p13.3 microduplication (Family B); the three carriers of the microduplication exhibited microcephaly and learning disability/speech impairment of variable degrees. Exome analysis revealed a variant of uncertain significance in RORA, a gene already linked to autism, in the autistic boy; his sister was heterozygous for a CYP1B1 pathogenic variant that could be related to her congenital glaucoma. Besides, both siblings carried a loss-of-function variant in DIP2B, a candidate gene for intellectual disability, which was inherited from their father, who also exhibited learning disability in childhood. In conclusion, additional pathogenic variants were revealed in two affected carriers of class I 17p13.3 microduplication (Family B), probably adding to their phenotypes. These results provided new evidence regarding the contribution of RORA and DIP2B to neurocognitive deficits, and highlighted the importance of full genetic investigation in carriers of CNV syndromes with variable expressivity. Finally, we suggest that microcephaly may be a rare clinical feature also related to the presence of the class I 17p13.3 microduplication.
Collapse
Affiliation(s)
- Giovanna Cantini Tolezano
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvia Souza da Costa
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marília de Oliveira Scliar
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Paulo Alberto Otto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil .,Instituto da Criança, Hospital das Clínicas, University of São Paulo Medical, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Angela Maria Vianna-Morgante
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Matos-Rodrigues GE, Tan PB, Rocha-Martins M, Charlier CF, Gomes AL, Cabral-Miranda F, Grigaravicius P, Hofmann TG, Frappart PO, Martins RAP. Progenitor death drives retinal dysplasia and neuronal degeneration in a mouse model of ATRIP-Seckel syndrome. Dis Model Mech 2020; 13:dmm045807. [PMID: 32994318 PMCID: PMC7648607 DOI: 10.1242/dmm.045807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023] Open
Abstract
Seckel syndrome is a type of microcephalic primordial dwarfism (MPD) that is characterized by growth retardation and neurodevelopmental defects, including reports of retinopathy. Mutations in key mediators of the replication stress response, the mutually dependent partners ATR and ATRIP, are among the known causes of Seckel syndrome. However, it remains unclear how their deficiency disrupts the development and function of the central nervous system (CNS). Here, we investigated the cellular and molecular consequences of ATRIP deficiency in different cell populations of the developing murine neural retina. We discovered that conditional inactivation of Atrip in photoreceptor neurons did not affect their survival or function. In contrast, Atrip deficiency in retinal progenitor cells (RPCs) led to severe lamination defects followed by secondary photoreceptor degeneration and loss of vision. Furthermore, we showed that RPCs lacking functional ATRIP exhibited higher levels of replicative stress and accumulated endogenous DNA damage that was accompanied by stabilization of TRP53. Notably, inactivation of Trp53 prevented apoptosis of Atrip-deficient progenitor cells and was sufficient to rescue retinal dysplasia, neurodegeneration and loss of vision. Together, these results reveal an essential role of ATRIP-mediated replication stress response in CNS development and suggest that the TRP53-mediated apoptosis of progenitor cells might contribute to retinal malformations in Seckel syndrome and other MPD disorders.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Pedro B Tan
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Maurício Rocha-Martins
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Clara F Charlier
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Anielle L Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Felipe Cabral-Miranda
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | | | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55131 Germany
| | - Pierre-Olivier Frappart
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55131 Germany
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| |
Collapse
|
29
|
Abstract
AbstractThe high prevalence and spread of arthropod-borne viruses (arboviruses) make them an important cause of viral encephalitis in humans. Most epidemic viral encephalitides have an etiology associated with arboviruses. Among various arboviruses, the Japanese encephalitis virus, West Nile virus, Zika virus, Dengue virus and Chikungunya virus can induce seizures. Arboviruses of the genus Flavivirus are usually transmitted by mosquitoes and other host animals. These vector-borne pathogens can cause epidemic viral encephalitis. Seizures may not be the major manifestation in these viral encephalitides, but may predict a poor prognosis. In this article, we discuss the relationships between these viruses and seizures from perspectives of clinical characteristics, pathogenesis, prognosis and treatments of each.
