1
|
Corriveau-Lecavalier N, Tosakulwong N, Lesnick TG, Fought AJ, Reid RI, Schwarz CG, Senjem ML, Jack CR, Jones DT, Vemuri P, Rademakers R, Ramos EM, Geschwind DH, Knopman DS, Botha H, Savica R, Graff-Radford J, Ramanan VK, Fields JA, Graff-Radford N, Wszolek Z, Forsberg LK, Petersen RC, Heuer HW, Boxer AL, Rosen HJ, Boeve BF, Kantarci K. Neurite-based white matter alterations in MAPT mutation carriers: A multi-shell diffusion MRI study in the ALLFTD consortium. Neurobiol Aging 2024; 134:135-145. [PMID: 38091751 PMCID: PMC10872472 DOI: 10.1016/j.neurobiolaging.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
We assessed white matter (WM) integrity in MAPT mutation carriers (16 asymptomatic, 5 symptomatic) compared to 31 non-carrier family controls using diffusion tensor imaging (DTI) (fractional anisotropy; FA, mean diffusivity; MD) and neurite orientation dispersion and density imaging (NODDI) (neurite density index; NDI, orientation and dispersion index; ODI). Linear mixed-effects models accounting for age and family relatedness revealed alterations across DTI and NODDI metrics in all mutation carriers and in symptomatic carriers, with the most significant differences involving fronto-temporal WM tracts. Asymptomatic carriers showed higher entorhinal MD and lower cingulum FA and patterns of higher ODI mostly involving temporal areas and long association and projections fibers. Regression models between estimated time to or time from disease and DTI and NODDI metrics in key regions (amygdala, cingulum, entorhinal, inferior temporal, uncinate fasciculus) in all carriers showed increasing abnormalities with estimated time to or time from disease onset, with FA and NDI showing the strongest relationships. Neurite-based metrics, particularly ODI, appear to be particularly sensitive to early WM involvement in asymptomatic carriers.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy G Lesnick
- Departmenf of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Angela J Fought
- Departmenf of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA; Center for Molecular Neurology, Antwerp University, Belgium
| | | | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Hilary W Heuer
- Department of Neurology, University of California San Francisco, CA, USA
| | - Adam L Boxer
- Department of Neurology, University of California San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Giannini LA, Mol MO, Rajicic A, van Buuren R, Sarkar L, Arezoumandan S, Ohm DT, Irwin DJ, Rozemuller AJ, van Swieten JC, Seelaar H. Presymptomatic and early pathological features of MAPT-associated frontotemporal lobar degeneration. Acta Neuropathol Commun 2023; 11:126. [PMID: 37533060 PMCID: PMC10394953 DOI: 10.1186/s40478-023-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Early pathological features of frontotemporal lobar degeneration (FTLD) due to MAPT pathogenic variants (FTLD-MAPT) are understudied, since early-stage tissue is rarely available. Here, we report unique pathological data from three presymptomatic/early-stage MAPT variant carriers (FTLD Clinical Dementia Rating [FTLD-CDR] = 0-1). We examined neuronal degeneration semi-quantitatively and digitally quantified tau burden in 18 grey matter (9 cortical, 9 subcortical) and 13 white matter (9 cortical, 4 subcortical) regions. We compared presymptomatic/early-stage pathology to an intermediate/end-stage cohort (FTLD-CDR = 2-3) with the same variants (2 L315R, 10 P301L, 6 G272V), and developed a clinicopathological staging model for P301L and G272V variants. The 68-year-old presymptomatic L315R carrier (FTLD-CDR = 0) had limited tau burden morphologically similar to L315R end-stage carriers in middle frontal, antero-inferior temporal, amygdala, (para-)hippocampus and striatum, along with age-related Alzheimer's disease neuropathological change. The 59-year-old prodromal P301L carrier (FTLD-CDR = 0.5) had highest tau burden in anterior cingulate, anterior temporal, middle/superior frontal, and fronto-insular cortex, and amygdala. The 45-year-old early-stage G272V carrier (FTLD-CDR = 1) had highest tau burden in superior frontal and anterior cingulate cortex, subiculum and CA1. The severity and distribution of tau burden showed some regional variability between variants at presymptomatic/early-stage, while neuronal degeneration, mild-to-moderate, was similarly distributed in frontotemporal regions. Early-stage tau burden and neuronal degeneration were both less severe than in intermediate-/end-stage cases. In a subset of regions (10 GM, 8 WM) used for clinicopathological staging, clinical severity correlated strongly with neuronal degeneration (rho = 0.72, p < 0.001), less strongly with GM tau burden (rho = 0.57, p = 0.006), and did not with WM tau burden (p = 0.9). Clinicopathological staging showed variant-specific patterns of early tau pathology and progression across stages. These unique data demonstrate that tau pathology and neuronal degeneration are present already at the presymptomatic/early-stage of FTLD-MAPT, though less severely compared to intermediate/end-stage disease. Moreover, early pathological patterns, especially of tau burden, differ partly between specific MAPT variants.
Collapse
Affiliation(s)
- Lucia Aa Giannini
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Ana Rajicic
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Renee van Buuren
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Lana Sarkar
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Sanaz Arezoumandan
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Annemieke Jm Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, location VUmc, Amsterdam, 1081 HZ, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands.
| |
Collapse
|
3
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
4
|
Giannini LAA, Ohm DT, Rozemuller AJM, Dratch L, Suh E, van Deerlin VM, Trojanowski JQ, Lee EB, van Swieten JC, Grossman M, Seelaar H, Irwin DJ. Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration. Acta Neuropathol 2022; 144:1065-1084. [PMID: 36066634 PMCID: PMC9995405 DOI: 10.1007/s00401-022-02487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023]
Abstract
Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degeneration, and regional patterns of pathology in different isoform groups of FTLD-MAPT. We included 38 FTLD-MAPT autopsy cases with 10 different MAPT pathogenic variants, grouped based on predominant tau isoform(s). In up to eleven regions (ten cortical and one striatal), we quantified grey matter tau burden using digital histopathological analysis and assigned semi-quantitative ratings for neuronal degeneration (i.e. 0-4) and separate burden of glial and neuronal tau inclusions (i.e. 0-3). We used mixed modelling to compare pathology measures (1) across the entire cohort and (2) within isoform groups. In the total cohort, tau burden and neuronal degeneration were positively associated and most severe in the anterior temporal, anterior cingulate and transentorhinal cortices. Isoform groups showed distinctive features of tau burden and neuronal degeneration. Across all regions, the 3R isoform group had lower tau burden compared to the 4R group (p = 0.008), while at the same time showing more severe neuronal degeneration than the 4R group (p = 0.002). The 3R + 4R group had an intermediate profile with relatively high tau burden along with relatively severe neuronal degeneration. Neuronal tau inclusions were most frequent in the 4R group (p < 0.001 vs. 3R), while cortical glial tau inclusions were most frequent in the 3R + 4R and 4R groups (p ≤ 0.009 vs. 3R). Regionally, neuronal degeneration was consistently most severe in the anterior temporal cortex within each isoform group. In contrast, the regions with the highest tau burden differed in isoform groups (3R: striatum; 3R + 4R: striatum, inferior parietal lobule, middle frontal cortex, anterior cingulate cortex; 4R: transentorhinal cortex, anterior temporal cortex, fusiform gyrus). We conclude that FTLD-MAPT isoform groups show distinctive features of overall neuronal degeneration and regional tau burden, but all share pronounced anterior temporal neuronal degeneration. These data suggest that distinct isoform-related mechanisms of genetic tauopathies, with slightly divergent tau distribution, may share similar regional vulnerability to neurodegeneration within the frontotemporal paralimbic networks.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Laynie Dratch
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John C van Swieten
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Murray Grossman
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Harro Seelaar
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Chu M, Liu L, Nan H, Jiang D, Wang Y, Rosa-Neto P, Piao Y, Wu L. Extremely Early-Onset Frontotemporal Dementia: A Case Report and Literature Review. J Alzheimers Dis 2022; 90:1139-1151. [PMID: 36214000 PMCID: PMC9741737 DOI: 10.3233/jad-220679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND In most cases, the onset of frontotemporal dementia (FTD) occurs between the ages of 45 and 65 years. However, some patients experience an extremely early disease onset. OBJECTIVE To investigate the clinical, genetic, and pathological features of extremely early-onset FTD. METHODS We conducted a comprehensive clinical, genetic, and neuropathological analysis of a 25-year-old patient experiencing the onset of behavioral variant frontotemporal dementia (bvFTD). In addition, we conducted a literature review and summarized the clinical, genetic, and pathological features of patients with FTD with onset age≤25 years. RESULTS The patient was diagnosed with bvFTD; however, there was no family history of FTD, no positive genetic test results and no deposition of TDP43, tau, ubiquitin, and synuclein in the brain. Literature screening identified 18 patients with onset age ≤25 years with FTD. The youngest patient was 14 years of age. Most patients (8/14) had a positive family history. The most common clinical phenotype was the behavioral variant (12/14). Genetic results were reported for 11 patients; the most common pathogenic gene was MAPT (10/12), with four cases of G389 R, two cases of P301 S, one case of G335 S, one case of G335A, one case of G335 V, and one case of L315 R. Pathological results were reported for 13 patients; the most common pathological subtype was tau (8/13). CONCLUSION FTD can start at an extremely early age. The most common phenotype of extremely early onset FTD was the behavioral variant, the most common pathogenic gene was MAPT, and the most common neuropathological type was tau.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Montreal, Canada
