1
|
Pifl C, Reither H, Attems J, Zecca L. Dopamine and vesicular monoamine transport loss supports incidental Lewy body disease as preclinical idiopathic Parkinson. NPJ Parkinsons Dis 2023; 9:89. [PMID: 37322038 PMCID: PMC10272141 DOI: 10.1038/s41531-023-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Incidental Lewy body disease (ILBD) is a neuropathological diagnosis of brains with Lewy bodies without clinical neuropsychiatric symptoms. Dopaminergic deficits suggest a relationship to preclinical Parkinson's disease (PD). We now report a subregional pattern of striatal dopamine loss in ILBD cases, with dopamine found significantly decreased in the putamen (-52%) and only to a lower extent in the caudate (-38%, not statistically significant); this is similar to the pattern in idiopathic PD in various neurochemical and in vivo imaging studies. We aimed to find out if our recently reported impaired storage of dopamine in striatal synaptic vesicles prepared from striatal tissue of cases with idiopathic PD might be an early or even causative event. We undertook parallel measurements of [3H]dopamine uptake and vesicular monoamine transporter (VMAT)2 binding sites by the specific label [3H]dihydrotetrabenazine on vesicular preparation from caudate and putamen in ILBD. Neither specific uptake of dopamine and binding of [3H]dihydrotetrabenazine, nor mean values of the calculated ratios of dopamine uptake and VMAT2 binding, a measure of uptake rate per transport site, were significantly different between ILBD and controls. ATP-dependence of [3H]dopamine uptake revealed significantly higher rates in putamen than in caudate at saturating concentrations of ATP in controls, a subregional difference lost in ILBD. Our findings support a loss of the normally higher VMAT2 activity in putamen as a contributing factor to the higher susceptibility of the putamen to dopamine depletion in idiopathic PD. Moreover, we suggest ILBD postmortem tissue as a valuable source for testing hypotheses on processes in idiopathic PD.
Collapse
Affiliation(s)
- Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Harald Reither
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| |
Collapse
|
2
|
Chagraoui A, Di Giovanni G, De Deurwaerdère P. Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson’s Disease. Biomolecules 2022; 12:biom12020243. [PMID: 35204744 PMCID: PMC8961531 DOI: 10.3390/biom12020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The discovery of the D3 receptor (D3R) subtypes of dopamine (DA) has generated an understandable increase in interest in the field of neurological diseases, especially Parkinson’s disease (PD). Indeed, although DA replacement therapy with l-DOPA has provided an effective treatment for patients with PD, it is responsible for invalidating abnormal involuntary movements, known as L-DOPA-induced dyskinesia, which constitutes a serious limitation of the use of this therapy. Of particular interest is the finding that chronic l-DOPA treatment can trigger the expression of D1R–D3R heteromeric interactions in the dorsal striatum. The D3R is expressed in various tissues of the central nervous system, including the striatum. Compelling research has focused on striatal D3Rs in the context of PD and motor side effects, including dyskinesia, occurring with DA replacement therapy. Therefore, this review will briefly describe the basal ganglia (BG) and the DA transmission within these brain regions, before going into more detail with regard to the role of D3Rs in PD and their participation in the current treatments. Numerous studies have also highlighted specific interactions between D1Rs and D3Rs that could promote dyskinesia. Finally, this review will also address the possibility that D3Rs located outside of the BG may mediate some of the effects of DA replacement therapy.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-83-69
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, 2080 Msida, Malta;