Collapse
|
30
|
Severino M, Geraldo AF, Utz N, Tortora D, Pogledic I, Klonowski W, Triulzi F, Arrigoni F, Mankad K, Leventer RJ, Mancini GMS, Barkovich JA, Lequin MH, Rossi A. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020; 143:2874-2894. [PMID: 32779696 PMCID: PMC7586092 DOI: 10.1093/brain/awaa174] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Malformations of cortical development are a group of rare disorders commonly manifesting with developmental delay, cerebral palsy or seizures. The neurological outcome is extremely variable depending on the type, extent and severity of the malformation and the involved genetic pathways of brain development. Neuroimaging plays an essential role in the diagnosis of these malformations, but several issues regarding malformations of cortical development definitions and classification remain unclear. The purpose of this consensus statement is to provide standardized malformations of cortical development terminology and classification for neuroradiological pattern interpretation. A committee of international experts in paediatric neuroradiology prepared systematic literature reviews and formulated neuroimaging recommendations in collaboration with geneticists, paediatric neurologists and pathologists during consensus meetings in the context of the European Network Neuro-MIG initiative on Brain Malformations (https://www.neuro-mig.org/). Malformations of cortical development neuroimaging features and practical recommendations are provided to aid both expert and non-expert radiologists and neurologists who may encounter patients with malformations of cortical development in their practice, with the aim of improving malformations of cortical development diagnosis and imaging interpretation worldwide.
Collapse
Affiliation(s)
| | - Ana Filipa Geraldo
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho (CHVNG/E), Vila Nova de Gaia, Portugal
| | - Norbert Utz
- Department of Pediatric Radiology, HELIOS Klinikum Krefeld, Germany
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi Milano, Italy
| | - Filippo Arrigoni
- Department of Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK
| | - Richard J Leventer
- Department of Neurology Royal Children’s Hospital, Murdoch Children’s Research Institute and University of Melbourne Department of Pediatrics, Melbourne, Australia
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - James A Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Maarten H Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
31
|
International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nat Rev Neurol 2020; 16:618-635. [PMID: 32895508 PMCID: PMC7790753 DOI: 10.1038/s41582-020-0395-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.
Collapse
|
32
|
Bamborschke D, Daimagüler HS, Hahn A, Hussain MS, Nürnberg P, Cirak S. Mutation in CEP135 causing primary microcephaly and subcortical heterotopia. Am J Med Genet A 2020; 182:2450-2453. [PMID: 32643282 DOI: 10.1002/ajmg.a.61762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Daniel Bamborschke
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hülya-Sevcan Daimagüler
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Muhammad S Hussain
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.,Institute of Biochemistry I, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Sebahattin Cirak
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
33
|
Khan A, Alaamery M, Massadeh S, Obaid A, Kashgari AA, Walsh CA, Eyaid W. PDCD6IP, encoding a regulator of the ESCRT complex, is mutated in microcephaly. Clin Genet 2020; 98:80-85. [PMID: 32286682 DOI: 10.1111/cge.13756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
Primary microcephaly (PM) is a highly heterogeneous neurodevelopmental disorder with many contributing risk genes and loci identified to date. We report a consanguineous family with PM, intellectual disability and short stature. Using whole exome sequencing, we identified a homozygous frameshift variant in programmed cell death 6 interacting protein (PDCD6IP, c.154_158dup; p.Val54Profs*18). This gene, PDCD6IP, plays an important role in the endosomal sorting complexes required for transport (ESCRT) pathway in the abscission stage of cytokinesis and apoptosis, and is required for normal brain development in mice. The clinical features observed in our patient were similar to the phenotypes observed in mouse and zebrafish models of PDCD6IP mutations in previous studies. This study provides evidence that clinical manifestations of PDCD6IP mutations as seen in our patients with PM and ID may be a novel cause for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Amjad Khan
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, Strasbourg, France
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Abdulrahman Obaid
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre (KAIMRC), King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Amna A Kashgari
- King Abdullah Specialized Children's Hospital (KASCH), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Wafaa Eyaid
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre (KAIMRC), King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Abdullah Specialized Children's Hospital (KASCH), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Marcilla Vázquez C, Carrascosa Romero MDC, Martínez Gutiérrez A, Baquero Cano M, Alfaro Ponce B, Dabad Moreno MJ. A Novel c.968C > T homozygous Mutation in the Polynucleotide Kinase 3' - Phosphatase Gene Related to the Syndrome of Microcephaly, Seizures, and Developmental Delay. J Pediatr Genet 2020; 10:164-172. [PMID: 34040816 DOI: 10.1055/s-0040-1710540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/12/2020] [Indexed: 10/24/2022]
Abstract
Microcephaly is defined by a head circumference that is at least two standard deviations below the mean for age and sex of the general population in a specific race. Primary microcephaly may occur as an isolated inborn error, which may damage to the central nervous system or as part of the congenital abnormalities associated with genetic syndrome, affecting multiple organ systems. One of the syndromic forms consists of microcephaly, seizures, and developmental delay caused by biallelic mutations in the gene that encode polynucleotide kinase 3' - phosphatase protein (PNKP). In this article, we reported a newborn male who presented with microcephaly, severe developmental delay, and early-onset refractories seizures, caused by a novel homozygous mutation of the PNKP gene.