| | - Yueshan Piao
- Department of Neuropathology, Xuanwu Hospital, Capital Medical University, Beijing, China,Correspondence to: Liyong Wu, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. Tel.: +86 10 83923051; E-mail: and Yueshan Piao, Department of Neuropathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. Tel.: +86 10 83198757; E-mail:
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China,Correspondence to: Liyong Wu, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. Tel.: +86 10 83923051; E-mail: and Yueshan Piao, Department of Neuropathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. Tel.: +86 10 83198757; E-mail:
| |
Collapse
|
6
|
Wolters EE, Papma JM, Verfaillie SCJ, Visser D, Weltings E, Groot C, van der Ende EL, Giannini LAA, Tuncel H, Timmers T, Boellaard R, Yaqub M, van Assema DME, Kuijper DA, Segbers M, Rozemuller AJM, Barkhof F, Windhorst AD, van der Flier WM, Pijnenburg YAL, Scheltens P, van Berckel BNM, van Swieten JC, Ossenkoppele R, Seelaar H. [ 18F]Flortaucipir PET Across Various MAPT Mutations in Presymptomatic and Symptomatic Carriers. Neurology 2021; 97:e1017-e1030. [PMID: 34210823 PMCID: PMC8448551 DOI: 10.1212/wnl.0000000000012448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the [18F]flortaucipir binding distribution across MAPT mutations in presymptomatic and symptomatic carriers. METHODS We compared regional [18F]flortaucipir binding potential (BPND) derived from a 130-minute dynamic [18F]flortaucipir PET scan in 9 (pre)symptomatic MAPT mutation carriers (4 with P301L [1 symptomatic], 2 with R406W [1 symptomatic], 1 presymptomatic L315R, 1 presymptomatic S320F, and 1 symptomatic G272V carrier) with 30 cognitively normal controls and 52 patients with Alzheimer disease. RESULTS [18F]Flortaucipir BPND images showed overall highest binding in the symptomatic carriers. This was most pronounced in the symptomatic R406W carrier in whom tau binding exceeded the normal control range in the anterior cingulate cortex, insula, amygdala, temporal, parietal, and frontal lobe. Elevated medial temporal lobe BPND was observed in a presymptomatic R406W carrier. The single symptomatic carrier and 1 of the 3 presymptomatic P301L carriers showed elevated [18F]flortaucipir BPND in the insula, parietal, and frontal lobe compared to controls. The symptomatic G272V carrier exhibited a widespread elevated cortical BPND, with at neuropathologic examination a combination of 3R pathology and encephalitis. The L315R presymptomatic mutation carrier showed higher frontal BPND compared to controls. The BPND values of the S320F presymptomatic mutation carrier fell within the range of controls. CONCLUSION Presymptomatic MAPT mutation carriers already showed subtle elevated tau binding, whereas symptomatic MAPT mutation carriers showed a more marked increase in [18F]flortaucipir BPND. Tau deposition was most pronounced in R406W MAPT (pre)symptomatic mutation carriers, which is associated with both 3R and 4R tau accumulation. Thus, [18F]flortaucipir may serve as an early biomarker for MAPT mutation carriers in mutations that cause 3R/4R tauopathies.
Collapse
Affiliation(s)
- Emma E Wolters
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden.
| | - Janne M Papma
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Sander C J Verfaillie
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Denise Visser
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Emma Weltings
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Colin Groot
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Emma L van der Ende
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Lucia A A Giannini
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Hayel Tuncel
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Tessa Timmers
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Ronald Boellaard
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Maqsood Yaqub
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Danielle M E van Assema
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Dennis A Kuijper
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Marcel Segbers
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Annemieke J M Rozemuller
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Frederik Barkhof
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Albert D Windhorst
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Wiesje M van der Flier
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Yolande A L Pijnenburg
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Philip Scheltens
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Bart N M van Berckel
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - John C van Swieten
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Rik Ossenkoppele
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Harro Seelaar
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| |
Collapse
|
7
|
Chu SA, Flagan TM, Staffaroni AM, Jiskoot LC, Deng J, Spina S, Zhang L, Sturm VE, Yokoyama JS, Seeley WW, Papma JM, Geschwind DH, Rosen HJ, Boeve BF, Boxer AL, Heuer HW, Forsberg LK, Brushaber DE, Grossman M, Coppola G, Dickerson BC, Bordelon YM, Faber K, Feldman HH, Fields JA, Fong JC, Foroud T, Gavrilova RH, Ghoshal N, Graff‐Radford NR, Hsiung GR, Huey ED, Irwin DJ, Kantarci K, Kaufer DI, Karydas AM, Knopman DS, Kornak J, Kramer JH, Kukull WA, Lapid MI, Litvan I, Mackenzie IR, Mendez MF, Miller BL, Onyike CU, Pantelyat AY, Rademakers R, Marisa Ramos E, Roberson ED, Carmela Tartaglia M, Tatton NA, Toga AW, Vetor A, Weintraub S, Wong B, Wszolek ZK, Van Swieten JC, Lee SE. Brain volumetric deficits in MAPT mutation carriers: a multisite study. Ann Clin Transl Neurol 2021; 8:95-110. [PMID: 33247623 PMCID: PMC7818091 DOI: 10.1002/acn3.51249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach. METHODS We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype. RESULTS Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers. INTERPRETATION A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.
Collapse
Affiliation(s)
- Stephanie A. Chu
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Taru M. Flagan
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lize C. Jiskoot
- Erasmus Medical CenterRotterdamNetherlands
- Dementia Research CenterUniversity College LondonLondonUK
| | - Jersey Deng
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Liwen Zhang
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Virginia E. Sturm
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jennifer S. Yokoyama
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | | | - Howard J. Rosen
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Adam L. Boxer
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hilary W. Heuer
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | | | - Murray Grossman
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | | | - Kelley Faber
- School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | | | - Jamie C. Fong
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Tatiana Foroud
- School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Nupur Ghoshal
- Washington University School of MedicineSt. LouisMissouriUSA
| | | | | | - Edward D. Huey
- Departments of Psychiatry and NeurologyColumbia UniversityNew YorkNew YorkUSA
| | - David J. Irwin
- University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Kejal Kantarci
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Anna M. Karydas
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - John Kornak
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Walter A. Kukull
- National Alzheimer's Coordinating CenterUniversity of WashingtonSeattleWashingtonUSA
| | | | - Irene Litvan
- University of California, San DiegoLa JollaCaliforniaUSA
| | | | - Mario F. Mendez
- University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | | | | | | | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoOntarioCanada
| | - Nadine A. Tatton
- The Association for Frontotemporal DegenerationRadnorPennsylvaniaUSA
| | - Arthur W. Toga
- USC Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ashley Vetor
- School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Bonnie Wong
- Massachusetts General HospitalBostonMassachusettsUSA
| | | | | | | | - Suzee E. Lee
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Moore KM, Nicholas J, Grossman M, McMillan CT, Irwin DJ, Massimo L, Van Deerlin VM, Warren JD, Fox NC, Rossor MN, Mead S, Bocchetta M, Boeve BF, Knopman DS, Graff-Radford NR, Forsberg LK, Rademakers R, Wszolek ZK, van Swieten JC, Jiskoot LC, Meeter LH, Dopper EG, Papma JM, Snowden JS, Saxon J, Jones M, Pickering-Brown S, Le Ber I, Camuzat A, Brice A, Caroppo P, Ghidoni R, Pievani M, Benussi L, Binetti G, Dickerson BC, Lucente D, Krivensky S, Graff C, Öijerstedt L, Fallström M, Thonberg H, Ghoshal N, Morris JC, Borroni B, Benussi A, Padovani A, Galimberti D, Scarpini E, Fumagalli GG, Mackenzie IR, Hsiung GYR, Sengdy P, Boxer AL, Rosen H, Taylor JB, Synofzik M, Wilke C, Sulzer P, Hodges JR, Halliday G, Kwok J, Sanchez-Valle R, Lladó A, Borrego-Ecija S, Santana I, Almeida MR, Tábuas-Pereira M, Moreno F, Barandiaran M, Indakoetxea B, Levin J, Danek A, Rowe JB, Cope TE, Otto M, Anderl-Straub S, de Mendonça A, Maruta C, Masellis M, Black SE, Couratier P, Lautrette G, Huey ED, Sorbi S, Nacmias B, Laforce R, Tremblay MPL, Vandenberghe R, Damme PV, Rogalski EJ, Weintraub S, Gerhard A, Onyike CU, Ducharme S, Papageorgiou SG, Ng ASL, Brodtmann A, Finger E, Guerreiro R, Bras J, Rohrer JD. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurol 2020; 19:145-156. [PMID: 31810826 PMCID: PMC7007771 DOI: 10.1016/s1474-4422(19)30394-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. METHODS In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. FINDINGS Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35-62, for age at onset; 61%, 47-73, for age at death), and even more by family membership (66%, 56-75, for age at onset; 74%, 65-82, for age at death). In the GRN group, only 2% (0-10) of the variability of age at onset and 9% (3-21) of that of age of death was explained by the specific mutation, whereas 14% (9-22) of the variability of age at onset and 20% (12-30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11-26) of the variability of age at onset and 19% (12-29) of that of age at death. INTERPRETATION Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. FUNDING UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society.