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche (UMR) 5287, Centre National de la Recherche Scientifique (CNRS), CEDEX, 33000 Bordeaux, France;
| |
Collapse
|
3
|
Jinsmaa Y, Isonaka R, Sharabi Y, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing α-Synuclein. J Pharmacol Exp Ther 2019; 372:157-165. [PMID: 31744850 DOI: 10.1124/jpet.119.262246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Lewy body diseases such as Parkinson's disease involve intraneuronal deposition of the protein α-synuclein (AS) and depletion of nigrostriatal dopamine (DA). Interactions of AS with DA oxidation products may link these neurohistopathologic and neurochemical abnormalities via two potential pathways: spontaneous oxidation of DA to dopamine-quinone and enzymatic oxidation of DA catalyzed by monoamine oxidase to form 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is then oxidized to DOPAL-Q. We compared these two pathways in terms of the ability of DA and DOPAL to modify AS. DOPAL was far more potent than DA both in oligomerizing and forming quinone-protein adducts with (quinonizing) AS. The DOPAL-induced protein modifications were enhanced similarly by pro-oxidation with Cu(II) or tyrosinase and inhibited similarly by antioxidation with N-acetylcysteine. Dopamine oxidation evoked by Cu(II) or tyrosinase did not quinonize AS. In cultured MO3.13 human oligodendrocytes DOPAL resulted in the formation of numerous intracellular quinoproteins that were visualized by near-infrared spectroscopy. We conclude that of the two routes by which oxidation of DA modifies AS and other proteins the route via DOPAL is more prominent. The results support developing experimental therapeutic strategies that might mitigate deleterious modifications of proteins such as AS in Lewy body diseases by targeting DOPAL formation and oxidation. SIGNIFICANCE STATEMENT: Interactions of the protein α-synuclein with products of dopamine oxidation in the neuronal cytoplasm may link two hallmark abnormalities of Parkinson disease: Lewy bodies (which contain abundant AS) and nigrostriatal DA depletion (which produces the characteristic movement disorder). Of the two potential routes by which DA oxidation may alter AS and other proteins, the route via the autotoxic catecholaldehyde 3,4-dihydroxyphenylacetaldehyde is more prominent; the results support experimental therapeutic strategies targeting DOPAL formation and DOPAL-induced protein modifications.
Collapse
Affiliation(s)
- Yunden Jinsmaa
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Risa Isonaka
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Yehonatan Sharabi
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| |
Collapse
|
4
|
You H, Mariani LL, Mangone G, Le Febvre de Nailly D, Charbonnier-Beaupel F, Corvol JC. Molecular basis of dopamine replacement therapy and its side effects in Parkinson's disease. Cell Tissue Res 2018. [PMID: 29516217 DOI: 10.1007/s00441-018-2813-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is currently no cure for Parkinson's disease. The symptomatic therapeutic strategy essentially relies on dopamine replacement whose efficacy was demonstrated more than 50 years ago following the introduction of the dopamine precursor, levodopa. The spectacular antiparkinsonian effect of levodopa is, however, balanced by major limitations including the occurrence of motor complications related to its particular pharmacokinetic and pharmacodynamic properties. Other therapeutic strategies have thus been developed to overcome these problems such as the use of dopamine receptor agonists, dopamine metabolism inhibitors and non-dopaminergic drugs. Here we review the pharmacology and molecular mechanisms of dopamine replacement therapy in Parkinson's disease, both at the presynaptic and postsynaptic levels. The perspectives in terms of novel drug development and prediction of drug response for a more personalised medicine will be discussed.