Collapse
|
35
|
Gabriel E, Ramani A, Altinisik N, Gopalakrishnan J. Human Brain Organoids to Decode Mechanisms of Microcephaly. Front Cell Neurosci 2020; 14:115. [PMID: 32457578 PMCID: PMC7225330 DOI: 10.3389/fncel.2020.00115] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are stem cell-based self-assembling 3D structures that recapitulate early events of human brain development. Recent improvements with patient-specific 3D brain organoids have begun to elucidate unprecedented details of the defective mechanisms that cause neurodevelopmental disorders of congenital and acquired microcephaly. In particular, brain organoids derived from primary microcephaly patients have uncovered mechanisms that deregulate neural stem cell proliferation, maintenance, and differentiation. Not only did brain organoids reveal unknown aspects of neurogenesis but also have illuminated surprising roles of cellular structures of centrosomes and primary cilia in regulating neurogenesis during brain development. Here, we discuss how brain organoids have started contributing to decoding the complexities of microcephaly, which are unlikely to be identified in the existing non-human models. Finally, we discuss the yet unresolved questions and challenges that can be addressed with the use of brain organoids as in vitro models of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elke Gabriel
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anand Ramani
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nazlican Altinisik
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
36
|
Pasternak Y, Singer A, Maya I, Sagi-Dain L, Ben-Shachar S, Khayat M, Greenbaum L, Feingold-Zadok M, Zeligson S, Sukenik Halevy R. The yield of chromosomal microarray testing for cases of abnormal fetal head circumference. J Perinat Med 2020; 48:553-558. [PMID: 32721143 DOI: 10.1515/jpm-2020-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Chromosomal microarray analysis (CMA) is the method of choice for genetic work-up in cases of fetal malformations. We assessed the detection rate of CMA in cases of abnormal fetal head circumference (HC). METHODS The study cohort was based on 81 cases of amniocenteses performed throughout Israel for the indication of microcephaly (53) or macrocephaly (28), from January 2015 through December 2018. We retrieved data regarding the clinical background, parental HCs and work-up during the pregnancy from genetic counseling summaries and from patients' medical records. RESULTS There was only one likely pathogenic CMA result (1.89%): a 400-kb microdeletion at 16p13.3 detected in a case of isolated microcephaly. No pathogenic results were found in the macrocephaly group. Most fetuses with microcephaly were female (87.8%), while the majority with macrocephaly were males (86.4%). CONCLUSIONS The results imply that CMA analysis in pregnancies with microcephaly may carry a small yield compared to other indications. Regarding macrocephaly, our cohort was too small to draw conclusions. In light of the significant gender effect on the diagnosis of abnormal HC, standardization of fetal HC charts according to fetal gender may normalize cases that were categorized outside the normal range and may increase the yield of CMA for cases of abnormal HC.
Collapse
Affiliation(s)
- Yael Pasternak
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amihood Singer
- Community Genetics, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Idit Maya
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| | - Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shay Ben-Shachar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Genetics Institute, Sorasky Medical Center, Tel Aviv, Israel
| | - Morad Khayat
- Institute of Human Genetics, Haemek Medical Center, Afula, Israel
| | - Lior Greenbaum
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; and The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Sharon Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rivka Sukenik Halevy
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
37
|
Lima LHDSS, Monteiro EMLM, Coriolano MWDL, Linhares FMP, Cavalcanti AMTDS. Family fortresses in Zika Congenital Syndrome according to Betty Neuman. Rev Bras Enferm 2020; 73:e20180578. [PMID: 32074238 DOI: 10.1590/0034-7167-2018-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/03/2018] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES to identify elements that contribute to strengthen the family system of children with Zika virus congenital syndrome according to Betty Neuman's theory. METHODS qualitative research, carried out in the outpatient service of a public hospital in the city of Recife, Brazil, with 13 mothers, by semi-structured interviews. The IRAMUTEQ software was used for data analysis and the interpretation was carried out according to Betty Neuman's Systems Model Theory. RESULTS the dendrogram originated five categories, which we named: Family Routine, Health Service Assistance, Changes in Lifestyle, Support Network, and Social Repercussions of Care for the the Family Context. FINAL CONSIDERATIONS nursing actions based on Betty Neuman's theory provide subsidies for the recognition of elements that strengthen the defense lines of the family system. These resources can be explored, aiming to maintaining the well-being and balance in the context of the family system.