Collapse
Affiliation(s)
- Katrina M Moore
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Jennifer Nicholas
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Massimo
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Martin N Rossor
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Simon Mead
- Institute of Prion Diseases, University College London, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | | | | | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lieke H Meeter
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Elise Gp Dopper
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Janne M Papma
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Julie S Snowden
- Cerebral Function Unit, Salford Royal NHS Foundation Trust and Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Jennifer Saxon
- Cerebral Function Unit, Salford Royal NHS Foundation Trust and Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Matthew Jones
- Cerebral Function Unit, Salford Royal NHS Foundation Trust and Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Stuart Pickering-Brown
- Cerebral Function Unit, Salford Royal NHS Foundation Trust and Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Isabelle Le Ber
- Institut du Cerveau et de la Moelle épinière & Centre de Référence des Démences Rares ou précoces, Institut de la Mémoire et de la Maladie d'Alzheimer, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Agnès Camuzat
- Institut du Cerveau et de la Moelle épinière & Centre de Référence des Démences Rares ou précoces, Institut de la Mémoire et de la Maladie d'Alzheimer, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière & Centre de Référence des Démences Rares ou précoces, Institut de la Mémoire et de la Maladie d'Alzheimer, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Paola Caroppo
- Institut du Cerveau et de la Moelle épinière & Centre de Référence des Démences Rares ou précoces, Institut de la Mémoire et de la Maladie d'Alzheimer, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Roberta Ghidoni
- Molecular Markers Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Michela Pievani
- Alzheimer's Neuroimaging & Epidemiology Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane Lucente
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samantha Krivensky
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogenetics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Linn Öijerstedt
- Center for Alzheimer Research, Division of Neurogenetics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Marie Fallström
- Center for Alzheimer Research, Division of Neurogenetics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Håkan Thonberg
- Center for Alzheimer Research, Division of Neurogenetics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Nupur Ghoshal
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - John C Morris
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, Centro Dino Ferrari, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Department of Pathophysiology and Transplantation, Centro Dino Ferrari, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio G Fumagalli
- Department of Pathophysiology and Transplantation, Centro Dino Ferrari, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Ian R Mackenzie
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ging-Yuek R Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pheth Sengdy
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Howie Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Joanne B Taylor
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Carlo Wilke
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Patricia Sulzer
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - John R Hodges
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Glenda Halliday
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John Kwok
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergi Borrego-Ecija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isabel Santana
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Miguel Tábuas-Pereira
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain; Center for Networked Biomedical Research on Neurodegenerative Disease, Carlos III Health Institute, Madrid, Spain
| | - Myriam Barandiaran
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain; Center for Networked Biomedical Research on Neurodegenerative Disease, Carlos III Health Institute, Madrid, Spain
| | - Begoña Indakoetxea
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain; Center for Networked Biomedical Research on Neurodegenerative Disease, Carlos III Health Institute, Madrid, Spain
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas E Cope
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | | | - Mario Masellis
- Division of Neurology, Department of Medicine, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Division of Neurology, Department of Medicine, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Philippe Couratier
- Centre de Compétence Démences Rares, Centre Hospitalier et Universitaire Limoges, Limoges, France
| | - Geraldine Lautrette
- Centre de Compétence Démences Rares, Centre Hospitalier et Universitaire Limoges, Limoges, France
| | - Edward D Huey
- Departments of Psychiatry and Neurology, Columbia University, New York, NY, USA
| | - Sandro Sorbi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, and Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marie-Pier L Tremblay
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, and Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| | - Alexander Gerhard
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK; Departments of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, Essen, Germany
| | - Chiadi U Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simon Ducharme
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Sokratis G Papageorgiou
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Adeline Su Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
10
|
Borrego-Écija S, Antonell A, Puig-Butillé JA, Pericot I, Prat-Bravo C, Abellan-Vidal MT, Mallada J, Olives J, Falgàs N, Oliva R, Lladó A, Sánchez-Valle R. Novel P397S MAPT variant associated with late onset and slow progressive frontotemporal dementia. Ann Clin Transl Neurol 2019; 6:1559-1565. [PMID: 31402617 PMCID: PMC6689677 DOI: 10.1002/acn3.50844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in the MAPT gene cause frontotemporal dementia with tau deposits. We report the novel p.P397S MAPT variant in eight subjects from five apparently nonrelated families suffering from frontotemporal dementia with autosomal dominant pattern of inheritance. In silico analysis reported conflicting evidence of pathogenicity. The segregation analysis support that this variant is likely pathogenic. The mean age at onset (61.4 years) and mean disease duration (13.9 years) of these subjects and their affected relatives were significantly higher compared with our series of p.P301L MAPT mutation carriers. These findings suggest that p.P397S variant could be a new MAPT mutation associated with a less aggressive phenotype than other MAPT mutations.
Collapse
Affiliation(s)
- Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Anton Puig-Butillé
- Biochemistry and Molecular Genetics Department, Hospital Clinic, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | | | | | - Maria Teresa Abellan-Vidal
- Unit of Cognitive Disorders and Psychogeriatrics, Institut de Neuropsiquiatria i Addiccions, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain
| | - Javier Mallada
- Neurology Department, Hospital General Universitario de Elda, Alicante, Spain
| | - Jaume Olives
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Rafael Oliva
- Biochemistry and Molecular Genetics Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain.,Genetics Unit, Department of Biosciences, University of Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. J Transl Med 2019; 99:912-928. [PMID: 30742061 PMCID: PMC7289372 DOI: 10.1038/s41374-019-0197-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
In multiple neurodegenerative diseases, including Alzheimer's disease (AD), a prominent pathological feature is the aberrant aggregation and inclusion formation of the microtubule-associated protein tau. Because of the pathological association, these disorders are often referred to as tauopathies. Mutations in the MAPT gene that encodes tau can cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), providing the clearest evidence that tauopathy plays a causal role in neurodegeneration. However, large gaps in our knowledge remain regarding how various FTDP-17-linked tau mutations promote tau aggregation and neurodegeneration, and, more generally, how the tauopathy is linked to neurodegeneration. Herein, we review what is known about how FTDP-17-linked pathogenic MAPT mutations cause disease, with a major focus on the prion-like properties of wild-type and mutant tau proteins. The hypothesized mechanisms by which mutations in the MAPT gene promote tauopathy are quite varied and may not provide definitive insights into how tauopathy arises in the absence of mutation. Further, differences in the ability of tau and mutant tau proteins to support prion-like propagation in various model systems raise questions about the generalizability of this mechanism in various tauopathies. Notably, understanding the mechanisms of tauopathy induction and spread and tau-induced neurodegeneration has important implications for tau-targeting therapeutics.
Collapse
Affiliation(s)
- Kevin H Strang
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Kovacs GG, Lee VM, Trojanowski JQ. Protein astrogliopathies in human neurodegenerative diseases and aging. Brain Pathol 2018; 27:675-690. [PMID: 28805003 DOI: 10.1111/bpa.12536] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of neurons associated with depositions of pathologically altered proteins showing hierarchical involvement of brain regions. The role of astrocytes in the pathogenesis of neurodegenerative diseases is explored as contributors to neuronal degeneration or neuroprotection pathways, and also as potential mediators of the transcellular spreading of disease-associated proteins. Protein astrogliopathy (PAG), including deposition of amyloid-β, prion protein, tau, α-synuclein, and very rarely transactive response DNA-binding protein 43 (TDP-43) is not unprecedented or unusual in neurodegenerative diseases. Morphological characterization of PAG is considered, however, only for the neuropathological diagnosis and classification of tauopathies. Astrocytic tau pathology is seen in primary frontotemporal lobar degeneration (FTLD) associated with tau pathologies (FTLD-Tau), and also in the form of aging-related tau astrogliopathy (ARTAG). Importantly, ARTAG shares common features with primary FTLD-Tau as well as with the astroglial tau pathologies that are thought to be hallmarks of a brain injury-related tauopathy known as chronic traumatic encephalopathy (CTE). Supported by experimental observations, the morphological variability of PAG might reflect distinct pathogenic involvement of different astrocytic populations. PAG might indicate astrocytic contribution to spreading or clearance of disease-associated proteins, however, this might lead to astrocytic dysfunction and eventually contribute to the degeneration of neurons. Here, we review recent advances in understanding ARTAG and other related forms of PAG.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Virginia M Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Abstract
Astrocytes are involved in many diseases of the central nervous system, not only as reactive cells to neuronal damage but also as primary actors in the pathological process. Astrogliopathy is a term used to designate the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Astrocytopathy is utilized to name non-reactive astrogliosis covering hypertrophy, atrophy and astroglial degeneration with loss of function in astrocytes and pathological remodeling, as well as senescent changes. Astrogliopathy and astrocytopathy are hallmarks of tauopathies—neurodegenerative diseases with abnormal hyper-phosphorylated tau aggregates in neurons and glial cells. The involvement of astrocytes covers different disease-specific types such as tufted astrocytes, astrocytic plaques, thorn-shaped astrocytes, granular/fuzzy astrocytes, ramified astrocytes and astrocytes with globular inclusions, as well as others which are unnamed but not uncommon in familial frontotemporal degeneration linked to mutations in the tau gene. Knowledge of molecular differences among tau-containing astrocytes is only beginning, and their distinct functional implications remain rather poorly understood. However, tau-containing astrocytes in certain conditions have deleterious effects on neuronal function and nervous system integrity. Moreover, recent studies have shown that tau-containing astrocytes obtained from human brain tauopathies have a capacity for abnormal tau seeding and spreading in wild type mice. Inclusive conceptions include a complex scenario involving neurons, glial cells and local environmental factors that potentiate each other and promote disease progression in tauopathies.
