1
|
Nieves-Colón MA, Ulrich EC, Chen L, Torres Colón GA, Clemente MR, Copi LCPSI, Benn Torres J. Genetic ancestry in Puerto Rican afro-descendants illustrates diverse histories of African diasporic populations. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25029. [PMID: 39305067 DOI: 10.1002/ajpa.25029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVES Genetic studies of contemporary Puerto Ricans reflect a demographic history characterized by admixture between Indigenous American, African, and European peoples. While previous studies provide genetic perspectives on the general Puerto Rican population, less is known about the island's sub-populations, specifically Afro-Puerto Ricans. MATERIALS AND METHODS In this study, the genetic ancestry of Afro-Puerto Ricans is characterized and compared to other Caribbean populations. Thirty DNA samples collected among self-identified Puerto Ricans of African descent in Loíza (n = 2), Piñones (n = 13), San Juan (n = 2), Mayagüez (n = 9), and Ponce (n = 4), were genotyped at 750,000 loci on the National Geographic Genochip. We then applied unsupervised clustering and dimensionality-reduction methods to detect continental and subcontinental African and European genetic ancestry patterns. RESULTS Admixture analyses reveal that on average, the largest genetic ancestry component for Afro-Puerto Ricans is African in origin, followed by European and Indigenous American genetic ancestry components. African biogeographic origins of Afro-Puerto Ricans align most closely with contemporary peoples of Lower Guinea and the Bight of Biafra, while the European genetic ancestry component is most similar to contemporary Iberian, Italian, and Basque populations. These findings contrast with the biogeographic origins of comparative Barbadian and Puerto Rican populations. DISCUSSION Our results suggest that while there are similarities with regard to general patterns of genetic ancestry among African descendants in the Caribbean, there is previously unrecognized regional heterogeneity, including among Puerto Rican sub-populations. These results are also consistent with available historical sources, while providing depth absent from the documentary record, particularly with regard to African ancestry.
Collapse
Affiliation(s)
- Maria A Nieves-Colón
- Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Emma C Ulrich
- Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Lijuan Chen
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | - Gabriel A Torres Colón
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | - Jada Benn Torres
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Dye TDV, Quiñones Tavárez Z, Rivera I, Cardona Cordero N. Social determinants of participation in genetic research among Puerto Ricans and in the Puerto Rican diaspora. Soc Sci Med 2024; 362:117437. [PMID: 39461167 DOI: 10.1016/j.socscimed.2024.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Puerto Ricans are underrepresented in genetic research. This underrepresentation denies Puerto Ricans the benefit from therapeutic developments that could mitigate health disparities arising from conditions for which genetically-derived treatments exist. The Puerto Rican diaspora, especially post-2017 due to economic and environmental crises, has expanded within the USA. Prior research suggests that Latin American diaspora communities are less likely to participate in genetic research. We hypothesized, specifically, that the Puerto Rican diaspora in the USA would be less likely to participate in genetic research than would Puerto Ricans in their homeland's archipelago, and that accounting for social and cultural determinants related to the diaspora experience would mitigate this disparity. We implemented an analytical cross-sectional study of archipelago-residing Puerto Ricans and of the USA-residing diaspora to evaluate this hypothesis. With 1582 Puerto Ricans (723 in Puerto Rico, 859 in the USA), we found that while most participants would participate in genetic research, participation rates varied significantly by diaspora status. Puerto Ricans born and living in the USA were initially more likely to decline participation compared to those in Puerto Rico (OR = 1.54, p < 0.01). However, once adjusted for social and cultural variables, this difference was eliminated (aOR = 1.08, p = n.s.). The factors influencing non-participation include oppression, discrimination, distrust, and social determinants, aligning with the theory of minoritization. An important community in the USA and in the world, Puerto Ricans have the right to participate in well-conducted research and to benefit from its findings, particularly around topics that could help address existing disparities in health outcomes.
Collapse
Affiliation(s)
- Timothy De Ver Dye
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | - Zahira Quiñones Tavárez
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | - Ivelisse Rivera
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | | |
Collapse
|
3
|
Bravi CM, Motti JMB, García A. Letter to the editor: A Southern Cone origin rather than Peruvian affinities for ancient Patagonian B2 mitogenomes. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24934. [PMID: 38577959 DOI: 10.1002/ajpa.24934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Claudio M Bravi
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET-CICPBA-Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Josefina M B Motti
- Laboratorio de Ecología Evolutiva Humana, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires. CONICET, CCT- Tandil, 7631 Quequén, Argentina
| | - Angelina García
- Instituto de Antropología de Córdoba, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
De Jesus O. Degenerative Cervical Disc Herniation: Prevalence of Affected Cervical Level in a Hispanic Population in Puerto Rico. World Neurosurg 2024; 181:e776-e779. [PMID: 37914080 DOI: 10.1016/j.wneu.2023.10.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND In the literature, degenerative cervical disc herniation is considered to occur more frequently at the C5-C6 and C6-C7 levels. This study aimed to evaluate the operated cervical level prevalence among patients with degenerative cervical disc herniation in a Hispanic Puerto Rico population. METHODS The University of Puerto Rico Neurosurgery database was used to identify patients who underwent anterior cervical discectomy for degenerative cervical disc herniation during a 15-year period from January 1, 2006 until December 31, 2020. Operated cervical levels for each patient were analyzed. RESULTS During the study period, 409 patients were operated on for degenerative cervical disc herniation. Two hundred-eight patients (50.8%) had disc herniations at more than 1 cervical level for 663 treated levels. The most prevalent cervical levels in this Hispanic population were C5-C6 (34.8%) and C4-C5 (28.1%). The C6-C7 level was involved in 18.9% of the operated levels, and the C3-C4 level in 17.3%. The C7-T1 level was involved in only 0.6% of the operated levels, and the C2-3 level in 0.3%. The cohort included 51.3% of men and 48.7% of women, with a men-to-women ratio of 1.05:1. The median age of females was 56.5 (range 26-82) and 59.0 (range 31-85) for males. Operated cervical discs were most common between the ages of 48 and 66 years for either sex. CONCLUSIONS In a Hispanic Puerto Rico population, the most prevalent operated degenerative cervical disc levels were C5-C6 and C4-C5.