Collapse
Affiliation(s)
- Hana You
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, University Hospital (Inselspital) and University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Louise-Laure Mariani
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Graziella Mangone
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Le Febvre de Nailly
- INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Pharmacy, Hôpital Pitié-Salpêtrière, Paris, France
| | - Fanny Charbonnier-Beaupel
- Assistance Publique Hôpitaux de Paris, Department of Pharmacy, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France. .,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France. .,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France. .,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France. .,CIC Neurosciences, ICM building, Hôpital Pitié-Salpêtrière, 47/83 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
5
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
6
|
Ruiz-DeDiego I, Naranjo J, Hervé D, Moratalla R. Dopaminergic regulation of olfactory type G-protein α subunit expression in the striatum. Mov Disord 2015; 30:1039-49. [DOI: 10.1002/mds.26197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/14/2015] [Accepted: 01/26/2015] [Indexed: 12/24/2022] Open
Affiliation(s)
- I. Ruiz-DeDiego
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), CIBERNED; Madrid Spain
- CIBERNED, Instituto de Salud Carlos III, CIBERNED; Madrid Spain
| | - J.R. Naranjo
- CIBERNED, Instituto de Salud Carlos III, CIBERNED; Madrid Spain
- Centro Nacional de Biotecnología; CSIC Madrid Spain
| | - D. Hervé
- Inserm UMR S-839, CIBERNED; Madrid Spain
- Institut du Fer à Moulin, CIBERNED; Madrid Spain
- Université Pierre et Marie Curie; Paris France
| | - R. Moratalla
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), CIBERNED; Madrid Spain
- CIBERNED, Instituto de Salud Carlos III, CIBERNED; Madrid Spain
| |
Collapse
|
7
|
Tong J, Fitzmaurice P, Furukawa Y, Schmunk GA, Wickham DJ, Ang LC, Sherwin A, McCluskey T, Boileau I, Kish SJ. Is brain gliosis a characteristic of chronic methamphetamine use in the human? Neurobiol Dis 2014; 67:107-18. [PMID: 24704312 DOI: 10.1016/j.nbd.2014.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 01/22/2023] Open
Abstract
Animal data show that high doses of the stimulant drug methamphetamine can damage brain dopamine neurones; however, it is still uncertain whether methamphetamine, at any dose, is neurotoxic to human brain. Since gliosis is typically associated with brain damage and is observed in animal models of methamphetamine exposure, we measured protein levels (intact protein and fragments, if any) of markers of microgliosis (glucose transporter-5, human leukocyte antigens HLA-DRα [TAL.1B5] and HLA-DR/DQ/DPβ [CR3/43]) and astrogliosis (glial fibrillary acidic protein, vimentin, and heat shock protein-27) in homogenates of autopsied brain of chronic methamphetamine users (n=20) and matched controls (n=23). Intact protein levels of all markers were, as expected, elevated (+28%-1270%, P<0.05) in putamen of patients with the neurodegenerative disorder multiple system atrophy (as a positive control) as were concentrations of fragments of glial fibrillary acidic protein, vimentin and heat shock protein-27 (+170%-4700%, P<0.005). In contrast, intact protein concentrations of the markers were normal in dopamine-rich striatum (caudate, putamen) and in the frontal cortex of the drug users. However, striatal levels of cleaved vimentin and heat shock protein-27 were increased (by 98%-211%, P<0.05), with positive correlations (r=0.41-0.60) observed between concentrations of truncated heat shock protein-27 and extent of dopamine loss (P=0.006) and levels of lipid peroxidation products 4-hydroxynonenal (P=0.046) and malondialdehyde (P=0.11). Our failure to detect increased intact protein levels of commonly used markers of microgliosis and astrogliosis could be explained by exposure to methamphetamine insufficient to cause a toxic process associated with overt gliosis; however, about half of the subjects had died of drug intoxication suggesting that "high" drug doses might have been used. Alternatively, drug tolerance to toxic effects might have occurred in the subjects, who were all chronic methamphetamine users. Nevertheless, the finding of above-normal levels of striatal vimentin and heat shock protein-27 fragments (which constituted 10-28% of the intact protein), for which changes in the latter correlated with those of several markers possibly suggestive of damage, does suggest that some astrocytic "disturbance" had occurred, which might in principle be related to methamphetamine neurotoxicity or to a neuroplastic remodeling process. Taken together, our neurochemical findings do not provide strong evidence for either marked microgliosis or astrogliosis in at least a subgroup of human recreational methamphetamine users who used the drug chronically and shortly before death. However, a logistically more difficult quantitative histopathological study is needed to confirm whether glial changes occur or do not occur in brain of human methamphetamine (and amphetamine) users.