Collapse
|
14
|
Forrest SL, Kril JJ, Stevens CH, Kwok JB, Hallupp M, Kim WS, Huang Y, McGinley CV, Werka H, Kiernan MC, Götz J, Spillantini MG, Hodges JR, Ittner LM, Halliday GM. Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain 2018; 141:521-534. [PMID: 29253099 PMCID: PMC5888940 DOI: 10.1093/brain/awx328] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 01/08/2023] Open
Abstract
See Josephs (doi:10.1093/brain/awx367) for a scientific commentary on this article.In many neurodegenerative disorders, familial forms have provided important insights into the pathogenesis of their corresponding sporadic forms. The first mutations associated with frontotemporal lobar degeneration (FTLD) were found in the microtubule-associated protein tau (MAPT) gene on chromosome 17 in families with frontotemporal degeneration and parkinsonism (FTDP-17). However, it was soon discovered that 50% of these families had a nearby mutation in progranulin. Regardless, the original FTDP-17 nomenclature has been retained for patients with MAPT mutations, with such patients currently classified independently from the different sporadic forms of FTLD with tau-immunoreactive inclusions (FTLD-tau). The separate classification of familial FTLD with MAPT mutations implies that familial forms cannot inform on the pathogenesis of the different sporadic forms of FTLD-tau. To test this assumption, this study pathologically assessed all FTLD-tau cases with a known MAPT mutation held by the Sydney and Cambridge Brain Banks, and compared them to four cases of four subtypes of sporadic FTLD-tau, in addition to published case reports. Ten FTLD-tau cases with a MAPT mutation (K257T, S305S, P301L, IVS10+16, R406W) were screened for the core differentiating neuropathological features used to diagnose the different sporadic FTLD-tau subtypes to determine whether the categorical separation of MAPT mutations from sporadic FTLD-tau is valid. Compared with sporadic cases, FTLD-tau cases with MAPT mutations had similar mean disease duration but were younger at age of symptom onset (55 ± 4 years versus 70 ± 6 years). Interestingly, FTLD-tau cases with MAPT mutations had similar patterns and severity of neuropathological features to sporadic FTLD-tau subtypes and could be classified into: Pick's disease (K257T), corticobasal degeneration (S305S, IVS10+16, R406W), progressive supranuclear palsy (S305S) or globular glial tauopathy (P301L, IVS10+16). The finding that the S305S mutation could be classified into two tauopathies suggests additional modifying factors. Assessment of our cases and previous reports suggests that distinct MAPT mutations result in particular FTLD-tau subtypes, supporting the concept that they are likely to inform on the varied cellular mechanisms involved in distinctive forms of sporadic FTLD-tau. As such, FTLD-tau cases with MAPT mutations should be considered familial forms of FTLD-tau subtypes rather than a separate FTDP-17 category, and continued research on the effects of different mutations more focused on modelling their impact to produce the very different sporadic FTLD-tau pathologies in animal and cellular models.
Collapse
Affiliation(s)
- Shelley L Forrest
- Charles Perkins Centre and Discipline of Pathology, Sydney Medical School, University of Sydney, Australia
| | - Jillian J Kril
- Charles Perkins Centre and Discipline of Pathology, Sydney Medical School, University of Sydney, Australia
| | - Claire H Stevens
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Australia
| | - John B Kwok
- Brain and Mind Centre and Central Clinical School, Sydney Medical School, University of Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Australia
| | - Marianne Hallupp
- Brain and Mind Centre and Central Clinical School, Sydney Medical School, University of Sydney, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Central Clinical School, Sydney Medical School, University of Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Australia
| | - Yue Huang
- School of Medical Sciences, University of New South Wales, Australia
| | - Ciara V McGinley
- Charles Perkins Centre and Discipline of Pathology, Sydney Medical School, University of Sydney, Australia
| | - Hellen Werka
- Charles Perkins Centre and Discipline of Pathology, Sydney Medical School, University of Sydney, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre and Central Clinical School, Sydney Medical School, University of Sydney, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Australia
| | | | - John R Hodges
- Brain and Mind Centre and Central Clinical School, Sydney Medical School, University of Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and Central Clinical School, Sydney Medical School, University of Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Australia
| |
Collapse
|
15
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
16
|
Rossi G, Tagliavini F. Frontotemporal lobar degeneration: old knowledge and new insight into the pathogenetic mechanisms of tau mutations. Front Aging Neurosci 2015; 7:192. [PMID: 26528178 PMCID: PMC4604311 DOI: 10.3389/fnagi.2015.00192] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative diseases which includes tauopathies. In the central nervous system (CNS) tau is the major microtubule-associated protein (MAP) of neurons, promoting assembly and stabilization of microtubules (MTs) required for morphogenesis and axonal transport. Primary tauopathies are characterized by deposition of abnormal fibrils of tau in neuronal and glial cells, leading to neuronal death, brain atrophy and eventually dementia. In genetic tauopathies mutations of tau gene impair the ability of tau to bind to MTs, alter the normal ratio among tau isoforms and favor fibril formation. Recently, additional functions have been ascribed to tau and different pathogenetic mechanisms are then emerging. In fact, a role of tau in DNA protection and genome stability has been reported and chromosome aberrations have been found associated with tau mutations. Furthermore, newly structurally and functionally characterized mutations have suggested novel pathological features, such as a tendency to form oligomeric rather than fibrillar aggregates. Tau mutations affecting axonal transport and plasma membrane interaction have also been described. In this article, we will review the pathogenetic mechanisms underlying tau mutations, focusing in particular on the less common aspects, so far poorly investigated.
Collapse
Affiliation(s)
- Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Italy
| | - Fabrizio Tagliavini
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Italy
| |
Collapse
|
17
|
Benussi A, Padovani A, Borroni B. Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia. Front Aging Neurosci 2015; 7:171. [PMID: 26388768 PMCID: PMC4555036 DOI: 10.3389/fnagi.2015.00171] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a genetically and pathologically heterogeneous disorder characterized by personality changes, language impairment, and deficits of executive functions associated with frontal and temporal lobe degeneration. Different phenotypes have been defined on the basis of presenting clinical symptoms, i.e., the behavioral variant of FTD, the agrammatic variant of primary progressive aphasia, and the semantic variant of PPA. Some patients have an associated movement disorder, either parkinsonism, as in progressive supranuclear palsy and corticobasal syndrome, or motor neuron disease (FTD-MND). A family history of dementia is found in 40% of cases of FTD and about 10% have a clear autosomal-dominant inheritance. Genetic studies have identified several genes associated with monogenic FTD: microtubule-associated protein tau, progranulin, TAR DNA-binding protein 43, valosin-containing protein, charged multivesicular body protein 2B, fused in sarcoma, and the hexanucleotide repeat expansion in intron 1 of the chromosome 9 open reading frame 72. Patients often present with an extensive phenotypic variability, even among different members of the same kindred carrying an identical disease mutation. The objective of the present work is to review and evaluate available literature data in order to highlight recent advances in clinical, biological, and neuroimaging features of monogenic frontotemporal lobar degeneration and try to identify different mechanisms underlying the extreme phenotypic heterogeneity that characterizes this disease.