Collapse
|
38
|
|
39
|
Abstract
Neuroimaging enables the evaluation of many aspects of brain maturation, and detection of abnormalities such as malformation and injury. MRI is integral to the diagnostic work-up of congenital and acquired disorders of the central nervous system in newborns, and imaging findings are central to prognostication. This paper reviews techniques to optimize assessment of maturity of the neonatal brain, as well as abnormalities and injuries of the newborn brain that are associated with abnormal neurocognitive development.
Collapse
|
40
|
Oegema R, McGillivray G, Leventer R, Le Moing AG, Bahi-Buisson N, Barnicoat A, Mandelstam S, Francis D, Francis F, Mancini GMS, Savelberg S, van Haaften G, Mankad K, Lequin MH. EML1-associated brain overgrowth syndrome with ribbon-like heterotopia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:627-637. [PMID: 31710781 PMCID: PMC6916563 DOI: 10.1002/ajmg.c.31751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 01/17/2023]
Abstract
EML1 encodes the protein Echinoderm microtubule-associated protein-like 1 or EMAP-1 that binds to the microtubule complex. Mutations in this gene resulting in complex brain malformations have only recently been published with limited clinical descriptions. We provide further clinical and imaging details on three previously published families, and describe two novel unrelated individuals with a homozygous partial EML1 deletion and a homozygous missense variant c.760G>A, p.(Val254Met), respectively. From review of the clinical and imaging data of eight individuals from five families with biallelic EML1 variants, a very consistent imaging phenotype emerges. The clinical syndrome is characterized by mainly neurological features including severe developmental delay, drug-resistant seizures and visual impairment. On brain imaging there is megalencephaly with a characteristic ribbon-like subcortical heterotopia combined with partial or complete callosal agenesis and an overlying polymicrogyria-like cortical malformation. Several of its features can be recognized on prenatal imaging especially the abnormaly formed lateral ventricles, hydrocephalus (in half of the cases) and suspicion of a neuronal migration disorder. In conclusion, biallelic EML1 disease-causing variants cause a highly specific pattern of congenital brain malformations, severe developmental delay, seizures and visual impairment.
Collapse
Affiliation(s)
- Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Richard Leventer
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute and, University of Melbourne Department of Pediatrics, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | | | - Nadia Bahi-Buisson
- Université Paris Descartes, Sorbonne Paris Cités, Paris, France.,Embryology and genetics of congenital malformations, Institut Imagine-INSERM, Paris, France.,Pediatric Neurology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Angela Barnicoat
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Simone Mandelstam
- Royal Children's Hospital, Department of Pediatrics, University of Melbourne, Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Department of Radiology, University of Melbourne, Murdoch Children's Research Institute, Melbourne, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Fiona Francis
- INSERM U 1270, Paris, France.,Sorbonne Université, UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sanne Savelberg
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Maarten H Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Passemard S, Perez F, Gressens P, El Ghouzzi V. Endoplasmic reticulum and Golgi stress in microcephaly. Cell Stress 2019; 3:369-384. [PMID: 31832602 PMCID: PMC6883743 DOI: 10.15698/cst2019.12.206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microcephaly is a neurodevelopmental condition characterized by a small brain size associated with intellectual deficiency in most cases and is one of the most frequent clinical sign encountered in neurodevelopmental disorders. It can result from a wide range of environmental insults occurring during pregnancy or postnatally, as well as from various genetic causes and represents a highly heterogeneous condition. However, several lines of evidence highlight a compromised mode of division of the cortical precursor cells during neurogenesis, affecting neural commitment or survival as one of the common mechanisms leading to a limited production of neurons and associated with the most severe forms of congenital microcephaly. In this context, the emergence of the endoplasmic reticulum (ER) and the Golgi apparatus as key guardians of cellular homeostasis, especially through the regulation of proteostasis, has raised the hypothesis that pathological ER and/or Golgi stress could contribute significantly to cortical impairments eliciting microcephaly. In this review, we discuss recent findings implicating ER and Golgi stress responses in early brain development and provide an overview of microcephaly-associated genes involved in these pathways.