Collapse
Affiliation(s)
- Orlando De Jesus
- Department of Surgery, Section of Neurosurgery, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA.
| |
Collapse
|
5
|
Winful T, McCormack K, Mueller E, Chen L, Clemente MR, Torres JB. Exploring the legacy of African and Indigenous Caribbean admixture in Puerto Rico. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:194-209. [PMID: 37525538 DOI: 10.1002/ajpa.24814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVES From an anthropological genetic perspective, little is known about the ethnogenesis of African descendants in Puerto Rico. Furthermore, historical interactions between Indigenous Caribbean and African descendant peoples that may be reflected in the ancestry of contemporary populations are understudied. Given this dearth of genetic research and the precedence for Afro-Indigenous interactions documented by historical, archeological, and other lines of evidence, we sought to assess the biogeographic origins of African descendant Puerto Ricans and to query the potential for Indigenous ancestry within this community. MATERIALS AND METHODS Saliva samples were collected from 58 self-identified African descendant Puerto Ricans residing in Puerto Rico. We sequenced whole mitochondrial genomes and genotyped Y chromosome haplogroups for each male individual (n = 25). Summary statistics, comparative analyses, and network analysis were used to assess diversity and variation in haplogroup distribution between the sample and comparative populations. RESULTS As indicated by mitochondrial haplogroups, 66% had African, 5% had European, and 29% had Indigenous American matrilines. Along the Y chromosome, 52% had African, 28% had Western European, 16% had Eurasian, and, notably, 4% had Indigenous American patrilines. Both mitochondrial and Y chromosome haplogroup frequencies were significantly different from several comparative populations. DISCUSSION Biogeographic origins are consistent with historical accounts of African, Indigenous American, and European ancestry. However, this first report of Indigenous American paternal ancestry in Puerto Rico suggests distinctive features within African descendant communities on the island. Future studies expanding sampling and incorporating higher resolution genetic markers are necessary to more fully understand African descendant history in Puerto Rico.
Collapse
Affiliation(s)
- Taiye Winful
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | - Katie McCormack
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | - Elsa Mueller
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | - Lijuan Chen
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Jada Benn Torres
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Nieves-Colón MA. Anthropological genetic insights on Caribbean population history. Evol Anthropol 2022; 31:118-137. [PMID: 35060661 DOI: 10.1002/evan.21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022]
Abstract
As the last American region settled by humans, yet the first to experience European colonization, the Caribbean islands have a complex history characterized by continuous migration, admixture, and demographic change. In the last 20 years, genetics research has transformed our understanding of Caribbean population history and revisited major debates in Caribbean anthropology, such as those surrounding the first peopling of the Antilles and the relationship between ancient Indigenous communities and present-day islanders. Genetics studies have also contributed novel perspectives for understanding pivotal events in Caribbean post-contact history such as European colonization, the Atlantic Slave Trade, and the Asian Indenture system. Here, I discuss the last 20 years of Caribbean genetics research and emphasize the importance of integrating genetics with interdisciplinary historic, archaeological, and anthropological approaches. Such interdisciplinary research is essential for investigating the dynamic history of the Caribbean and characterizing its impact on the biocultural diversity of present-day Caribbean peoples.
Collapse
Affiliation(s)
- Maria A Nieves-Colón
- Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Vargas JG, Izquierdo NJ, Oliver A, Muns S, Garcia-Rodriguez O, Villegas V, Emanuelli A. Genetic analysis of patients with nonsyndromic and syndromic retinitis pigmentosa in Puerto Rico: a genetic legacy. Ophthalmic Genet 2022; 43:454-461. [PMID: 35318874 DOI: 10.1080/13816810.2022.2050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a genetically heterogeneous group of diseases characterized by complete progressive vision loss; it has a prevalence of approximately one in 2500-7000. Patients with RP may have isolated findings, or the disorder can occur as part of a constellation of other abnormalities that, together, are known as syndromic RP. The aim of this study was to describe the results of a genetic analysis of a cohort of Puerto Ricans with a clinical diagnosis of RP. MATERIALS AND METHODS This was a cross-sectional study with a cohort of 224 Puerto Rican patients who carried a clinical diagnosis of RP. During a local (Puerto Rico) RP convention, the patients were offered genetic analysis. Volunteering patients signed consent forms for the study. Saliva samples were obtained and analyzed. Patients were evaluated by at least one of the authors. Patients with pathogenic mutation(s), according to the panel, were classified as positive and sorted based on the results. RESULTS Of 224 patients, 161 (71.9%) had pathogenic gene variants associated with IRDs. 54.5% (122/224) of cases were conclusive. More than half (72/122) of these cases are explained by mutations in the BBS1, PDE6B, CNGB1, and USH2A genes. Genetic analysis showed that the highest rate of pathogenic variants in our cohort was found in the BBS1 gene. CONCLUSIONS This was the first genetic analysis in Puerto Rico of patients with RP. The most common mutation associated with RP was found in the BBS1 gene. The frequency of other pathogenic variants related to RP in Puerto Rico were different to those reported in Spain.