Collapse
Affiliation(s)
- Alberto Benussi
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
Tacik P, DeTure M, Lin WL, Sanchez Contreras M, Wojtas A, Hinkle KM, Fujioka S, Baker MC, Walton RL, Carlomagno Y, Brown PH, Strongosky AJ, Kouri N, Murray ME, Petrucelli L, Josephs KA, Rademakers R, Ross OA, Wszolek ZK, Dickson DW. A novel tau mutation, p.K317N, causes globular glial tauopathy. Acta Neuropathol 2015; 130:199-214. [PMID: 25900293 DOI: 10.1007/s00401-015-1425-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/11/2015] [Accepted: 04/11/2015] [Indexed: 12/11/2022]
Abstract
Globular glial tauopathies (GGTs) are 4-repeat tauopathies neuropathologically characterized by tau-positive, globular glial inclusions, including both globular oligodendroglial inclusions and globular astrocytic inclusions. No mutations have been found in 25 of the 30 GGT cases reported in the literature who have been screened for mutations in microtubule associated protein tau (MAPT). In this report, six patients with GGT (four with subtype III and two with subtype I) were screened for MAPT mutations. They included 4 men and 2 women with a mean age at death of 73 years (55-83 years) and mean age at symptomatic onset of 66 years (50-77 years). Disease duration ranged from 5 to 14 years. All were homozygous for the MAPT H1 haplotype. Three patients had a positive family history of dementia, and a novel MAPT mutation (c.951G>C, p.K317N) was identified in one of them, a patient with subtype III. Recombinant tau protein bearing the lysine-to-asparagine substitution at amino acid residue 317 was used to assess functional significance of the variant on microtubule assembly and tau filament formation. Recombinant p.K317N tau had reduced ability to promote tubulin polymerization. Recombinant 3R and 4R tau bearing the p.K317N mutation showed decreased 3R tau and increased 4R tau filament assembly. These results strongly suggest that the p.K317N variant is pathogenic. Sequencing of MAPT should be considered in patients with GGT and a family history of dementia or movement disorder. Since several individuals in our series had a positive family history but no MAPT mutation, genetic factors other than MAPT may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Pawel Tacik
- Department of Neurology, Mayo Clinic, Jacksonville, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ravid R. The uniqueness of biobanks for neurological and psychiatric diseases: potentials and pitfalls. Pathobiology 2015; 81:237-244. [PMID: 25792212 DOI: 10.1159/000369886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Central nervous system (CNS) biobanks are facing difficult and specific challenges due to the sensitive issue of collecting specimens of the CNS, and especially the brain. At present, there is no global network/central database to serve researchers, clinicians and pharma companies, or to supply the special specimens and the accompanying data in sufficient numbers and detail, respectively. The main challenge/objective is to standardize and harmonize all the facets involved in CNS biobanking in order to maximize efficient sample collection. METHODS Since the number of CNS biospecimens stored in existing biobanks is relatively limited and the accompanying data are not always readily available and hard to identify, we propose using optimal procedures for handling and storage of these specimens, and the global standardization of the cliniconeuropathological diagnostic criteria. RESULTS One of the prominent achievements of the current global activity in brain tissue biobanks (BTB-banks) is the development of an inventory of international standards, available specimens and concomitant data, and national registries. CONCLUSIONS Taking into consideration the huge variety of the specimens stored in different repositories and the enormous differences in medicolegal systems and ethics regulations in different countries, we strongly recommend that healthcare systems and institutions who host BTB-banks make efforts to secure adequate funding for the infrastructure and daily activities. BTB-banks will refine standard operating procedures and their internal guides of best practices/codes of conduct. This in turn will enable the BTB-banks to share the collected specimens and data with the largest possible number of researchers, aiming at maximal scientific spin-off and advance of public health research.
Collapse
Affiliation(s)
- Rivka Ravid
- BrainBank Consultants, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Fontaine SN, Sabbagh JJ, Baker J, Martinez-Licha CR, Darling A, Dickey CA. Cellular factors modulating the mechanism of tau protein aggregation. Cell Mol Life Sci 2015; 72:1863-79. [PMID: 25666877 DOI: 10.1007/s00018-015-1839-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 01/12/2023]
Abstract
Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer's disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer's disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones.
Collapse
Affiliation(s)
- Sarah N Fontaine
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 2015; 41:24-46. [PMID: 25556536 PMCID: PMC4329416 DOI: 10.1111/nan.12213] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
Hereditary frontotemporal dementia associated with mutations in the microtubule-associated protein tau gene (MAPT) is a protean disorder. Three neuropathologic subtypes can be recognized, based on the presence of inclusions made of tau isoforms with three and four repeats, predominantly three repeats and mostly four repeats. This is relevant for establishing a correlation between structural magnetic resonance imaging and positron emission tomography using tracers specific for aggregated tau. Longitudinal studies will be essential to determine the evolution of anatomical alterations from the asymptomatic stage to the various phases of disease following the onset of symptoms.
Collapse
Affiliation(s)
- B Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndianapolis, USA
| | - A L Oblak
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndianapolis, USA
| | - B F Boeve
- Department of Neurology, Mayo ClinicRochester, USA
| | - K A Johnson
- Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolBoston, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical SchoolBoston, USA
| | - B C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical SchoolBoston, USA
| | - M Goedert
- Medical Research Council, Laboratory of Molecular BiologyCambridge, UK
| |
Collapse
|
22
|
Alpha-synuclein and tau: teammates in neurodegeneration? Mol Neurodegener 2014; 9:43. [PMID: 25352339 PMCID: PMC4230508 DOI: 10.1186/1750-1326-9-43] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022] Open
Abstract
The accumulation of α-synuclein aggregates is the hallmark of Parkinson’s disease, and more generally of synucleinopathies. The accumulation of tau aggregates however is classically found in the brains of patients with dementia, and this type of neuropathological feature specifically defines the tauopathies. Nevertheless, in numerous cases α-synuclein positive inclusions are also described in tauopathies and vice versa, suggesting a co-existence or crosstalk of these proteinopathies. Interestingly, α-synuclein and tau share striking common characteristics suggesting that they may work in concord. Tau and α-synuclein are both partially unfolded proteins that can form toxic oligomers and abnormal intracellular aggregates under pathological conditions. Furthermore, mutations in either are responsible for severe dominant familial neurodegeneration. Moreover, tau and α-synuclein appear to promote the fibrillization and solubility of each other in vitro and in vivo. This suggests that interactions between tau and α-synuclein form a deleterious feed-forward loop essential for the development and spreading of neurodegeneration. Here, we review the recent literature with respect to elucidating the possible links between α-synuclein and tau.
Collapse
|
23
|
Rossi G, Bastone A, Piccoli E, Morbin M, Mazzoleni G, Fugnanesi V, Beeg M, Del Favero E, Cantù L, Motta S, Salsano E, Pareyson D, Erbetta A, Elia AE, Del Sorbo F, Silani V, Morelli C, Salmona M, Tagliavini F. Different mutations at V363 MAPT codon are associated with atypical clinical phenotypes and show unusual structural and functional features. Neurobiol Aging 2014; 35:408-17. [DOI: 10.1016/j.neurobiolaging.2013.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 02/06/2023]
|
24
|
Combs B, Gamblin TC. FTDP-17 tau mutations induce distinct effects on aggregation and microtubule interactions. Biochemistry 2012; 51:8597-607. [PMID: 23043292 DOI: 10.1021/bi3010818] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FTDP-17 mutations in the tau gene lead to early onset frontotemporal dementias characterized by the pathological aggregation of the microtubule-associated protein tau. Tau aggregation is closely correlated with the progression and severity of localized atrophy of certain regions in the brain. These mutations are primarily located in or near the microtubule-binding repeat regions of tau and can have vastly different effects on the protein. Some mutations have been linked to effects such as increased levels of aggregation, hyperphosphorylation, defects in mRNA splicing, and weakened interaction with microtubules. Given the differential effects of the mutations, it may not be surprising that the pathology associated with FTDP-17 can vary widely as well. Despite this variety, several of the mutations are commonly used interchangeably as aggregation inducers for in vitro and in vivo models of tauopathies. We generated recombinant forms of 12 FTDP-17 mutations chosen for their predicted effects on the charge, hydrophobicity, and secondary structure of the protein. We then examined the effects that the mutations had on the properties of in vitro aggregation of the protein and its ability to stabilize microtubule assembly. The group of mutations induced very different effects on the total amount of aggregation, the kinetics of aggregation, and filament morphology. Several of the mutations inhibited the microtubule stabilization ability of tau, while others had very little effect compared to wild-type tau. These results indicate that the mechanisms of disease progression may differ among FTDP-17 mutations and that the effects of the varying mutations may not be equal in all model systems.
Collapse
Affiliation(s)
- Benjamin Combs
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | |
Collapse
|
25
|
Miller DW, Cookson MR, Dickson DW. Glial cell inclusions and the pathogenesis of neurodegenerative diseases. ACTA ACUST UNITED AC 2012; 1:13-21. [PMID: 16614753 PMCID: PMC1435946 DOI: 10.1017/s1740925x04000043] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this review, we discuss examples that show how glial-cell pathology is increasingly recognized in several neurodegenerative diseases. We also discuss the more provocative idea that some of the disorders that are currently considered to be neurodegenerative diseases might, in fact, be due to primary abnormalities in glia. Although the mechanism of glial pathology (i.e. modulating glutamate excitotoxicity) might be better established for amyotrophic lateral sclerosis (ALS), a role for neuronal-glial interactions in the pathogenesis of most neurodegenerative diseases is plausible. This burgeoning area of neuroscience will receive much attention in the future and it is expected that further understanding of basic neuronal-glial interactions will have a significant impact on the understanding of the fundamental nature of human neurodegenerative disorders.
