1
|
Ribeiro MO, Oliveira M, Nogueira V, Costa V, Teixeira V. N88S seipin-related seipinopathy is a lipidopathy associated with loss of iron homeostasis. Cell Commun Signal 2025; 23:10. [PMID: 39773523 PMCID: PMC11706183 DOI: 10.1186/s12964-024-02007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Seipin is a protein encoded by the BSCL2 gene in humans and SEI1 gene in yeast, forming an Endoplasmic Reticulum (ER)-bound homo-oligomer. This oligomer is crucial in targeting ER-lipid droplet (LD) contact sites, facilitating the delivery of triacylglycerol (TG) to nascent LDs. Mutations in BSCL2, particularly N88S and S90L, lead to seipinopathies, which correspond to a cohort of motor neuron diseases (MNDs) characterized by the accumulation of misfolded N88S seipin into inclusion bodies (IBs) and cellular dysfunctions. METHODS Quantitative untargeted mass spectrometric proteomic and lipidomic analyses were conducted to examine changes in protein and lipid abundance in wild-type (WT) versus N88S seipin-expressing mutant cells. Differentially expressed proteins were categorized into functional networks to highlight altered protein functions and signaling pathways. Statistical comparisons were made using unpaired Student's t-tests or two-way ANOVA followed by Tukey´s / Šídák's multiple comparisons tests. P-values < 0.05 are considered significant. RESULTS In a well-established yeast model of N88S seipinopathy, misfolded N88S seipin forms IBs and exhibits higher levels of ER stress, leading to decreased cell viability due to increased reactive oxygen species (ROS), oxidative damage, lipid peroxidation, and reduced antioxidant activity. Proteomic and lipidomic analyses revealed alterations in phosphatidic acid (PA) levels, associated with disrupted inositol metabolism and decreased flux towards phospholipid biosynthesis. Importantly, deregulation of lipid metabolism contributed to ER stress beyond N88S seipin misfolding and IB formation. Additionally, the model exhibited deregulated iron (Fe) homeostasis during lifespan. N88S seipin-expressing cells showed impaired ability to cope with iron deficiency. This was linked to changes in the expression of Aft1p-controlled iron regulon genes, including the mRNA-binding protein CTH2 and the high-affinity iron transport system member FET3, in a p38/Hog1p- and Msn2p/Msn4p-dependent manner. Importantly, we unraveled a novel link between inositol metabolism and activation of the iron regulon in cells expressing the N88S seipin mutation. Despite iron accumulation, this was not associated with oxidative stress. CONCLUSIONS The study highlights that the effects of N88S seipin mutation extend beyond protein misfolding, with significant disruptions in lipid metabolism and iron homeostasis. This research marks a substantial advance in understanding and defining the roles of proteins and signaling pathways that contribute to human seipinopathy. Altered cellular processes, as well as potential therapeutic targets and biomarkers, were identified and can be explored in translational studies using human cell models.
Collapse
Affiliation(s)
- Mariana O Ribeiro
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | - Mafalda Oliveira
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | - Verónica Nogueira
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | - Vítor Costa
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
- Department of Molecular Biology, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, School of Medicine and Biomedical Sciences, Universidade Do Porto, Porto, Portugal
| | - Vitor Teixeira
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal.
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Fink JK. The hereditary spastic paraplegias. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:59-88. [PMID: 37620092 DOI: 10.1016/b978-0-323-98817-9.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The hereditary spastic paraplegias (HSPs) are a group of more than 90 genetic disorders in which lower extremity spasticity and weakness are either the primary neurologic impairments ("uncomplicated HSP") or when accompanied by other neurologic deficits ("complicated HSP"), important features of the clinical syndrome. Various genetic types of HSP are inherited such as autosomal dominant, autosomal recessive, X-linked, and maternal (mitochondrial) traits. Symptoms that begin in early childhood may be nonprogressive and resemble spastic diplegic cerebral palsy. Symptoms that begin later, typically progress insidiously over a number of years. Genetic testing is able to confirm the diagnosis for many subjects. Insights from gene discovery indicate that abnormalities in diverse molecular processes underlie various forms of HSP, including disturbance in axon transport, endoplasmic reticulum morphogenesis, vesicle transport, lipid metabolism, and mitochondrial function. Pathologic studies in "uncomplicated" HSP have shown axon degeneration particularly involving the distal ends of corticospinal tracts and dorsal column fibers. Treatment is limited to symptom reduction including amelioration of spasticity, reducing urinary urgency, proactive physical therapy including strengthening, stretching, balance, and agility exercise.