Collapse
Affiliation(s)
- José Gustavo Vargas
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Natalio J Izquierdo
- Department of Surgery, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan Puerto Rico
| | - Armando Oliver
- Department of Ophthalmology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Sofia Muns
- Department of Ophthalmology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Omar Garcia-Rodriguez
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Víctor Villegas
- Department of Ophthalmology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Andrés Emanuelli
- Department of Ophthalmology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
8
|
Tamburrini C, de Saint Pierre M, Bravi CM, Bailliet G, Jurado Medina L, Velázquez IF, Real LE, Holley A, Tedeschi CM, Basso NG, Parolin ML. Uniparental origins of the admixed Argentine Patagonia. Am J Hum Biol 2021; 34:e23682. [PMID: 34533260 DOI: 10.1002/ajhb.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES We aimed to contribute to the understanding of the ancient geographic origins of the uniparentally inherited markers in modern admixed Argentinian populations from central Patagonia with new information provided for the city of Trelew. We attempted to highlight the importance of combining different genetic markers when studying population history. METHODS The mtDNA control region sequence was typified in 89 individuals and 12 Y-STR and 15 Y-SNP loci were analyzed in 66 males. With these data, analysis of molecular variance and Network analyses were carried out. We exhaustively compared the modern data with ancient mtDNA information. Finally, we tested the differences in continental origins estimated by uniparental and previously published biparental markers. RESULTS Native American mtDNAs (53.9%) increased when maternal ancestors were born in the northern (81.8%) and southern (58.5%) regions of Argentina or in Chile (77.8%). Population substructure was only observed for Y-chromosome haplotypes. Some mtDNA haplogroups have been present in the area for at least ca. 2762-2430 and ca. 500 (D1g and D1g4 haplogroups) and ca. 6736 and ca. 6620 (C1b and C1c haplogroups) years, respectively. In contrast, haplogroups B2i2 and C1b13, frequent in modern Patagonia populations, had not been found in previous ancient DNA studies of the region. CONCLUSIONS The results suggest that Native American ancestry is well preserved in the region. Trelew samples had characteristic native mtDNA haplogroups previously described in Chilean and Argentine Patagonian populations, but not observed in ancient samples until now. These findings support the idea that these lineages have a recent regional origin. Finally, the estimated proportions of continental ancestry depend on the genetic marker analyzed.
Collapse
Affiliation(s)
- Camila Tamburrini
- Instituto de Diversidad y Evolución Austral, (IDEAus-CONICET), Puerto Madryn, Chubut, Argentina
| | - Michelle de Saint Pierre
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago de Chile, Chile
| | - Claudio Marcelo Bravi
- Laboratorio de Genética Molecular Poblacional, IMBICE (CCT-CONICET, CIC-PBA), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Graciela Bailliet
- Laboratorio de Genética Molecular Poblacional, IMBICE (CCT-CONICET, CIC-PBA), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Laura Jurado Medina
- Laboratorio de Genética Molecular Poblacional, IMBICE (CCT-CONICET, CIC-PBA), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | | | - Luciano Esteban Real
- Instituto de Diversidad y Evolución Austral, (IDEAus-CONICET), Puerto Madryn, Chubut, Argentina
| | - Alfredo Holley
- Instituto de Diversidad y Evolución Austral, (IDEAus-CONICET), Puerto Madryn, Chubut, Argentina
| | | | - Néstor Guillermo Basso
- Instituto de Diversidad y Evolución Austral, (IDEAus-CONICET), Puerto Madryn, Chubut, Argentina
| | - María Laura Parolin
- Instituto de Diversidad y Evolución Austral, (IDEAus-CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
9
|
Torres JB. A history of you, me, and humanity: mitochondrial DNA in anthropological research. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractWithin genetic anthropology, mitochondrial DNA (mtDNA) has garnered a prominent if not enduring place within the anthropological toolkit. MtDNA has provided new and innovative perspectives on the emergence and dispersal of our species, interactions with extinct human species, and illuminated relationships between human groups. In this paper, I provide a brief overview of the major findings ascertained from mtDNA about human origins, human dispersal across the globe, interactions with other hominin species, and the more recent uses of mtDNA in direct to consumer ancestry tests. Relative to nuclear DNA, mtDNA is a small section of the genome and due to its inheritance pattern provides a limited resolution of population history and an individual's genetic ancestry. Consequently, some scholars dismiss mtDNA as insignificant due to the limited inferences that may be made using the locus. Regardless, mtDNA provides some useful insights to understanding how social, cultural, and environmental factors have shaped patterns of genetic variability. Furthermore, with regard to the experiences of historically marginalized groups, in particular those of African descent throughout the Americas, mtDNA has the potential to fill gaps in knowledge that would otherwise remain unknown. Within anthropological sciences, the value of this locus for understanding human experience is maximized when contextualized with complementary lines of evidence.
Collapse
Affiliation(s)
- Jada Benn Torres
- Laboratory of Genetic Anthropology, Department of Anthropology, Vanderbilt University, Nashville, TN 37325, USA
| |
Collapse
|
10
|
Fernandes DM, Sirak KA, Ringbauer H, Sedig J, Rohland N, Cheronet O, Mah M, Mallick S, Olalde I, Culleton BJ, Adamski N, Bernardos R, Bravo G, Broomandkhoshbacht N, Callan K, Candilio F, Demetz L, Carlson KSD, Eccles L, Freilich S, George RJ, Lawson AM, Mandl K, Marzaioli F, McCool WC, Oppenheimer J, Özdogan KT, Schattke C, Schmidt R, Stewardson K, Terrasi F, Zalzala F, Antúnez CA, Canosa EV, Colten R, Cucina A, Genchi F, Kraan C, La Pastina F, Lucci M, Maggiolo MV, Marcheco-Teruel B, Maria CT, Martínez C, París I, Pateman M, Simms TM, Sivoli CG, Vilar M, Kennett DJ, Keegan WF, Coppa A, Lipson M, Pinhasi R, Reich D. A genetic history of the pre-contact Caribbean. Nature 2021; 590:103-110. [PMID: 33361817 PMCID: PMC7864882 DOI: 10.1038/s41586-020-03053-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1-3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.