Collapse
Affiliation(s)
- David W. Miller
- Laboratory of Neurogenetics National Institute on Aging 9000 Rockville Pike Bethesda MD 20892-1589
| | - Mark R. Cookson
- Laboratory of Neurogenetics National Institute on Aging 9000 Rockville Pike Bethesda MD 20892-1589
- Correspondence should be addressed to: Mark R. Cookson, Ph.D., Laboratory of Neurogenetics, National Institute on Aging, NIH, Building 10, Room 6C103, MSC1589, 9000 Rockville Pike, Bethesda MD 20892, USA, phone: +1 301 451, 3870 fax: +1 301 480 0315
| | - Dennis W. Dickson
- Department of Neuroscience Mayo Clinic Jacksonville 4500 San Pablo Road Jacksonville FL 32224
| |
Collapse
|
26
|
Cohn-Hokke PE, Elting MW, Pijnenburg YAL, van Swieten JC. Genetics of dementia: update and guidelines for the clinician. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:628-43. [PMID: 22815225 DOI: 10.1002/ajmg.b.32080] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/28/2012] [Indexed: 12/12/2022]
Abstract
With increased frequency, clinical geneticists are asked for genetic advice on the heredity of dementia in families. Alzheimer's disease is in most cases a complex disease, but may be autosomal dominant inherited. Mutations in the PSEN1 gene are the most common genetic cause of early onset Alzheimer's disease, whereas APP and PSEN2 gene mutations are less frequent. Familial frontotemporal dementia may be associated with a mutation in the MAPT or GRN gene, or with a repeat expansion in the C9orf72 gene. All these genes show autosomal dominant inheritance with a high penetrance. Although Alzheimer's disease and frontotemporal dementia are clinically distinguishable entities, phenotypical overlap may occur. Rarely, dementia is caused by mutations in other autosomal dominant genes or by genetic defects with autosomal recessive, X-linked dominant or mitochondrial inheritance. The inherited forms of frontotemporal dementia and Alzheimer's disease show a large phenotypic variability also within families, resulting in many remaining uncertainties for mutation carriers. Therefore, genetic counseling before performing genetic testing is essential in both symptomatic individuals and healthy at risk relatives. This review provides an overview of the genetic causes of dementia and discusses all aspects relevant for genetic counseling and testing. Furthermore, based on current knowledge, we provide algorithms for genetic testing in patients with early onset Alzheimer's disease or frontotemporal dementia.
Collapse
Affiliation(s)
- Petra E Cohn-Hokke
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Abstract
Tauopathies are a group of disorders that have in common abnormal accumulation of tau protein in the brain. Although the different tauopathies have long been considered to be separate diseases, it is now clear that progressive supranuclear palsy, corticobasal degeneration and some forms of tau-positive frontotemporal lobar degeneration share clinical, pathological and genetic features. The important overlap between these disorders suggest they may represent different phenotypes of a single disease process, the clinical result depending on the topography of pathological lesions as well as other unknown factors.
Collapse
|
28
|
Rossi G, Bastone A, Piccoli E, Mazzoleni G, Morbin M, Uggetti A, Giaccone G, Sperber S, Beeg M, Salmona M, Tagliavini F. New mutations in MAPT gene causing frontotemporal lobar degeneration: biochemical and structural characterization. Neurobiol Aging 2011; 33:834.e1-6. [PMID: 21943955 DOI: 10.1016/j.neurobiolaging.2011.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/04/2011] [Accepted: 08/15/2011] [Indexed: 11/30/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) can be sporadic or familial. The genes encoding the microtubule-associated protein tau (MAPT) and progranulin (GRN) are the most relevant genes so far known causing the hereditary forms. Following genetic screening of patients affected by FTLD, we identified 2 new MAPT mutations, P364S and G366R, the former in a sporadic case. In the study we report the clinical and genetic features of the patients carrying these mutations, and the functional effects of the mutations, analyzed in vitro in order to investigate their pathogenic character. Both mutations resulted in reduced ability of tau to promote microtubule polymerization; the P364S protein variant also showed a high propensity to aggregate into filaments. These results suggest a high probability that these mutations are pathogenic. Our findings highlight the importance of genetic analysis also in sporadic forms of FTLD, and the role of in vitro studies to evaluate the pathologic features of new mutations.
Collapse
Affiliation(s)
- Giacomina Rossi
- Division of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moon SY, Lee BH, Seo SW, Kang SJ, Na DL. Slow vertical saccades in the frontotemporal dementia with motor neuron disease. J Neurol 2008; 255:1337-43. [PMID: 18825435 DOI: 10.1007/s00415-008-0890-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 12/10/2007] [Accepted: 02/01/2008] [Indexed: 02/02/2023]
Abstract
BACKGROUND Ocular motor abnormalities play an important role in differential diagnoses of Pick complex diseases. OBJECTIVES We evaluated how frequently supranuclear vertical saccadic impairment was observed in patients with frontotemporal dementia with motor neuron disease (FTD-MND). In addition, we tried to characterize their vertical saccadic abnormalities. MATERIALS AND METHODS Eleven patients with FTD-MND were recruited. Supranuclear vertical saccadic impairment on gross examination was defined as slow saccades with or without reduction in the final amplitude of the movement accompanied by intact oculocephalic reflex. We also recorded their saccades in 6 out of 11 patients using 2-dimensional videooculography (VOG). We measured the amplitude and peak velocity of each saccade. RESULTS On bedside examination, supranuclear vertical saccadic impairment was observed in 9 of 11 patients. One of the two remaining patients could not be evaluated due to poor cooperation and the other showed normal saccades. Five of nine patients with ocular abnormalities and one patient with normal saccade on gross examination underwent the VOG studies. The results showed that all the five patients with gross ocular abnormalities, compared with age-matched controls, had slowing of vertical saccades. Three out of five patients also showed slowing even in the large horizontal saccades. CONCLUSIONS Our results showed that slow vertical saccades are common in FTDMND. FTD-MND could be another disease that affects vertical gaze among Pick complex disease. Future pathologic studies are needed to confirm the involvement of the burst neurons in the dorsal midbrain in patients with FTDMND.
Collapse
Affiliation(s)
- S Y Moon
- Dept. of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul, 135-710, Korea
| | | | | | | | | |
Collapse
|
30
|
van Swieten JC, Heutink P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol 2008; 7:965-74. [PMID: 18771956 DOI: 10.1016/s1474-4422(08)70194-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is predominantly a presenile disorder that is characterised by behavioural changes and cognitive impairment, particularly in language and executive functions, and is associated with neurodegeneration in the frontal or temporal cortices, or both. Research into FTD has made many advances over the past 20 years that have important implications for clinical practice. Different clinical variants (ie, behavioural, aphasic, and motor neuron disease variants) are now recognised as part of the clinical spectrum of FTD. Neuropathologically, the disease can be divided into two main pathological subtypes: frontotemporal lobar degeneration (FTLD) with neuronal and glial tau inclusions (FTLD-tau); and FTLD with neuronal inclusions that are positive for ubiquitin (FTLD-U). 20-30% of cases of FTD follow an autosomal dominant pattern of inheritance, and half of which are caused by defects in MAPT, CHMP2B, and VCP. RECENT DEVELOPMENTS Mutations in the gene that encodes progranulin (GRN) on chromosome 17q21-22 have been identified in patients with hereditary FTD who have tau-negative, ubiquitin-positive inclusions. The recognition of the clinical phenotype associated with more than 50 different mutations in GRN has expanded the clinical knowledge of FTD to include presentations that resemble Alzheimer's disease, Lewy body disease, and corticobasal syndrome, with a variable age at onset (35-89 years) within families. Another recent breakthrough is the identification of the TAR DNA-binding protein (TARDBP; also known as TDP-43) as the main constituent of FTLD-U with mutations in GRN and with mutations in VCP, as well as in FTLD with amyotrophic lateral sclerosis. WHERE NEXT?: To develop therapeutic strategies to prevent FTD or delay its progression we must understand whether the loss of progranulin leads to the accumulation of TARDBP. In this Rapid Review, we focus on the clinical and pathological phenotypes associated with mutations in GRN, and distinguish those from other forms of hereditary FTD. In addition, we discuss the potential association of mutations in GRN on the pathophysiology of FTD with the accumulation of TARDBP.
Collapse
Affiliation(s)
- John C van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands.
| | | |
Collapse
|
31
|
Bermingham N, Cowie TF, Paine M, Storey E, McLean C. Frontotemporal dementia and Parkinsonism linked to chromosome 17 in a young Australian patient with the G389R Tau mutation. Neuropathol Appl Neurobiol 2008; 34:366-70. [DOI: 10.1111/j.1365-2990.2007.00918.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Neuropathology of Hereditary Forms of Frontotemporal Dementia and Parkinsonism. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:393-414. [DOI: 10.1016/s0072-9752(07)01237-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
|
34
|
|
35
|
Demenze frontotemporali. Neurologia 2008. [DOI: 10.1016/s1634-7072(08)70540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Abstract
Tau is a microtubule-associated protein involved in microtubule assembly and stabilization. Filamentous deposits made of tau constitute a major defining characteristic of several neurodegenerative diseases known as tauopathies including Alzheimer's disease. The involvement of tau in neurodegeneration has been clarified by the identification of genetic mutations in the tau gene in cases with familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Although the mechanism through which tau mutations lead to neuronal death is still unresolved, it is clear that tau mutations lead to formation of tau filaments that have a different morphology, contain different types of tau isoforms and produce distinct tau deposits. The range of tau pathology identified in FTDP-17 recapitulates the tau pathology present in sporadic tauopathies and indicates that tau dysfunction plays a major role also in these diseases.