Collapse
Affiliation(s)
- John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
3
|
Bodkin C, Comer A, Felker M, Gutmann L, Jones KA, Kincaid J, Payne KK, Skinner B. Challenging Neuromuscular Disease Cases. Semin Neurol 2022; 42:716-722. [PMID: 36417990 DOI: 10.1055/a-1985-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The diagnosis of neuromuscular disorders requires a thorough history including family history and examination, with the next steps broadened now beyond electromyography and neuropathology to include genetic testing. The challenge in diagnosis can often be putting all the information together. With advances in genetic testing, some diagnoses that adult patients may have received as children deserve a second look and may result in diagnoses better defined or alternative diagnoses made. Clearly defining or redefining a diagnosis can result in understanding of potential other systems involved, prognosis, or potential treatments. This article presents several cases and approach to diagnosis as well as potential treatment and prognostic concerns, including seipinopathy, congenital myasthenic syndrome, central core myopathy, and myotonic dystrophy type 2.
Collapse
Affiliation(s)
- Cynthia Bodkin
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adam Comer
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marcia Felker
- Division of Pediatric Neurology, Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laurie Gutmann
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Karra A Jones
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - John Kincaid
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katelyn K Payne
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical Genetics and Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Blair Skinner
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Nogueira V, Chang CK, Lan CY, Pereira C, Costa V, Teixeira V. Causative links between ER stress and oxidative damage in a yeast model of human N88S seipinopathy. Free Radic Biol Med 2022; 192:165-181. [PMID: 36126862 DOI: 10.1016/j.freeradbiomed.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Seipin is encoded by the gene Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) and FLD1/SEI1 in yeast. The gain-of-function N88S mutation in the BSCL2 gene was identified in a cohort of autosomal dominant motor neuron diseases (MNDs) collectively known as seipinopathies. Previous work has shown that this mutation disrupts N-glycosylation, leading to the formation of inclusion bodies (IBs) and contributing to severe Endoplasmic Reticulum (ER) stress and cell death. In this work, we established a humanized yeast model of N88S seipinopathy that recapitulated the formation of IBs and activation of the unfolded protein response (UPR) observed in mammalian systems. Autophagy and the Hrd1-mediated endoplasmic reticulum-associated degradation (ERAD) were fully functional in cells expressing mutant homomers and WT-mutant heteromers of seipin, discarding the possibility that mutant seipin accumulate due to impaired protein quality control systems. Importantly, the N88S seipin form IBs that appear to induce changes in ER morphology, in association with Kar2 chaperone and the Hsp104 disaggregase. For the first time, we have determined that N88S homo-oligomers expressing cells present reduced viability, decreased antioxidant activity and increased oxidative damage associated with loss of mitochondrial membrane potential, higher reactive oxygen species (ROS) levels and lipid peroxidation. This was correlated with the activation of oxidative stress sensor Yap1. Moreover, activation of ERAD and UPR quality control mechanisms were essential for proper cell growth, and crucial to prevent excessive accumulation of ROS in cells expressing N88S homomers solely. Overall, this study provides new insights into the molecular underpinnings of these rare diseases and offers novel targets for potential pharmacological intervention.
Collapse
Affiliation(s)
- Verónica Nogueira
- Yeast Signalling Networks, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Che-Kang Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Clara Pereira
- Yeast Signalling Networks, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vítor Costa
- Yeast Signalling Networks, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Vitor Teixeira
- Yeast Signalling Networks, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
5
|
Li Y, Yang X, Peng L, Xia Q, Zhang Y, Huang W, Liu T, Jia D. Role of Seipin in Human Diseases and Experimental Animal Models. Biomolecules 2022; 12:biom12060840. [PMID: 35740965 PMCID: PMC9221541 DOI: 10.3390/biom12060840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Seipin, a protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene, is famous for its key role in the biogenesis of lipid droplets and type 2 congenital generalised lipodystrophy (CGL2). BSCL2 gene mutations result in genetic diseases including CGL2, progressive encephalopathy with or without lipodystrophy (also called Celia’s encephalopathy), and BSCL2-associated motor neuron diseases. Abnormal expression of seipin has also been found in hepatic steatosis, neurodegenerative diseases, glioblastoma stroke, cardiac hypertrophy, and other diseases. In the current study, we comprehensively summarise phenotypes, underlying mechanisms, and treatment of human diseases caused by BSCL2 gene mutations, paralleled by animal studies including systemic or specific Bscl2 gene knockout, or Bscl2 gene overexpression. In various animal models representing diseases that are not related to Bscl2 mutations, differential expression patterns and functional roles of seipin are also described. Furthermore, we highlight the potential therapeutic approaches by targeting seipin or its upstream and downstream signalling pathways. Taken together, restoring adipose tissue function and targeting seipin-related pathways are effective strategies for CGL2 treatment. Meanwhile, seipin-related pathways are also considered to have potential therapeutic value in diseases that are not caused by BSCL2 gene mutations.