Collapse
Affiliation(s)
- Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Kendra A Sirak
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Harald Ringbauer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Jakob Sedig
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Brendan J Culleton
- Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Guillermo Bravo
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, Granada, Spain
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Anthropology, University of California, Santa Cruz, CA, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca Candilio
- Superintendency of Archaeology, Fine Arts and Landscape for the city of Cagliari and the provinces of Oristano and South Sardinia, Cagliari, Italy
| | - Lea Demetz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Laurie Eccles
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
| | - Suzanne Freilich
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Richard J George
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Fabio Marzaioli
- Department of Mathematics and Physics, Campania University 'Luigi Vanvitelli', Caserta, Italy
| | - Weston C McCool
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Kadir T Özdogan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Constanze Schattke
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Ryan Schmidt
- CIBIO-InBIO, University of Porto, Vairão, Portugal
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Filippo Terrasi
- Department of Mathematics and Physics, Campania University 'Luigi Vanvitelli', Caserta, Italy
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Roger Colten
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Andrea Cucina
- Facultad de Ciencias Antropológicas, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Francesco Genchi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Claudia Kraan
- National Archaeological-Anthropological Memory Management (NAAM), Willemstad, Curaçao
| | | | - Michaela Lucci
- DANTE Laboratory of Diet and Ancient Technology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Ingeborg París
- Instituto de Investigaciones Bioantropológicas y Arqueológicas, Universidad de Los Andes, Mérida, Venezuela
| | - Michael Pateman
- Turks and Caicos National Museum Foundation, Cockburn Town, Turks and Caicos Islands
- AEX Bahamas Maritime Museum, Freeport, Bahamas
| | - Tanya M Simms
- Department of Biology, University of The Bahamas, Nassau, Bahamas
| | - Carlos Garcia Sivoli
- Instituto de Investigaciones Bioantropológicas y Arqueológicas, Universidad de Los Andes, Mérida, Venezuela
| | - Miguel Vilar
- National Geographic Society, Washington, DC, USA
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - William F Keegan
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Nieves-Colón MA, Pestle WJ, Reynolds AW, Llamas B, de la Fuente C, Fowler K, Skerry KM, Crespo-Torres E, Bustamante CD, Stone AC. Ancient DNA Reconstructs the Genetic Legacies of Precontact Puerto Rico Communities. Mol Biol Evol 2020; 37:611-626. [PMID: 31710665 DOI: 10.1093/molbev/msz267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Indigenous peoples have occupied the island of Puerto Rico since at least 3000 BC. Due to the demographic shifts that occurred after European contact, the origin(s) of these ancient populations, and their genetic relationship to present-day islanders, are unclear. We use ancient DNA to characterize the population history and genetic legacies of precontact Indigenous communities from Puerto Rico. Bone, tooth, and dental calculus samples were collected from 124 individuals from three precontact archaeological sites: Tibes, Punta Candelero, and Paso del Indio. Despite poor DNA preservation, we used target enrichment and high-throughput sequencing to obtain complete mitochondrial genomes (mtDNA) from 45 individuals and autosomal genotypes from two individuals. We found a high proportion of Native American mtDNA haplogroups A2 and C1 in the precontact Puerto Rico sample (40% and 44%, respectively). This distribution, as well as the haplotypes represented, supports a primarily Amazonian South American origin for these populations and mirrors the Native American mtDNA diversity patterns found in present-day islanders. Three mtDNA haplotypes from precontact Puerto Rico persist among Puerto Ricans and other Caribbean islanders, indicating that present-day populations are reservoirs of precontact mtDNA diversity. Lastly, we find similarity in autosomal ancestry patterns between precontact individuals from Puerto Rico and the Bahamas, suggesting a shared component of Indigenous Caribbean ancestry with close affinity to South American populations. Our findings contribute to a more complete reconstruction of precontact Caribbean population history and explore the role of Indigenous peoples in shaping the biocultural diversity of present-day Puerto Ricans and other Caribbean islanders.
Collapse
Affiliation(s)
- Maria A Nieves-Colón
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ.,National Laboratory of Genomics for Biodiversity (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - William J Pestle
- Department of Anthropology, University of Miami, Coral Gables, FL
| | | | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences and Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Kathleen Fowler
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ
| | - Katherine M Skerry
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ
| | - Edwin Crespo-Torres
- Forensic Anthropology and Bioarcheology Laboratory, University of Puerto Rico, Rio Piedras, Puerto Rico
| | | | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ
| |
Collapse
|
12
|
Fleskes RE, Ofunniyin AA, Gilmore JK, Poplin E, Abel SM, Bueschgen WD, Juarez C, Butler N, Mishoe G, Oubré L, Cabana GS, Schurr TG. Ancestry, health, and lived experiences of enslaved Africans in 18th century Charleston: An osteobiographical analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 175:3-24. [PMID: 33022107 DOI: 10.1002/ajpa.24149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/30/2020] [Accepted: 09/13/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES In 2013, the burials of 36 individuals of putative African ancestry were discovered during renovation of the Gaillard Center in downtown Charleston, South Carolina. The Charleston community facilitated a bioarchaeological and mitogenomic study to gain insights into the lives of these unknown persons, referred to as the Anson Street Ancestors, including their ancestry, health, and lived experiences in the 18th century. METHODS Metric and morphological assessments of skeletal and dental characteristics were recorded, and enamel and cortical bone strontium stable isotope values generated. Whole mitochondrial genomes were sequenced and analyzed. RESULTS Osteological analysis identified adults, both females and males, and subadults at the site, and estimated African ancestry for most individuals. Skeletal trauma and pathology were infrequent, but many individuals exhibited dental decay and abscesses. Strontium isotope data suggested these individuals mostly originated in Charleston or sub-Saharan Africa, with many being long-term residents of Charleston. Nearly all had mitochondrial lineages belonging to African haplogroups (L0-L3, H1cb1a), with two individuals sharing the same L3e2a haplotype, while one had a Native American A2 mtDNA. DISCUSSION This study generated detailed osteobiographies of the Anson Street Ancestors, who were likely of enslaved status. Our results indicate that the Ancestors have diverse maternal African ancestries and are largely unrelated, with most being born locally. These details reveal the demographic impact of the trans-Atlantic slave trade. Our analysis further illuminates the lived experiences of individuals buried at Anson Street, and expands our understanding of 18th century African history in Charleston.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ade A Ofunniyin