Collapse
Affiliation(s)
- Laura Gasparini
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
37
|
Munoz DG, Ros R, Fatas M, Bermejo F, de Yebenes JG. Progressive nonfluent aphasia associated with a new mutation V363I in tau gene. Am J Alzheimers Dis Other Demen 2007; 22:294-9. [PMID: 17712160 PMCID: PMC10846119 DOI: 10.1177/1533317507302320] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reported here is a new missense mutation V363I in exon 12 of the microtubule-associated protein tau (MAPT) gene associated with progressive nonfluent aphasia, with onset at the age of 69 years in a woman. Although near mute, she maintained complex activities and had no discernible deficits outside of language until the age of 75 years, when progressive gait and swallowing disturbances appeared. There was a history of late-onset aphasia and apraxia in her father. All of her children were asymptomatic adults, but psycholinguistic abnormalities were detected in those bearing the mutation, consisting of difficulties in comprehension, both reading (symbol discrimination and comprehension of oral spelling) and oral (matching sentences to pictures and comprehension of locative relationships). A mutation-bearing sibling showed no abnormalities at 70 years old, consistent with the limited penetrance expected in late-onset disease. The mutation, corresponding to a highly conserved residue in the fourth tubulin-binding repeat, was not present in 194 normal individuals with the same genetic background.
Collapse
Affiliation(s)
- David G Munoz
- Banco de Tejidos para Investigacion Neurologica, Madrid, Spain.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Tau protein is involved in microtubule assembly and stabilization. Filamentous deposits made of tau constitute a defining characteristic of several neurodegenerative diseases. The relevance of tau dysfunction for neurodegeneration has been clarified through the identification of mutations in the Tau gene in cases with frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Although the mechanisms by which these mutations lead to nerve cell death are only incompletely understood, it is clear that they cause the formation of tau filaments with distinct morphologies and isoform compositions. The range of tau pathology identified in FTDP-17 recapitulates that in sporadic tauopathies, indicating a major role for tau dysfunction in these diseases.
Collapse
|
39
|
Spina S, Murrell JR, Yoshida H, Ghetti B, Bermingham N, Sweeney B, Dlouhy SR, Crowther RA, Goedert M, Keohane C. The novel Tau mutation G335S: clinical, neuropathological and molecular characterization. Acta Neuropathol 2007; 113:461-70. [PMID: 17186252 DOI: 10.1007/s00401-006-0182-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 11/24/2022]
Abstract
Mutations in Tau cause the inherited neurodegenerative disease, frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Known coding region mutations cluster in the microtubule-binding region, where they alter the ability of tau to promote microtubule assembly. Depending on the tau isoforms, this region consists of three or four imperfect repeats of 31 or 32 amino acids, each of which contains a characteristic and invariant PGGG motif. Here, we report the novel G335S mutation, which changes the PGGG motif of the third tau repeat to PGGS, in an individual who developed social withdrawal, emotional bluntness and stereotypic behavior at age 22, followed by disinhibition, hyperorality and ideomotor apraxia. Abundant tau-positive inclusions were present in neurons and glia in the frontotemporal cortex, hippocampus and brainstem. Sarkosyl-insoluble tau showed paired helical and straight filaments, as well as more irregular rope-like filaments. The pattern of pathological tau bands was like that of Alzheimer disease. Experimentally, the G335S mutation resulted in a greatly reduced ability of tau to promote microtubule assembly, while having no significant effect on heparin-induced assembly of recombinant tau into filaments.
Collapse
Affiliation(s)
- Salvatore Spina
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive MS A138, Indianapolis, IN, 46202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Developments in molecular neuropathology have led to protein-based classification systems for neurodegenerative disorders. Key proteins include alpha-synuclein, amyloid and tau. Alternative mRNA splicing and post-translational change, induced by a bewildering variety of protein modifying processes such as phosphorylation and ubiquitination, have generated insights into new mechanisms of selective neuronal degeneration. The task now is to bring these developments in protein chemistry to the clinic, to try to determine whether this biochemical diversity can help in explaining the phenotypic variability that is so typical of neurodegeneration in general. In this review, we will explore the clinicopathological diversity of the tau-related disorders with specific reference to three of the most common tauopathies, frontotemporal dementia (familial and sporadic), progressive supranuclear palsy and corticobasal degeneration.
Collapse
Affiliation(s)
- B Murray
- Department of Neurology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland.
| | | | | |
Collapse
|
41
|
Abstract
A number of neurodegenerative diseases are characterized by the presence of abundant deposits containing Tau protein. Expression of the human tau gene is under complex regulation. Mutations in the tau gene have been identified in patients with frontotemporal lobe dementia. These mutations affect either biochemical/biophysical properties or the delicate balance of different splicing isoforms. In this review, we summarize recent advances in our understanding of genetics and molecular pathogenesis of tauopathies with the focus on frontotemporal lobe dementia. We review published studies on tau pre-mRNA splicing regulation. Understanding molecular mechanisms of tauopathies may help in developing effective therapies for neurodegenerative tauopathies and related disorders, including Alzheimer disease.
Collapse
Affiliation(s)
- Amar Kar
- Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Kuo
- Department of Pediatrics, John F. Kennedy Center for Research on Human Development, Department of Cell and Developmental Biology, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rongqiao He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Zhou
- Institute of Biochemistry & Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jane Y. Wu
- Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, John F. Kennedy Center for Research on Human Development, Department of Cell and Developmental Biology, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
42
|
Neumann M, Mittelbronn M, Simon P, Vanmassenhove B, de Silva R, Lees A, Klapp J, Meyermann R, Kretzschmar HA. A new family with frontotemporal dementia with intronic 10+3 splice site mutation in the tau gene: neuropathology and molecular effects. Neuropathol Appl Neurobiol 2005; 31:362-73. [PMID: 16008820 DOI: 10.1111/j.1365-2990.2005.00629.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the tau gene cause familial frontotemporal dementia with parkinsonism linked to chromosome 17 characterized by filamentous tau protein deposits. Here we describe the clinical and neuropathological features of a case from a newly identified family with an intron 10+3-splice site mutation in the tau gene. The proband presented with severe personality changes and stereotyped speech followed by parkinsonian symptoms. He died at age 56 after a disease duration of approximately 6 years. At autopsy, there was marked frontotemporal degeneration with abundant tau-immunoreactive neuronal and glial inclusions widespread in the cortex and brainstem. RT-PCR analysis revealed a 3.7-fold increase of tau transcripts with exon 10, resulting in an 1.7-fold higher expression level of 4-repeat tau isoforms in soluble tau fractions when compared to control brains and exclusively 4-repeat tau isoforms in the sarcosyl-insoluble tau fractions. In accordance with the hypothesis that the overexpression leads to saturation of microtubule binding sites and an increase of unbound 4-repeat tau isoforms which assemble into filaments, the neuronal and glial inclusions in this case were exclusively composed of 4-repeat tau isoforms. The clinical and neuropathological data of this family are compared with results from the two other published families with the intron 10 + 3 mutation, the MSTD and the SOT 254 family.
Collapse
Affiliation(s)
- M Neumann
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bronner IF, ter Meulen BC, Azmani A, Severijnen LA, Willemsen R, Kamphorst W, Ravid R, Heutink P, van Swieten JC. Hereditary Pick's disease with the G272V tau mutation shows predominant three-repeat tau pathology. ACTA ACUST UNITED AC 2005; 128:2645-53. [PMID: 16014652 DOI: 10.1093/brain/awh591] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Frontotemporal dementia and parkinsonism linked to chromosome 17 have been associated with mutations in the microtubule associated protein tau (MAPT or tau) gene. This disorder is characterized by a large spectrum of neuronal and glial tau lesions in different brain regions. Pick bodies were found in a family with hereditary Pick's disease with the G272V mutation and in several families with other tau mutations in exons 9 and 11-13. The biochemical composition of Pick bodies varies between these mutations. Until recently, no detailed biochemical characterization of G272V brain material was done owing to unavailability of fresh frozen brain material. We now report a detailed study using the immunohistochemistry, western blots and electron microscopy of two brains with the G272V mutation that recently became available. Both brains showed severe neuronal loss in the temporal cortex, whereas in the frontal cortex the loss was less; and abundant Pick bodies in the dentate gyrus of the hippocampus, and caudate nucleus. The Pick bodies consisted exclusively of three-repeat (3R) isoforms, as was demonstrated by isoform-specific antibodies and supported by western blot analysis of sarkosyl-insoluble tau. These observations confirm that this family diagnosed with hereditary Pick disease meets all the criteria for this condition, including the presence of Pick bodies that are unphosphorylated at Ser262 and contain twisted filaments with long periodicity consisting only of 3R tau.
Collapse
Affiliation(s)
- I F Bronner
- Department of Human Genetics, Section Medical Genomics and Center for Neurogenomics and Cognitive Research, VU University Medical Center and VU University, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yancopoulou D, Xuereb JH, Crowther RA, Hodges JR, Spillantini MG. Tau and α-Synuclein Inclusions in a Case of Familial Frontotemporal Dementia and Progressive Aphasia. J Neuropathol Exp Neurol 2005; 64:245-53. [PMID: 15804056 DOI: 10.1093/jnen/64.3.245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent studies have shown that neurofibrillary tangles are frequently accompanied by alpha-synuclein inclusions in sporadic and familial Alzheimer disease, in Down syndrome, in progressive supranuclear palsy, and Parkinsonism dementia complex of Guam. Here we report the cases of 2 brothers with familial progressive aphasia who developed features of frontotemporal dementia with predominant tau pathology but also alpha-synuclein pathology. The 2 patients' brains revealed abundant tau pathology in the hippocampus and basal ganglia, whereas tau and alpha-synuclein aggregates coexisted only in the nucleus basalis of Meynert, the only region where alpha-synuclein was present. In this brain region, abundant Lewy bodies, Lewy neurites, and tau inclusions were found; the pathology was more abundant in the older than in the younger brother. Sarkosyl-insoluble tau extracted from brains of the 2 patients showed the presence of tau filaments that contained 3 major tau bands of 60, 64, and 68 kDa on Western blot analysis. These bands contained mainly tau with 3 and 4 repeats and no amino-terminal inserts and tau with 4 repeats and one amino-terminal insert. No mutations were identified in the tau, alpha-synuclein, beta-synuclein, or parkin genes. We think that this is the first report showing a specific colocalization of neurofibrillary tangles and Lewy bodies in a family with progressive aphasia.