Collapse
Affiliation(s)
- Sandrine Passemard
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas'Hospital, London, United Kingdom
| | | |
Collapse
|
42
|
Loss of SMPD4 Causes a Developmental Disorder Characterized by Microcephaly and Congenital Arthrogryposis. Am J Hum Genet 2019; 105:689-705. [PMID: 31495489 DOI: 10.1016/j.ajhg.2019.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.
Collapse
|
43
|
Oegema R, Barkovich AJ, Mancini GMS, Guerrini R, Dobyns WB. Subcortical heterotopic gray matter brain malformations: Classification study of 107 individuals. Neurology 2019; 93:e1360-e1373. [PMID: 31484711 PMCID: PMC6814414 DOI: 10.1212/wnl.0000000000008200] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To better evaluate the imaging spectrum of subcortical heterotopic gray matter brain malformations (subcortical heterotopia [SUBH]), we systematically reviewed neuroimaging and clinical data of 107 affected individuals. METHODS SUBH is defined as heterotopic gray matter, located within the white matter between the cortex and lateral ventricles. Four large brain malformation databases were searched for individuals with these malformations; data on imaging, clinical outcomes, and results of molecular testing were systematically reviewed and integrated with all previously published subtypes to create a single classification system. RESULTS Review of the databases revealed 107 patients with SUBH, the large majority scanned during childhood (84%), including more than half before 4 years (59%). Although most individuals had cognitive or motor disability, 19% had normal development. Epilepsy was documented in 69%. Additional brain malformations were common and included abnormalities of the corpus callosum (65/102 [64%]), and, often, brainstem or cerebellum (47/106 [44%]). Extent of the heterotopic gray matter brain malformations (unilateral or bilateral) did not influence the presence or age at onset of seizures. Although genetic testing was not systematically performed in this group, the sporadic occurrence and frequent asymmetry suggests either postzygotic mutations or prenatal disruptive events. Several rare, bilateral forms are caused by mutations in genes associated with cell proliferation and polarity (EML1, TUBB, KATNB1, CENPJ, GPSM2). CONCLUSION This study reveals a broad clinical and imaging spectrum of heterotopic malformations and provides a framework for their classification.
Collapse
Affiliation(s)
- Renske Oegema
- From the Department of Clinical Genetics (R.O., G.M.S.M.), Erasmus MC University Medical Center, Rotterdam; Department of Genetics (R.O.), University Medical Center Utrecht, the Netherlands; Departments of Radiology and Biomedical Imaging and Neurology and Neurology (A.J.B.), University of California, San Francisco; Department of Neuroscience, Pharmacology and Child Health (R.G.), Children's Hospital A. Meyer and University of Florence, Italy; Center for Integrative Brain Research (W.B.D.), Seattle Children's Research Institute; and Departments of Pediatrics and Neurology (W.B.D.), University of Washington, Seattle.
| | - A James Barkovich
- From the Department of Clinical Genetics (R.O., G.M.S.M.), Erasmus MC University Medical Center, Rotterdam; Department of Genetics (R.O.), University Medical Center Utrecht, the Netherlands; Departments of Radiology and Biomedical Imaging and Neurology and Neurology (A.J.B.), University of California, San Francisco; Department of Neuroscience, Pharmacology and Child Health (R.G.), Children's Hospital A. Meyer and University of Florence, Italy; Center for Integrative Brain Research (W.B.D.), Seattle Children's Research Institute; and Departments of Pediatrics and Neurology (W.B.D.), University of Washington, Seattle
| | - Grazia M S Mancini
- From the Department of Clinical Genetics (R.O., G.M.S.M.), Erasmus MC University Medical Center, Rotterdam; Department of Genetics (R.O.), University Medical Center Utrecht, the Netherlands; Departments of Radiology and Biomedical Imaging and Neurology and Neurology (A.J.B.), University of California, San Francisco; Department of Neuroscience, Pharmacology and Child Health (R.G.), Children's Hospital A. Meyer and University of Florence, Italy; Center for Integrative Brain Research (W.B.D.), Seattle Children's Research Institute; and Departments of Pediatrics and Neurology (W.B.D.), University of Washington, Seattle
| | - Renzo Guerrini