- The Gullah Society, Inc., Mount Pleasant, South Carolina, USA.,Department of Sociology and Anthropology, The College of Charleston, Charleston, South Carolina, USA
| | - Joanna K Gilmore
- The Gullah Society, Inc., Mount Pleasant, South Carolina, USA.,Department of Sociology and Anthropology, The College of Charleston, Charleston, South Carolina, USA
| | - Eric Poplin
- Brockington and Associates, Inc., Mount Pleasant, South Carolina, USA
| | - Suzanne M Abel
- Charleston County Coroner's Office, North Charleston, South Carolina, USA
| | - Wolf D Bueschgen
- Charleston County Coroner's Office, North Charleston, South Carolina, USA
| | - Chelsey Juarez
- Department of Anthropology, California State University, Fresno, California, USA
| | - Nic Butler
- Charleston County Public Library, Charleston, South Carolina, USA
| | - Grant Mishoe
- The Gullah Society, Inc., Mount Pleasant, South Carolina, USA
| | - La'Sheia Oubré
- The Gullah Society, Inc., Mount Pleasant, South Carolina, USA
| | - Graciela S Cabana
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
D’Atanasio E, Trionfetti F, Bonito M, Sellitto D, Coppa A, Berti A, Trombetta B, Cruciani F. Y Haplogroup Diversity of the Dominican Republic: Reconstructing the Effect of the European Colonization and the Trans-Atlantic Slave Trades. Genome Biol Evol 2020; 12:1579-1590. [PMID: 32835369 PMCID: PMC7523727 DOI: 10.1093/gbe/evaa176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
The Dominican Republic is one of the two countries on the Hispaniola island, which is part of the Antilles. Hispaniola was affected by the European colonization and massive deportation of African slaves since the XVI century and these events heavily shaped the genetic composition of the present-day population. To shed light about the effect of the European rules, we analyzed 92 single nucleotide polymorphisms on the Y chromosome in 182 Dominican individuals from three different locations. The Dominican Y haplogroup composition was characterized by an excess of northern African/European lineages (59%), followed by the African clades (38%), whereas the Native-American lineages were rare (3%). The comparison with the mitochondrial DNA variability, dominated by African clades, revealed a sex-biased admixture pattern, in line with the colonial society dominated by European men. When other Caribbean and non-Caribbean former colonies were also considered, we noted a difference between territories under a Spanish rule (like the Dominican Republic) and British/French rule, with the former characterized by an excess of European Y lineages reflecting the more permissive Iberian legislation about mixed people and slavery. Finally, we analyzed the distribution in Africa of the Dominican lineages with a putative African origin, mainly focusing on central and western Africa, which were the main sources of African slaves. We found that most (83%) of the African lineages observed in Santo Domingo have a central African ancestry, suggesting that most of the slaves were deported from regions.
Collapse
Affiliation(s)
- Eugenia D’Atanasio
- Istituto di Biologia e Patologia Molecolari, CNR, Roma, Italy
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Flavia Trionfetti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Maria Bonito
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | | | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Andrea Berti
- Reparto CC Investigazioni Scientifiche di Roma, Sezione di Biologia, Rome, Italy
| | - Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Istituto di Biologia e Patologia Molecolari, CNR, Roma, Italy
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
14
|
Breast Cancer in a Caribbean Population in Transition: Design and Implementation of the Atabey Population-Based Case-Control Study of Women in the San Juan Metropolitan Area in Puerto Rico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041333. [PMID: 32092890 PMCID: PMC7068544 DOI: 10.3390/ijerph17041333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/29/2022]
Abstract
Global breast cancer incidence varies considerably, particularly in comparisons of low- and high-income countries; rates may vary even within regions. Breast cancer rates for Caribbean countries are generally lower than for North America and Europe. Rates in Puerto Rico are in the middle of the range between the highest and the lowest Caribbean countries. Populations in transition, with greater variability in risk factor exposures, provide an important opportunity to better understand breast cancer etiology and as potential sources of variation in rates. Understanding of exposures across the life span can potentially contribute to understanding regional differences in rates. We describe here the design and implementation of a population-based, case-control study in the San Juan Metropolitan Area (SJMA) of Puerto Rico, the Atabey Epidemiology of Breast Cancer Study. We describe steps taken to ensure that the study was culturally appropriate, leveraging the Atabey researchers’ understanding of the culture, local health system, and other required resources to effectively recruit participants. A standardized, in-person interview was developed, with attention to life course events customized to the study population. In order to understand variation in global breast cancer rates, studies customized to the populations outside of North America and Europe are required.
Collapse
|
15
|
Benn Torres J, Martucci V, Aldrich MC, Vilar MG, MacKinney T, Tariq M, Gaieski JB, Bharath Hernandez R, Browne ZE, Stevenson M, Walters W, Schurr TG. Analysis of biogeographic ancestry reveals complex genetic histories for indigenous communities of St. Vincent and Trinidad. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:482-497. [PMID: 31125126 DOI: 10.1002/ajpa.23859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 11/07/2022]
Abstract
OBJECTIVES From a genetic perspective, relatively little is known about how mass emigrations of African, European, and Asian peoples beginning in the 16th century affected Indigenous Caribbean populations. Therefore, we explored the impact of serial colonization on the genetic variation of the first Caribbean islanders. MATERIALS AND METHODS Sixty-four members of St. Vincent's Garifuna Community and 36 members of Trinidad's Santa Rosa First People's Community (FPC) of Arima were characterized for mitochondrial DNA and Y-chromosome diversity via direct sequencing and targeted SNP and STR genotyping. A subset of 32 Garifuna and 18 FPC participants were genotyped using the GenoChip 2.0 microarray. The resulting data were used to examine genetic diversity, admixture, and sex biased gene flow in the study communities. RESULTS The Garifuna were most genetically comparable to African descendant populations, whereas the FPC were more similar to admixed American groups. Both communities also exhibited moderate frequencies of Indigenous American matrilines and patrilines. Autosomal SNP analysis indicated modest Indigenous American ancestry in these populations, while both showed varying degrees of African, European, South Asian, and East Asian ancestry, with patterns of sex-biased gene flow differing between the island communities. DISCUSSION These patterns of genetic variation are consistent with historical records of migration, forced, or voluntary, and suggest that different migration events shaped the genetic make-up of each island community. This genomic study is the highest resolution analysis yet conducted with these communities, and provides a fuller understanding of the complex bio-histories of Indigenous Caribbean peoples in the Lesser Antilles.