Collapse
Affiliation(s)
- Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Paul Fitzmaurice
- ESR Institute of Environmental Science & Research, Auckland, New Zealand
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University & Postgraduate University of Juntendo, Tokyo, Japan
| | | | | | - Lee-Cyn Ang
- Division of Neuropathology, London Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | - Allan Sherwin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Tina McCluskey
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Cui G, Yang X, Wang X, Zhang Z, Yue X, Shi H, Shen X. Ranitidine reduced levodopa-induced dyskinesia in a rat model of Parkinson's disease. Neuropsychiatr Dis Treat 2014; 10:39-46. [PMID: 24379672 PMCID: PMC3872142 DOI: 10.2147/ndt.s54782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic administration of levodopa in Parkinson's disease leads to debilitating involuntary movements, termed levodopa-induced dyskinesia (LID). The pathogenesis of LID is poorly understood. Previous research has shown that histamine H2 receptors are highly expressed in the input (striatum) and output (globus pallidus, substantia nigra) regions of the basal ganglia, particularly in the GABAergic striatopallidal and striatonigral pathways. Therefore, a histamine H2 receptor antagonist could be used to reduce LID. In the present work, we investigated whether ranitidine has the potential to diminish LID in rats with dyskinesia and explored the underlying mechanisms involved. METHODS A rat model of PD was induced by 6-hydroxydopamine. Valid PD rats were then treated with levodopa (25 mg/kg, intraperitoneally) and benserazide (12.5 mg/kg, intraperitoneally) for 21 days to induce a rat model of LID. The acute and chronic effects of administration of ranitidine at different doses (5 mg/kg, 10 mg/kg, and 20 mg/kg) on abnormal involuntary movements, levodopa-induced rotations, and the forelimb adjusting steps test were investigated in LID rats. The chronic effect of ranitidine (10 mg/kg) on the expression of Arc and proenkephalin was also evaluated. RESULTS Levodopa elicited increased dyskinesia in PD rats. Acute ranitidine treatment had no effect on LID, but chronic ranitidine administration (10 mg/kg, 20 mg/kg) reduced LID in rats with dyskinesia. Importantly, levodopa-induced rotations were not affected by chronic treatment with ranitidine. In addition, chronic ranitidine (10 mg/kg, 20 mg/kg) significantly improved stepping of the lesioned forepaw. Real-time polymerase chain reaction showed that Arc and proenkephalin levels were reduced by chronic ranitidine (10 mg/kg) in dyskinetic rats. CONCLUSION These data indicate that ranitidine is a good adjunct for reducing LID in rats with dyskinesia. Inhibition of dopamine D1-mediated activation in the medium spiny neurons may account for the antidyskinetic effects of ranitidine in rats with dyskinesia.
Collapse
Affiliation(s)
- Guiyun Cui
- Department of Neurology, Jiangsu, People's Republic of China ; Department of Neurology, Jiangsu, People's Republic of China
| | - Xinxin Yang
- Department of Neurology, Jiangsu, People's Republic of China ; Department of Neurology, Jiangsu, People's Republic of China
| | - Xiaoying Wang
- Department of Ultrasound, the Affiliated Hospital of Xuzhou Medical College, Jiangsu, People's Republic of China ; Department of Neurology, Jiangsu, People's Republic of China
| | - Zunsheng Zhang
- Department of Neurology, Jiangsu, People's Republic of China
| | - Xuanye Yue
- Department of Neurology, Jiangsu, People's Republic of China
| | - Hongjuan Shi
- Department of Neurology, Jiangsu, People's Republic of China
| | - Xia Shen
- Department of Neurology, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Martinez A, Macheda T, Morgese MG, Trabace L, Giuffrida A. The cannabinoid agonist WIN55212-2 decreases L-DOPA-induced PKA activation and dyskinetic behavior in 6-OHDA-treated rats. Neurosci Res 2011; 72:236-42. [PMID: 22192465 DOI: 10.1016/j.neures.2011.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/16/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022]
Abstract
Chronic Levodopa (L-DOPA), the gold standard therapy for Parkinson's disease (PD), causes disabling motor complications (dyskinesias) that are associated with changes in the activity of striatal protein kinase A (PKA) and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). In this study, we showed that systemic administration of the cannabinoid agonist WIN55212-2 ameliorated L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-OHDA rat model of PD and reversed L-DOPA-induced PKA hyperactivity via a CB(1)-mediated mechanism. This effect was accompanied by increased phosphorylation of DARPP-32 at threonine 34, which was partially blocked by CB(1) antagonism. Striatal PKA activity was positively correlated with the severity of L-DOPA-induced axial and limb dyskinesias, suggesting a role for the cAMP/PKA signaling pathway in the expression of these motor disturbances. Our results indicate that activation of CB(1) receptors, as well as reduction of striatal PKA hyperactivity, might be an effective strategy for the treatment of L-DOPA-induced dyskinesias.