- From the Department of Clinical Genetics (R.O., G.M.S.M.), Erasmus MC University Medical Center, Rotterdam; Department of Genetics (R.O.), University Medical Center Utrecht, the Netherlands; Departments of Radiology and Biomedical Imaging and Neurology and Neurology (A.J.B.), University of California, San Francisco; Department of Neuroscience, Pharmacology and Child Health (R.G.), Children's Hospital A. Meyer and University of Florence, Italy; Center for Integrative Brain Research (W.B.D.), Seattle Children's Research Institute; and Departments of Pediatrics and Neurology (W.B.D.), University of Washington, Seattle
| | - William B Dobyns
- From the Department of Clinical Genetics (R.O., G.M.S.M.), Erasmus MC University Medical Center, Rotterdam; Department of Genetics (R.O.), University Medical Center Utrecht, the Netherlands; Departments of Radiology and Biomedical Imaging and Neurology and Neurology (A.J.B.), University of California, San Francisco; Department of Neuroscience, Pharmacology and Child Health (R.G.), Children's Hospital A. Meyer and University of Florence, Italy; Center for Integrative Brain Research (W.B.D.), Seattle Children's Research Institute; and Departments of Pediatrics and Neurology (W.B.D.), University of Washington, Seattle
| |
Collapse
|
44
|
Boonsawat P, Joset P, Steindl K, Oneda B, Gogoll L, Azzarello-Burri S, Sheth F, Datar C, Verma IC, Puri RD, Zollino M, Bachmann-Gagescu R, Niedrist D, Papik M, Figueiro-Silva J, Masood R, Zweier M, Kraemer D, Lincoln S, Rodan L, Passemard S, Drunat S, Verloes A, Horn AHC, Sticht H, Steinfeld R, Plecko B, Latal B, Jenni O, Asadollahi R, Rauch A. Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet Med 2019; 21:2043-2058. [PMID: 30842647 PMCID: PMC6752480 DOI: 10.1038/s41436-019-0464-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/11/2019] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.
Collapse
Affiliation(s)
- Paranchai Boonsawat
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | | | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Satellite, Ahmedabad, India
| | - Chaitanya Datar
- Sahyadri Medical Genetics and Tissue Engineering Facility, Kothrud, Pune and Bharati Hospital and Research Center Dhankawadi, Pune, India
| | - Ishwar C Verma
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Marcella Zollino
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Rahim Masood
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Dennis Kraemer
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Sharyn Lincoln
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Sandrine Passemard
- Service de Neuropédiatrie, Hôpital Universitaire Robert Debré, APHP, Paris, France
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Séverine Drunat
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Anselm H C Horn
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Steinfeld
- Division of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara Plecko
- Division of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Casar Tena T, Maerz LD, Szafranski K, Groth M, Blätte TJ, Donow C, Matysik S, Walther P, Jeggo PA, Burkhalter MD, Philipp M. Resting cells rely on the DNA helicase component MCM2 to build cilia. Nucleic Acids Res 2019; 47:134-151. [PMID: 30329080 PMCID: PMC6326816 DOI: 10.1093/nar/gky945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Tamara J Blätte
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sabrina Matysik
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
46
|
Van den Veyver IB. Prenatally diagnosed developmental abnormalities of the central nervous system and genetic syndromes: A practical review. Prenat Diagn 2019; 39:666-678. [PMID: 31353536 DOI: 10.1002/pd.5520] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
Developmental brain abnormalities are complex and can be difficult to diagnose by prenatal imaging because of the ongoing growth and development of the brain throughout pregnancy and the limitations of ultrasound, often requiring fetal magnetic resonance imaging as an additional tool. As for all major structural congenital anomalies, amniocentesis with chromosomal microarray and a karyotype is the first-line recommended test for the genetic work-up of prenatally diagnosed central nervous system (CNS) abnormalities. Many CNS defects, especially neuronal migration defects affecting the cerebral and cerebellar cortex, are caused by single-gene mutations in a large number of different genes. Early data suggest that prenatal diagnostic exome sequencing for fetal CNS defects will have a high diagnostic yield, but interpretation of sequencing results can be complex. Yet a genetic diagnosis is important for prognosis prediction and recurrence risk counseling. The evaluation and management of such patients is best done in a multidisciplinary team approach. Here, we review general principles of the genetic work-up for fetuses with CNS defects and review categories of genetic causes of prenatally diagnosed CNS phenotypes.