Collapse
Affiliation(s)
- Jada Benn Torres
- Department of Anthropology, Vanderbilt University, Nashville, Tennessee.,Department of Anthropology, University of Notre Dame, Notre Dame, Indiana
| | - Victoria Martucci
- Department of Thoracic Surgery and Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda C Aldrich
- Department of Thoracic Surgery and Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Miguel G Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania.,Science and Exploration, National Geographic Society, Washington, District of Columbia
| | - Taryn MacKinney
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Muhammad Tariq
- Department of Anthropology, Vanderbilt University, Nashville, Tennessee.,Department of Genetics, Hazara University, Mansehra, KP, Pakistan
| | - Jill B Gaieski
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Zoila E Browne
- The Garifuna Heritage Foundation Inc., Kingstown, St. Vincent
| | | | - Wendell Walters
- The Garifuna Heritage Foundation Inc., Kingstown, St. Vincent.,Sandy Bay Village, St. Vincent
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
16
|
Abstract
Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University
| |
Collapse
|
17
|
Gómez-Carballa A, Pardo-Seco J, Brandini S, Achilli A, Perego UA, Coble MD, Diegoli TM, Álvarez-Iglesias V, Martinón-Torres F, Olivieri A, Torroni A, Salas A. The peopling of South America and the trans-Andean gene flow of the first settlers. Genome Res 2018; 28:767-779. [PMID: 29735605 PMCID: PMC5991523 DOI: 10.1101/gr.234674.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/27/2018] [Indexed: 11/25/2022]
Abstract
Genetic and archaeological data indicate that the initial Paleoindian settlers of South America followed two entry routes separated by the Andes and the Amazon rainforest. The interactions between these paths and their impact on the peopling of South America remain unclear. Analysis of genetic variation in the Peruvian Andes and regions located south of the Amazon River might provide clues on this issue. We analyzed mitochondrial DNA variation at different Andean locations and >360,000 autosomal SNPs from 28 Native American ethnic groups to evaluate different trans-Andean demographic scenarios. Our data reveal that the Peruvian Altiplano was an important enclave for early Paleoindian expansions and point to a genetic continuity in the Andes until recent times, which was only marginally affected by gene flow from the Amazonian lowlands. Genomic variation shows a good fit with the archaeological evidence, indicating that the genetic interactions between the descendants of the settlers that followed the Pacific and Atlantic routes were extremely limited.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain.,Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Jacobo Pardo-Seco
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain.,Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Ugo A Perego
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Michael D Coble
- Applied Genetics Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Toni M Diegoli
- Office of the Chief Scientist, Defense Forensic Science Center, Ft. Gillem, Georgia 30297, USA.,Analytical Services, Incorporated, Arlington, Virginia 22201, USA
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain
| |
Collapse
|
18
|
Abstract
The Caribbean was one of the last parts of the Americas to be settled by humans, but how and when the islands were first occupied remains a matter of debate. Ancient DNA can help answering these questions, but the work has been hampered by poor DNA preservation. We report the genome sequence of a 1,000-year-old Lucayan Taino individual recovered from the site of Preacher's Cave in the Bahamas. We sequenced her genome to 12.4-fold coverage and show that she is genetically most closely related to present-day Arawakan speakers from northern South America, suggesting that the ancestors of the Lucayans originated there. Further, we find no evidence for recent inbreeding or isolation in the ancient genome, suggesting that the Lucayans had a relatively large effective population size. Finally, we show that the native American components in some present-day Caribbean genomes are closely related to the ancient Taino, demonstrating an element of continuity between precontact populations and present-day Latino populations in the Caribbean.
Collapse
|
19
|
Brandini S, Bergamaschi P, Cerna MF, Gandini F, Bastaroli F, Bertolini E, Cereda C, Ferretti L, Gómez-Carballa A, Battaglia V, Salas A, Semino O, Achilli A, Olivieri A, Torroni A. The Paleo-Indian Entry into South America According to Mitogenomes. Mol Biol Evol 2018; 35:299-311. [PMID: 29099937 PMCID: PMC5850732 DOI: 10.1093/molbev/msx267] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent and compelling archaeological evidence attests to human presence ∼14.5 ka at multiple sites in South America and a very early exploitation of extreme high-altitude Andean environments. Considering that, according to genetic evidence, human entry into North America from Beringia most likely occurred ∼16 ka, these archeological findings would imply an extremely rapid spread along the double continent. To shed light on this issue from a genetic perspective, we first completely sequenced 217 novel modern mitogenomes of Native American ancestry from the northwestern area of South America (Ecuador and Peru); we then evaluated them phylogenetically together with other available mitogenomes (430 samples, both modern and ancient) from the same geographic area and, finally, with all closely related mitogenomes from the entire double continent. We detected a large number (N = 48) of novel subhaplogroups, often branching into further subclades, belonging to two classes: those that arose in South America early after its peopling and those that instead originated in North or Central America and reached South America with the first settlers. Coalescence age estimates for these subhaplogroups provide time boundaries indicating that early Paleo-Indians probably moved from North America to the area corresponding to modern Ecuador and Peru over the short time frame of ∼1.5 ka comprised between 16.0 and 14.6 ka.