Collapse
Affiliation(s)
- Alex Martinez
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
10
|
Imbalanced Dopaminergic Transmission Mediated by Serotonergic Neurons in L-DOPA-Induced Dyskinesia. PARKINSONS DISEASE 2011; 2012:323686. [PMID: 22007343 PMCID: PMC3191743 DOI: 10.1155/2012/323686] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 11/23/2022]
Abstract
L-DOPA-induced dyskinesias (LIDs) are one of the main motor side effects of L-DOPA therapy in Parkinson's disease. The review will consider the biochemical evidence indicating that the serotonergic neurons are involved in the dopaminergic effects of L-DOPA in the brain. The consequences are an ectopic and aberrant release of dopamine that follows the serotonergic innervation of the brain. After mid- to long-term treatment with L-DOPA, the pattern of L-DOPA-induced dopamine release is modified. In several brain regions, its effect is dramatically reduced while, in the striatum, its effect is quite preserved. LIDs could appear when the dopaminergic effects of L-DOPA fall in brain areas such as the cortex, enhancing the subcortical impact of dopamine and promoting aberrant motor responses. The consideration of the serotonergic system in the core mechanism of action of L-DOPA opens an important reserve of possible strategies to limit LIDs.
Collapse
|
11
|
Pavan B, Paganetto G, Dalpiaz A. Dopamine-sensitive adenylyl cyclases in neuronal development: physiopathological and pharmacological implications. Drug Discov Today 2011; 16:520-9. [DOI: 10.1016/j.drudis.2011.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/23/2011] [Accepted: 03/29/2011] [Indexed: 11/24/2022]
|
12
|
Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci 2010; 3:1. [PMID: 20162032 PMCID: PMC2821174 DOI: 10.3389/neuro.02.001.2010] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 01/15/2010] [Indexed: 12/23/2022] Open
Abstract
Since its discovery almost three decades ago, the secreted neurotrophin brain-derived neurotrophic factor (BDNF) has been firmly implicated in the differentiation and survival of neurons of the CNS. More recently, BDNF has also emerged as an important regulator of synaptogenesis and synaptic plasticity mechanisms underlying learning and memory in the adult CNS. In this review we will discuss our knowledge about the multiple intracellular signalling pathways activated by BDNF, and the role of this neurotrophin in long-term synaptic plasticity and memory formation as well as in synaptogenesis. We will show that maturation of BDNF, its cellular localization and its ability to regulate both excitatory and inhibitory synapses in the CNS may result in conflicting alterations in synaptic plasticity and memory formation. Lack of a precise knowledge about the mechanisms by which BDNF influences higher cognitive functions and complex behaviours may constitute a severe limitation in the possibility to devise BDNF-based therapeutics for human disorders of the CNS.