Collapse
Affiliation(s)
- Despina Yancopoulou
- Department of Clinical Neurosciences Brain Repair Center, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
45
|
Hyman BT, Augustinack JC, Ingelsson M. Transcriptional and conformational changes of the tau molecule in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2005; 1739:150-7. [PMID: 15615634 DOI: 10.1016/j.bbadis.2004.06.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 06/16/2004] [Indexed: 01/17/2023]
Abstract
Mutations in the tau gene cause frontotemporal dementia with parkinsonism, presumably by affecting the balance between tau isoforms (with either three or four microtubule-binding repeats) or by impairing tau-tubulin binding. Although to date no mutations have been found for Alzheimer's disease, it is plausible that tangle pathology in this disorder is also driven by similar molecular modifications. Investigations of Alzheimer brain tissue with new technologies such as laser capture microscopy, quantitative PCR and fluorescence lifetime imaging will shed light on whether transcriptional or conformational alterations play a role in Alzheimer pathogenesis.
Collapse
Affiliation(s)
- Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
46
|
D'Souza I, Schellenberg GD. Regulation of tau isoform expression and dementia. Biochim Biophys Acta Mol Basis Dis 2005; 1739:104-15. [PMID: 15615630 DOI: 10.1016/j.bbadis.2004.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
In the central nervous system (CNS), aberrant changes in tau mRNA splicing and consequently in protein isoform ratios cause abnormal aggregation of tau and neurodegeneration. Pathological tau causes neuronal loss in Alzheimer's disease (AD) and a diverse group of disorders called the frontotemporal dementias (FTD), which are two of the most common forms of dementia and afflict more than 10% of the elderly population. Autosomal dominant mutations in the tau gene cause frontotemporal dementia with parkinsonism-chromosome 17 type (FTDP-17). Just over half the mutations affect tau protein function and decrease its affinity for microtubules (MTs) or increase self-aggregation. The remaining mutations occur within exon 10 (E10) and intron 10 sequences and alter complex regulation of E10 splicing by multiple mechanisms. FTDP-17 splicing mutations disturb the normally balanced levels of distinct protein isoforms that result in altered biochemical and structural properties of tau. In addition to FTDP-17, altered tau isoform levels are also pathogenically associated with other FTD disorders such as progressive supranuclear palsy (PSP), corticobasal degeneration and Pick's disease; however, the mechanisms remain undefined and mutations in tau have not been detected. FTDP-17 highlights the association between splicing mutations and the pronounced variability in pathology as well as phenotype that is characteristic of inherited disorders.
Collapse
Affiliation(s)
- Ian D'Souza
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, 1660 S. Columbian Way, Seattle, WA 98108, USA
| | | |
Collapse
|
47
|
Abstract
Tau is the major component of the intracellular filamentous deposits that define a number of neurodegenerative diseases, including the largely sporadic Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, and argyrophilic grain disease, as well as the inherited frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). For a long time, it was unclear whether the dysfunction of tau protein follows disease or whether disease follows the dysfunction of tau protein. The identification of mutations in Tau as the cause of FTDP-17 has resolved this issue. About half of the known mutations have their primary effect at the protein level, and they reduce the ability of tau protein to interact with microtubules and increase its propensity to assemble into abnormal filaments. The other mutations have their primary effect at the RNA level, thus perturbing the normal ratio of three-repeat to four-repeat tau isoforms. Where studied, this resulted in the relative overproduction of tau protein with four microtubule-binding repeats in brain. Several Tau mutations give rise to diseases that resemble progressive supranuclear palsy, corticobasal degeneration, or Pick's disease. Moreover, the H1 haplotype of Tau has been identified as a significant risk factor for progressive supranuclear palsy and corticobasal degeneration.
Collapse
Affiliation(s)
- Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
48
|
Brandt R, Hundelt M, Shahani N. Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta Mol Basis Dis 2005; 1739:331-54. [PMID: 15615650 DOI: 10.1016/j.bbadis.2004.06.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 06/15/2004] [Indexed: 12/19/2022]
Abstract
Tau becomes characteristically altered both functionally and structurally in several neurodegenerative diseases now collectively called tauopathies. Although increasing evidence supports that alterations of tau may directly cause neuronal degeneration and cell death, the mechanisms, which render tau to become a toxic agent are still unclear. In addition, it is obscure, whether neurodegeneration in tauopathies occurs via a common mechanism or specific differences exist. The aim of this review is to provide an overview about the different experimental models that currently exist, how they are used to determine the role of tau during degeneration and what has been learnt from them concerning the mechanistic role of tau in the disease process. The review begins with a discussion about similarities and differences in tau alteration in paradigmatic tauopathies such as frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and Alzheimer's disease (AD). The second part concentrates on major experimental models that have been used to address the mechanistic role of tau during degeneration. This will include a discussion of cell-free assays, culture models using cell lines or dissociated neurons, and animal models. How these models aid to understand (i) alterations in the function of tau as a microtubule-associated protein (MAP), (ii) direct cytotoxicity of altered tau protein, and (iii) the potential role of tau aggregation in neurodegenerative processes will be the central theme of this part. The review ends with concluding remarks about a general mechanistic model of the role of tau alteration and neuronal degeneration in tauopathies and future perspectives.
Collapse
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany.
| | | | | |
Collapse
|
49
|
Goedert M, Jakes R. Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta Mol Basis Dis 2005; 1739:240-50. [PMID: 15615642 DOI: 10.1016/j.bbadis.2004.08.007] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 08/17/2004] [Indexed: 12/25/2022]
Abstract
Tau is the major component of the intracellular filamentous deposits that define a number of neurodegenerative diseases. They include the largely sporadic Alzheimer's disease (AD), progressive supranuclear palsy, corticobasal degeneration, Pick's disease and argyrophilic grain disease, as well as the inherited frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). For a long time, it was unclear whether the dysfunction of tau protein follows disease or whether disease follows tau dysfunction. This was resolved when mutations in Tau were found to cause FTDP-17. Currently, 32 different mutations have been identified in over 100 families. About half of the known mutations have their primary effect at the protein level. They reduce the ability of tau protein to interact with microtubules and increase its propensity to assemble into abnormal filaments. The other mutations have their primary effect at the RNA level and perturb the normal ratio of three-repeat to four-repeat tau isoforms. Where studied, this resulted in a relative overproduction of tau protein with four microtubule-binding domains in the brain. Individual Tau mutations give rise to diseases that resemble progressive supranuclear palsy, corticobasal degeneration or Pick's disease. Moreover, the H1 haplotype of Tau has been identified as a significant risk factor for progressive supranuclear palsy and corticobasal degeneration. At a practical level, the new work is leading to the production of experimental animal models that reproduce the essential molecular and cellular features of the human tauopathies, including the formation of abundant filaments made of hyperphosphorylated tau protein and nerve cell degeneration.
Collapse
Affiliation(s)
- Michel Goedert
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
50
|
Abstract
Abundant abnormal aggregates of cytoskeletal proteins are neuropathological signatures of many neurodegenerative diseases that are broadly classified by filamentous aggregates of neuronal intermediate filament (IF) proteins, or by inclusions containing the microtubule-associated protein (MAP) tau. The discovery of mutations in neuronal IF and tau genes firmly establishes the importance of neuronal IF proteins and tau in the pathogenesis of neurodegenerative diseases. Multiple IF gene mutations are pathogenic for Charcot-Marie-Tooth (CMT) disease and amyotrophic lateral sclerosis (ALS)--in addition to those in the copper/zinc superoxide dismutase-1 (SOD1) gene. Tau gene mutations are pathogenic for frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), and tau polymorphisms are genetic risk factors for sporadic progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Thus, IF and tau abnormalities are linked directly to the aetiology and pathogenesis of neurodegenerative diseases. In vitro and transgenic animal models are being used to demonstrate that different mutations impair protein function, promote tau fibrilization, or perturb tau gene splicing, leading to aberrant and distinct tau aggregates. For recognition of these disorders at neuropathological examination, immunohistochemistry is needed, and this may be combined with biochemistry and molecular genetics to properly determine the nosology of a particular case. As reviewed here, the identification of molecular genetic defects and biochemical alterations in cytoskeletal proteins of human neurodegenerative diseases has facilitated experimental studies and will promote the development of assays of molecules which inhibit abnormal neuronal IF and tau protein inclusions.
Collapse
Affiliation(s)
- Nigel J Cairns
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA.
| | | | | |
Collapse
|