Collapse
Affiliation(s)
- Stefania Brandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Paola Bergamaschi
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Servizio di Immunoematologia e Medicina Trasfusionale, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Fernando Cerna
- Biotechnology Laboratory, Salesian Polytechnic University of Ecuador, Quito, Ecuador
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | | | - Emilie Bertolini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, National Neurological Institute C. Mondino, Pavia, Italy
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alberto Gómez-Carballa
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Unidade de Xenética, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Unidade de Xenética, Galicia, Spain
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Antonio Salas
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Unidade de Xenética, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Unidade de Xenética, Galicia, Spain
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| |
Collapse
|
20
|
Yardumian A, Shengelia R, Chitanava D, Laliashvili S, Bitadze L, Laliashvili I, Villanea F, Sanders A, Azzam A, Groner V, Edleson K, Vilar MG, Schurr TG. Genetic diversity in Svaneti and its implications for the human settlement of the Highland Caucasus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:837-852. [PMID: 29076141 DOI: 10.1002/ajpa.23324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/19/2017] [Accepted: 09/10/2017] [Indexed: 11/11/2022]
Abstract
OBJECTIVES In this study, we characterized genetic diversity in the Svans from northwestern Georgia to better understand the phylogeography of their genetic lineages, determine whether genetic diversity in the highland South Caucasus has been shaped by language or geography, and assess whether Svan genetic diversity was structured by regional residence patterns. MATERIALS AND METHODS We analyzed mtDNA and Y-chromosome variation in 184 individuals from 13 village districts and townlets located throughout the region. For all individuals, we analyzed mtDNA diversity through control region sequencing, and, for males, we analyzed Y-chromosome diversity through SNP and STR genotyping. The resulting data were compared with those for populations from the Caucasus and Middle East. RESULTS We observed significant mtDNA heterogeneity in Svans, with haplogroups U1-U7, H, K, and W6 being common there. By contrast, ∼78% of Svan males belonged to haplogroup G2a, with the remainder falling into four other haplogroups (J2a1, I2, N, and R1a). While showing a distinct genetic profile, Svans also clustered with Caucasus populations speaking languages from different families, suggesting a deep common ancestry for all of them. The mtDNA data were not structured by geography or linguistic affiliation, whereas the NRY data were influenced only by geography. DISCUSSION These patterns of genetic variation confirm a complex set of geographic sources and settlement phases for the Caucasus highlands. Such patterns may also reflect social and cultural practices in the region. The high frequency and antiquity of Y-chromosome haplogroup G2a in this region further points to its emergence there.
Collapse
Affiliation(s)
- Aram Yardumian
- Department of History and Social Sciences, Bryn Athyn College, Pennsylvania 19009.,Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ramaz Shengelia
- Department of the History of Medicine and Bioethics, Tbilisi State Medical University, Tbilisi 01747, Georgia
| | - David Chitanava
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Shorena Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Lia Bitadze
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Irma Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Fernando Villanea
- Grant Programs, Science and Exploration, National Geographic Society, Washington, DC 20036
| | - Akiva Sanders
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Andrew Azzam
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Victoria Groner
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kristi Edleson
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Miguel G Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Grant Programs, Science and Exploration, National Geographic Society, Washington, DC 20036
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
21
|
Taino and African maternal heritage in the Greater Antilles. Gene 2017; 637:33-40. [PMID: 28912065 DOI: 10.1016/j.gene.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023]
Abstract
Notwithstanding the general interest and the geopolitical importance of the island countries in the Greater Antilles, little is known about the specific ancestral Native American and African populations that settled them. In an effort to alleviate this lacuna of information on the genetic constituents of the Greater Antilles, we comprehensively compared the mtDNA compositions of Cuba, Dominican Republic, Haiti, Jamaica and Puerto Rico. To accomplish this, the mtDNA HVRI and HVRII regions, as well as coding diagnostic sites, were assessed in the Haitian general population and compared to data from reference populations. The Taino maternal DNA is prominent in the ex-Spanish colonies (61.3%-22.0%) while it is basically non-existent in the ex-French and ex-English colonies of Haiti (0.0%) and Jamaica (0.5%), respectively. The most abundant Native American mtDNA haplogroups in the Greater Antilles are A2, B2 and C1. The African mtDNA component is almost fixed in Haiti (98.2%) and Jamaica (98.5%), and the frequencies of specific African haplogroups vary considerably among the five island nations. The strong persistence of Taino mtDNA in the ex-Spanish colonies (and especially in Puerto Rico), and its absence in the French and English excolonies is likely the result of different social norms regarding mixed marriages with Taino women during the early years after the first contact with Europeans. In addition, this article reports on the results of an integrative approach based on mtDNA analysis and demographic data that tests the hypothesis of a southward shift in raiding zones along the African west coast during the period encompassing the Transatlantic Slave Trade.
Collapse
|
22
|
Massey SE. Strong Amerindian Mitonuclear Discordance in Puerto Rican Genomes Suggests Amerindian Mitochondrial Benefit. Ann Hum Genet 2017; 81:59-77. [DOI: 10.1111/ahg.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Steven E. Massey
- Biology Department; University of Puerto Rico - Rio Piedras; PO Box 23360 San Juan Puerto Rico 00931
| |
Collapse
|
23
|
Bolnick DA, Raff JA, Springs LC, Reynolds AW, Miró-Herrans AT. Native American Genomics and Population Histories. ANNUAL REVIEW OF ANTHROPOLOGY 2016. [DOI: 10.1146/annurev-anthro-102215-100036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of Native American genetic diversity and population history have been transformed over the last decade by important developments in anthropological genetics. During this time, researchers have adopted new DNA technologies and computational approaches for analyzing genomic data, and they have become increasingly sensitive to the views of research participants and communities. As new methods are applied to long-standing questions, and as more research is conducted in collaboration with indigenous communities, we are gaining new insights into the history and diversity of indigenous populations. This review discusses the recent methodological advances and genetic studies that have improved our understanding of Native American genomics and population histories. We synthesize current knowledge about Native American genomic variation and build a model of population history in the Americas. We also discuss the broader implications of this research for anthropology and related disciplines, and we highlight challenges and other considerations for future research.