Collapse
Affiliation(s)
- Carla Cunha
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milan, Italy
| | | | | |
Collapse
|
13
|
Lebel M, Chagniel L, Bureau G, Cyr M. Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat. Neurobiol Dis 2010; 38:59-67. [PMID: 20060905 DOI: 10.1016/j.nbd.2009.12.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/19/2009] [Accepted: 12/30/2009] [Indexed: 11/20/2022] Open
Abstract
l-3,4-dihydroxyphenylalanine methyl ester hydrochloride (l-DOPA) is the gold standard for symptomatic treatment of Parkinson's disease (PD), but long-term therapy is associated with the emergence of abnormal involuntary movements (AIMS) known as l-DOPA-induced dyskinesias (LID). The molecular changes underlying LID are not completely understood. Using the 6-hydroxydopamine-lesioned rat model of PD, we showed that l-DOPA elicits profound alterations in the activity of three LID molecular markers, namely DeltaFosB, dopamine, cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), as well as in phosphorylation levels of the cytoskeletal-associated protein tau. These modifications are triggered by protein kinase A (PKA) activation and intermittent stimulation of dopamine receptors as they are totally prevented by intrastriatal injections of Rp-cAMPS, a PKA inhibitor, or by continuous administration of l-DOPA via subcutaneous mini-pump. Importantly, Rp-cAMPS does not modulate the positive effect of l-DOPA on locomotor deficits and significantly attenuates the emergence of AIMS in 6-hydroxydopamine hydrobromide-lesioned rats. Even if decreased PKA signalling in the striatum may represent a clinical challenge, these data provide novel evidence that PKA activation, through modification of striatal signalling and alterations of cytoskeletal constituents, plays a key role in the manifestation of LID.
Collapse
Affiliation(s)
- Manon Lebel
- Groupe de recherche en neurosciences, Département de chimie-biologie, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC, Canada G9A 5H7
| | | | | | | |
Collapse
|
14
|
Tong J, Wong H, Guttman M, Ang LC, Forno LS, Shimadzu M, Rajput AH, Muenter MD, Kish SJ, Hornykiewicz O, Furukawa Y. Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson's disease and progressive supranuclear palsy: a comparative investigation. ACTA ACUST UNITED AC 2009; 133:172-88. [PMID: 19903734 DOI: 10.1093/brain/awp282] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alpha-synuclein is a major component of Lewy bodies and glial cytoplasmic inclusions, pathological hallmarks of idiopathic Parkinson's disease and multiple system atrophy, and it is assumed to be aetiologically involved in these conditions. However, the quantitative status of brain alpha-synuclein in different Parkinsonian disorders is still unresolved and it is uncertain whether alpha-synuclein accumulation is restricted to regions of pathology. We compared membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein, both the full-length 17 kDa and high molecular weight species, by western blotting in autopsied brain of patients with Parkinson's disease (brainstem-predominant Lewy body disease: n = 9), multiple system atrophy (n = 11), progressive supranuclear palsy (n = 16), and of normal controls (n = 13). Brain of a patient with familial Parkinsonism-dementia due to alpha-synuclein locus triplication (as positive control) showed increased membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein levels with abundant high molecular weight immunoreactivity. In multiple system atrophy, a massive increase in 17 kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein was observed in highly pathologically affected regions, including putamen (+1760%, range +625-2900%), substantia nigra [+1000% (+356-1850%)], and white matter of internal capsule [+2210% (+430-6830%)] together with numerous high molecular weight species. Levels of 17 kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein were only modestly increased in less affected areas (cerebellar cortex, +95%; caudate, +30%; with both also showing numerous high molecular weight species) and were generally normal in cerebral cortices. In both Parkinson's disease and progressive supranuclear palsy, membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein levels were normal in putamen and frontal cortex whereas a trend was observed for variably increased 17 kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein concentrations [+184% (-60% to +618%)] with additional high molecular weight species in Parkinson's disease substantia nigra. No obvious correlation was observed between nigral membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulation and Lewy body density in Parkinson's disease. Two progressive supranuclear palsy cases had membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulation in substantia nigra similar to multiple system atrophy. Several Parkinson's disease patients had very modest high molecular weight membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulation in putamen. Levels of 17-kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein were generally positively correlated with those of high molecular weight membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein and there was a trend for a positive correlation between striatal dopamine loss and 17-kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein concentrations in multiple system atrophy. Brain membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulations in Parkinson's disease and multiple system atrophy are regionally specific, suggesting that these sporadic alpha-synucleinopathies, unlike familial Parkinsonism-dementia, are not associated with a simple global over-expression of the protein. Despite a similar extent of dopamine depletion, the magnitude of brain membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein changes is disease specific, with multiple system atrophy clearly having the most severe accumulation. Literature discrepancies on alpha-synuclein status in 'Parkinson's disease' might be explained by inclusion of cases not having classic brainstem-predominant Lewy body disease and by variable alpha-synuclein accumulation within this diagnostic classification.