Collapse
|
47
|
Zurkirchen L, Varum S, Giger S, Klug A, Häusel J, Bossart R, Zemke M, Cantù C, Atak ZK, Zamboni N, Basler K, Sommer L. Yin Yang 1 sustains biosynthetic demands during brain development in a stage-specific manner. Nat Commun 2019; 10:2192. [PMID: 31097699 PMCID: PMC6522535 DOI: 10.1038/s41467-019-09823-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Yin Yang 1 (YY1) plays an important role in human disease. It is often overexpressed in cancers and mutations can lead to a congenital haploinsufficiency syndrome characterized by craniofacial dysmorphisms and neurological dysfunctions, consistent with a role in brain development. Here, we show that Yy1 controls murine cerebral cortex development in a stage-dependent manner. By regulating a wide range of metabolic pathways and protein translation, Yy1 maintains proliferation and survival of neural progenitor cells (NPCs) at early stages of brain development. Despite its constitutive expression, however, the dependence on Yy1 declines over the course of corticogenesis. This is associated with decreasing importance of processes controlled by Yy1 during development, as reflected by diminished protein synthesis rates at later developmental stages. Thus, our study unravels a novel role for Yy1 as a stage-dependent regulator of brain development and shows that biosynthetic demands of NPCs dynamically change throughout development. The transcription factor Yin Yang 1 (YY1) plays an important role in human disease, yet little is known about its role in brain development. This study shows that YY1 controls cerebral cortex development by maintaining proliferation and survival of neural progenitor cells via transcriptional regulation of genes involved in metabolism and protein translation.
Collapse
Affiliation(s)
- Luis Zurkirchen
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Sandra Varum
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Sonja Giger
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Annika Klug
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Jessica Häusel
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Raphaël Bossart
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Martina Zemke
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland.,Wallenberg Centre for Molecular Medicine (WCMM), Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, 58183, Sweden
| | - Zeynep Kalender Atak
- Laboratory of Computational Biology, KU Leuven Center for Human Genetics, Leuven, 3000, Belgium
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
48
|
Pirozzi F, Nelson B, Mirzaa G. From microcephaly to megalencephaly: determinants of brain size. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936767 PMCID: PMC6436952 DOI: 10.31887/dcns.2018.20.4/gmirzaa] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Expansion of the human brain, and specifically the neocortex, is among the most remarkable evolutionary processes that correlates with cognitive, emotional, and social abilities. Cortical expansion is determined through a tightly orchestrated process of neural stem cell proliferation, migration, and ongoing organization, synaptogenesis, and apoptosis. Perturbations of each of these intricate steps can lead to abnormalities of brain size in humans, whether small (microcephaly) or large (megalencephaly). Abnormalities of brain growth can be clinically isolated or occur as part of complex syndromes associated with other neurodevelopmental problems (eg, epilepsy, autism, intellectual disability), brain malformations, and body growth abnormalities. Thorough review of the genetic literature reveals that human microcephaly and megalencephaly are caused by mutations of a rapidly growing number of genes linked within critical cellular pathways that impact early brain development, with important pathomechanistic links to cancer, body growth, and epilepsy. Given the rapid rate of causal gene identification for microcephaly and megalencephaly understanding the roles and interplay of these important signaling pathways is crucial to further unravel the mechanisms underlying brain growth disorders and, more fundamentally, normal brain growth and development in humans. In this review, we will (a) overview the definitions of microcephaly and megalencephaly, highlighting their classifications in clinical practice; (b) overview the most common genes and pathways underlying microcephaly and megalencephaly based on the fundamental cellular processes that are perturbed during cortical development; and (c) outline general clinical molecular diagnostic workflows for children and adults presenting with microcephaly and megalencephaly.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Branden Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
49
|
Van Esch H, Colnaghi R, Freson K, Starokadomskyy P, Zankl A, Backx L, Abramowicz I, Outwin E, Rohena L, Faulkner C, Leong GM, Newbury-Ecob RA, Challis RC, Õunap K, Jaeken J, Seuntjens E, Devriendt K, Burstein E, Low KJ, O'Driscoll M. Defective DNA Polymerase α-Primase Leads to X-Linked Intellectual Disability Associated with Severe Growth Retardation, Microcephaly, and Hypogonadism. Am J Hum Genet 2019; 104:957-967. [PMID: 31006512 PMCID: PMC6506757 DOI: 10.1016/j.ajhg.2019.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Replicating the human genome efficiently and accurately is a daunting challenge involving the duplication of upward of three billion base pairs. At the core of the complex machinery that achieves this task are three members of the B family of DNA polymerases: DNA polymerases α, δ, and ε. Collectively these multimeric polymerases ensure DNA replication proceeds at optimal rates approaching 2 × 103 nucleotides/min with an error rate of less than one per million nucleotides polymerized. The majority of DNA replication of undamaged DNA is conducted by DNA polymerases δ and ε. The DNA polymerase α-primase complex performs limited synthesis to initiate the replication process, along with Okazaki-fragment synthesis on the discontinuous lagging strand. An increasing number of human disorders caused by defects in different components of the DNA-replication apparatus have been described to date. These are clinically diverse and involve a wide range of features, including variable combinations of growth delay, immunodeficiency, endocrine insufficiencies, lipodystrophy, and cancer predisposition. Here, by using various complementary approaches, including classical linkage analysis, targeted next-generation sequencing, and whole-exome sequencing, we describe distinct missense and splice-impacting mutations in POLA1 in five unrelated families presenting with an X-linked syndrome involving intellectual disability, proportionate short stature, microcephaly, and hypogonadism. POLA1 encodes the p180 catalytic subunit of DNA polymerase α-primase. A range of replicative impairments could be demonstrated in lymphoblastoid cell lines derived from affected individuals. Our findings describe the presentation of pathogenic mutations in a catalytic component of a B family DNA polymerase member, DNA polymerase α.