Collapse
Affiliation(s)
- Deborah A. Bolnick
- Department of Anthropology, University of Texas at Austin, Austin, Texas 78712;, , ,
- Population Research Center, University of Texas at Austin, Austin, Texas 78712
| | - Jennifer A. Raff
- Department of Anthropology, University of Kansas, Lawrence, Kansas 66045-7556
| | - Lauren C. Springs
- Department of Anthropology, University of Texas at Austin, Austin, Texas 78712;, , ,
| | - Austin W. Reynolds
- Department of Anthropology, University of Texas at Austin, Austin, Texas 78712;, , ,
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Aida T. Miró-Herrans
- Department of Anthropology, University of Texas at Austin, Austin, Texas 78712;, , ,
| |
Collapse
|
24
|
Balanovsky OP, Zaporozhchenko VV. Chromosome as a chronicler: Genetic dating, historical events, and DNA-genealogic temptation. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416070048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Fitzpatrick SM. The Pre-Columbian Caribbean: Colonization, Population Dispersal, and Island Adaptations. ACTA ACUST UNITED AC 2015. [DOI: 10.1179/2055557115y.0000000010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Benn Torres J, Vilar MG, Torres GA, Gaieski JB, Bharath Hernandez R, Browne ZE, Stevenson M, Walters W, Schurr TG. Genetic Diversity in the Lesser Antilles and Its Implications for the Settlement of the Caribbean Basin. PLoS One 2015; 10:e0139192. [PMID: 26447794 PMCID: PMC4598113 DOI: 10.1371/journal.pone.0139192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/10/2015] [Indexed: 11/18/2022] Open
Abstract
Historical discourses about the Caribbean often chronicle West African and European influence to the general neglect of indigenous people's contributions to the contemporary region. Consequently, demographic histories of Caribbean people prior to and after European contact are not well understood. Although archeological evidence suggests that the Lesser Antilles were populated in a series of northward and eastern migratory waves, many questions remain regarding the relationship of the Caribbean migrants to other indigenous people of South and Central America and changes to the demography of indigenous communities post-European contact. To explore these issues, we analyzed mitochondrial DNA and Y-chromosome diversity in 12 unrelated individuals from the First Peoples Community in Arima, Trinidad, and 43 unrelated Garifuna individuals residing in St. Vincent. In this community-sanctioned research, we detected maternal indigenous ancestry in 42% of the participants, with the remainder having haplotypes indicative of African and South Asian maternal ancestry. Analysis of Y-chromosome variation revealed paternal indigenous American ancestry indicated by the presence of haplogroup Q-M3 in 28% of the male participants from both communities, with the remainder possessing either African or European haplogroups. This finding is the first report of indigenous American paternal ancestry among indigenous populations in this region of the Caribbean. Overall, this study illustrates the role of the region's first peoples in shaping the genetic diversity seen in contemporary Caribbean populations.
Collapse
Affiliation(s)
- Jada Benn Torres
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Miguel G. Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Missions Programs, National Geographic Society, Washington, D.C., United States of America
| | - Gabriel A. Torres
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jill B. Gaieski
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Zoila E. Browne
- The Garifuna Heritage Foundation Inc., Kingston, St. Vincent and the Grenadines
| | - Marlon Stevenson
- The Garifuna Heritage Foundation Inc., Kingston, St. Vincent and the Grenadines
| | - Wendell Walters
- The Garifuna Heritage Foundation Inc., Kingston, St. Vincent and the Grenadines
- Sandy Bay Village, St. Vincent and the Grenadines
| | - Theodore G. Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
27
|
Madrilejo N, Lombard H, Torres JB. Origins of marronage: Mitochondrial lineages of Jamaica's Accompong Town Maroons. Am J Hum Biol 2014; 27:432-7. [PMID: 25392952 DOI: 10.1002/ajhb.22656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/02/2014] [Accepted: 10/22/2014] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The Accompong Town Maroons are descendants of enslaved Africans who successfully waged war against British colonial rule and established an independent community in western Jamaica. There are discrepancies regarding Accompong Town Maroon ancestry with some scholars noting ancestry from both Africans and Taínos, Jamaica's indigenous population, while other scholars only acknowledge African ancestry. We considered the mitochondrial lineages of contemporary Accompong Town Maroons to address the question of ancestral origins. METHODS We sequenced a section of the mitochondrial DNA control region (np 16,024-16,569) and genotyped a panel of hierarchically selected haplogroup diagnostic SNPs for 50 individuals with genealogical ties to Accompong Town. Mitochondrial haplotypes were also compared with publically available Jamaican mitochondrial haplotypes using an exact test as well as haplotypes within the EMPOP public database to further access biogeographic origins. RESULTS L-type mitochondrial haplogroups were observed in 96% of samples, and the remaining 4% belonged to haplogroup B2. Haplotype diversity was 0.922 (SD = 0.024) and not significantly different than the comparable Jamaican population. Of the two B2 haplotypes, one matched haplotypes throughout the Americas and East Asia and the other matched only in East Asia. These results suggest both African and indigenous American maternal ancestries within Accompong Town. CONCLUSIONS Our data suggested that the maternal ancestry of contemporary Accompong Town Maroons is predominantly African and, despite claims to suggest otherwise, also indigenous American. Our study complemented Maroon oral histories, archeological data, and illuminated how colonization shaped human genetic variation within the Caribbean.
Collapse
Affiliation(s)
- Nicole Madrilejo
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, 46556; Department of Pre-Professional Studies, University of Notre Dame, Notre Dame, Indiana, 46556
| | | | | |
Collapse
|