Collapse
Affiliation(s)
- Junchao Tong
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto, Tokyo 136-0075, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Santini E, Valjent E, Fisone G. Parkinson's disease: levodopa-induced dyskinesia and signal transduction. FEBS J 2008; 275:1392-1399. [PMID: 18279379 DOI: 10.1111/j.1742-4658.2008.06296.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
l-3,4-Dihydroxyphenylalanine (L-dopa) remains the most effective pharmacological treatment for relief of the severe motor impairments of Parkinson's disease. It is very effective in controlling parkinsonian symptoms in the initial phase of the disease, but its action wanes with time. Such 'wearing-off' imposes an escalation in the dosage of the drug, which ultimately fails to provide stable control of motor symptoms and results in the appearance of abnormal involuntary movements or dyskinesia. 'Peak-dose'l-dopa-induced dyskinesia (LID) currently represents one of the major challenges in the treatment of Parkinson's disease. Accumulating evidence suggests that LID derives from overstimulation of dopamine receptors located on the GABAergic medium spiny neurons (MSNs) of the dorsal striatum. These neurons form two distinct projection pathways, which exert opposite effects on motor activity: the direct, striatonigral pathway promotes locomotion, whereas the indirect, striatopallidal pathway depresses locomotion. In order to understand the mechanisms underlying LID, it is important to identify molecular adaptations produced by chronic administration of L-dopa, at the level of one or the other of these two neuronal populations. This review summarizes the results of recent studies indicating that LID is associated with abnormal dopamine D1 receptor signaling affecting the MSNs of the direct pathway. The role of this pathological adaptation and of the consequent changes in signaling in the development and expression of LID are discussed.
Collapse
Affiliation(s)
- Emanuela Santini
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Valjent
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden., INSERM, U839, Paris, France., Université Pierre et Marie Curie, Paris, France., Institut du Fer à Moulin, Paris, France
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Sánchez-Pernaute R, Jenkins BG, Choi JK, Iris Chen YC, Isacson O. In vivo evidence of D3 dopamine receptor sensitization in parkinsonian primates and rodents with l-DOPA-induced dyskinesias. Neurobiol Dis 2007; 27:220-7. [PMID: 17588764 PMCID: PMC2674779 DOI: 10.1016/j.nbd.2007.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 04/10/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022] Open
Abstract
A growing body of evidence indicates a role for D(3) receptors in l-DOPA-induced dyskinesias. This involvement could be amenable to non-invasive in vivo analysis using functional neuroimaging. With this goal, we examined the hemodynamic response to the dopamine D(3)-preferring agonist 7-hydroxy-N,N-di-n-propyl-2 aminotetralin (7-OHDPAT) in naïve, parkinsonian and l-DOPA-treated, dyskinetic rodents and primates using pharmacological MRI (phMRI) and relative cerebral blood volume (rCBV) mapping. Administration of 7-OHDPAT induced minor negative changes of rCBV in the basal ganglia in naïve and parkinsonian animals. Remarkably, the hemodynamic response was reversed (increased rCBV) in the striatum of parkinsonian animals rendered dyskinetic by repeated l-DOPA treatment. Such increase in rCBV is consistent with D(1) receptor-like signaling occurring in response to D(3) stimulation, demonstrates a dysregulation of dopamine receptor function in dyskinesia and provides a potentially novel means for the characterization and treatment of l-DOPA-induced dyskinesia in patients.