Collapse
Affiliation(s)
- Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium; Laboratory for the Genetics of Cognition, Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | - Rita Colnaghi
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Sussex, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Petro Starokadomskyy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andreas Zankl
- Department of Clinical Genetics, the Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Hospital Westmead Clinical School, Sydney Medical School, the University of Sydney, Westmead, NSW 2145, Australia; Bone Biology Division and Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Liesbeth Backx
- Laboratory for the Genetics of Cognition, Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Iga Abramowicz
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Sussex, UK
| | - Emily Outwin
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Sussex, UK
| | - Luis Rohena
- Division of Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX 78234, USA
| | - Claire Faulkner
- Bristol Genetics Laboratory, Southmead Hospital, BS10 5NB Bristol, UK
| | - Gary M Leong
- Department of Paediatrics, Nepean Hospital, Nepean Clinical School, the University of Sydney, Kingswood, NSW 2747, Australia
| | - Ruth A Newbury-Ecob
- Clinical Genetics, St. Michael's Hospital, University Hospitals NHS Trust, BS2 8HW Bristol, UK
| | - Rachel C Challis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Jacques Jaeken
- Center for Metabolic Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Eve Seuntjens
- Developmental Neurobiology, Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390 Texas, USA
| | - Karen J Low
- Clinical Genetics, St. Michael's Hospital, University Hospitals NHS Trust, BS2 8HW Bristol, UK
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Sussex, UK.
| |
Collapse
|
50
|
Zakaria M, Fatima A, Klar J, Wikström J, Abdullah U, Ali Z, Akram T, Tariq M, Ahmad H, Schuster J, Baig SM, Dahl N. Primary microcephaly, primordial dwarfism, and brachydactyly in adult cases with biallelic skipping of RTTN exon 42. Hum Mutat 2019; 40:899-903. [PMID: 30927481 DOI: 10.1002/humu.23755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/27/2019] [Accepted: 03/24/2019] [Indexed: 11/11/2022]
Abstract
Biallelic and pathogenic variants in the RTTN gene, encoding the centrosomal protein Rotatin, are associated with variable degrees of neurodevelopmental abnormalities, microcephaly, and extracranial malformations. To date, no reported case has reached their third decade. Herein, we report on a consanguineous family with three adult members, age 43, 57, and 60 years respectively, with primary microcephaly, developmental delay, primordial dwarfism, and brachydactyly segregating a homozygous splice site variant NM_173630.3:c.5648-5T>A in RTTN. The variant RTTN allele results in a nonhypomorphic skipping of exon 42 and a frameshift [(NP_775901.3:p.Ala1883Glyfs*6)]. Brain MRI of one affected individual showed markedly reduced volume of cerebral lobes and enlarged sulci but without signs of neural migration defects. Our assessment of three adult cases with a biallelic RTTN variant shows that a predicted shortened Rotatin, lacking the C-terminal end, are associated with stationary clinical features into the seventh decade. Furthermore, our report adds brachydactyly to the phenotypic spectrum in this pleiotropic entity.
Collapse
Affiliation(s)
- Muhammad Zakaria
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Centre for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Ambrin Fatima
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Uzma Abdullah
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Zafar Ali
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Talia Akram
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Tariq
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Habib Ahmad
- Department of Botany, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Jens Schuster
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Niklas Dahl
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|