Collapse
Affiliation(s)
- Rosario Sánchez-Pernaute
- McLean Hospital/Harvard University Udall Parkinson's Disease Research Center of Excellence, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
17
|
Corvol JC, Girault JA, Hervé D. [Role and regulation of dopamine D1 receptors in the striatum: implications for the genesis of dyskinesia in Parkinson's disease]. Rev Neurol (Paris) 2006; 162:691-702. [PMID: 16840977 DOI: 10.1016/s0035-3787(06)75066-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
L-dopa treatment of Parkinson's disease is complicated in the long term by the appearance of dyskinesia. Hypersensitivity of D1 dopamine receptor has been suggested to play a role in these delayed adverse effects. Hypersensitivity of dopamine D1 receptor in Parkinson's disease can be accounted for by increased levels of Galphaolf, the stimulatory G protein which couples D1 receptor to adenylyl cyclase in the striatum. We here discuss the possible role of D1 receptor signal transduction in the genesis of L-dopa-induced dyskinesia in the light of Galphaolf regulation.
Collapse
Affiliation(s)
- J-C Corvol
- Fédération des Maladies du Système Nerveux, Hôpital de la Salpêtrière, Paris.
| | | | | |
Collapse
|
18
|
Corvol JC, Muriel MP, Valjent E, Féger J, Hanoun N, Girault JA, Hirsch EC, Hervé D. Persistent increase in olfactory type G-protein alpha subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson disease. J Neurosci 2004; 24:7007-14. [PMID: 15295036 PMCID: PMC6729591 DOI: 10.1523/jneurosci.0676-04.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/13/2004] [Accepted: 06/13/2004] [Indexed: 11/21/2022] Open
Abstract
Although L-dopa remains the most effective treatment of Parkinson disease, its long-term administration is hampered by the appearance of dyskinesia. Hypersensitivity of dopamine D1 receptors in the striatum has been suggested to contribute to the genesis of these delayed adverse effects. However, D1 receptor amounts are unchanged in Parkinson disease, suggesting alterations of downstream effectors. In rodents, striatal D1 receptors activate adenylyl cyclase through olfactory type G-protein alpha subunit (Galphaolf) and G-protein gamma 7 subunit (Ggamma7). We found that Galphaolf was enriched in human basal ganglia and was markedly diminished in the putamen of patients with Huntington disease, in relation with the degeneration of medium spiny neurons. In contrast, in the putamen of patients with Parkinson disease, Galphaolf and Ggamma7 levels were both significantly increased. In the rat, the degeneration of dopamine neurons augmented Galphaolf levels in the striatal neurons, specifically at the plasma membrane, an effect accounting for the increase of D1 response on cAMP production in dopamine-depleted striatum. In lesioned rats, Galphaolf levels were normalized by a 3 week treatment with l-dopa or a D1 agonist but not with aD2-D3 agonist, supporting a Galphaolf regulation by D1 receptor usage. In contrast, the increases of Galphaolf levels in patients were not affected by the duration of l-dopa treatment but correlated with duration of disease. In conclusion, our results revealed in the parkinsonian putamen a prolonged elevation of Galphaolf levels that may lead to a persistent D1 receptor hypersensitivity and contribute to the genesis of long-term complications of L-dopa.
Collapse
Affiliation(s)
- Jean-Christophe Corvol
- Institut National de la Santé et de la Recherche Médicale-Université Pierre et Marie Curie Unité 536, Institut du Fer à Moulin, 75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|