Collapse
Affiliation(s)
- Yuying Li
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Xinmin Yang
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Linrui Peng
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China; (L.P.); (Y.Z.)
| | - Qing Xia
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China; (L.P.); (Y.Z.)
| | - Wei Huang
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
- Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (W.H.); (T.L.)
| | - Tingting Liu
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
- Correspondence: (W.H.); (T.L.)
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
6
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
7
|
Teixeira V, Maciel P, Costa V. Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158820. [PMID: 33010453 DOI: 10.1016/j.bbalip.2020.158820] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) are ubiquitous fat storage organelles composed of a neutral lipid core, comprising triacylglycerols (TAG) and sterol esters (SEs), surrounded by a phospholipid monolayer membrane with several decorating proteins. Recently, LD biology has come to the foreground of research due to their importance for energy homeostasis and cellular stress response. As aberrant LD accumulation and lipid depletion are hallmarks of numerous diseases, addressing LD biogenesis and turnover provides a new framework for understanding disease-related mechanisms. Here we discuss the potential role of LDs in neurodegeneration, while making some predictions on how LD imbalance can contribute to pathophysiology in the brain.
Collapse
Affiliation(s)
- Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Fernández-Eulate G, Fernández-Torrón R, Guisasola A, Gaspar MTI, Diaz-Manera J, Maneiro M, Zulaica M, Olasagasti V, Formica AF, Espinal JB, Ruiz M, Schlüter A, Pujol A, Poza JJ, López de Munain A. Phenotypic correlations in a large single-center cohort of patients with BSCL2 nerve disorders: a clinical, neurophysiological and muscle magnetic resonance imaging study. Eur J Neurol 2020; 27:1364-1373. [PMID: 32320108 DOI: 10.1111/ene.14272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE BSCL2 heterozygote mutations are a common cause of distal hereditary motor neuropathies (dHMNs). A series of BSCL2 patients is presented and clinical, neurophysiological and muscle magnetic resonance imaging (MRI) findings are correlated. METHODS Twenty-six patients from five families carrying the p.N88S mutation were identified. Age of onset, clinical phenotype (dHMN, Charcot-Marie-Tooth, spastic paraplegia), physical examination, disability measured as a modified Rankin Scale score and neurophysiological findings were collected. A whole body muscle MRI had been performed in 18 patients. The pattern of muscle involvement on T1-weighted and short time inversion recovery sequences was analysed. Hierarchical analysis using heatmaps and an MRI Composite Score were generated. Statistical analysis was carried out with STATA SE v.15 (TX, USA). RESULTS The mean age was 51.54 ± 19.94 years and 14 patients were men. dHMN was the most common phenotype (50%) and five patients (19.23%) showed no findings on examination. Disease onset was commonly in childhood and disability was low (modified Rankin Scale score 1.34 ± 1.13) although median time since onset of disease was 32 years (range 10-47). Charcot-Marie-Tooth-like patients were more disabled and disability correlated with age. On muscle MRI, thenar eminence, soleus and tibialis anterior were most frequently involved, irrespective of clinical phenotype. MRI Composite Score was strongly correlated with disability. CONCLUSION Patients with the p.N88S BSCL2 gene mutation are phenotypically variable, although dHMN is most frequent and generally slowly progressive. Muscle MRI pattern is consistent regardless of phenotype and correlates with disease severity, probably serving as a reliable outcome measure for future clinical trials.
Collapse
Affiliation(s)
- G Fernández-Eulate
- Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Institute of Myology, Paris, France
| | - R Fernández-Torrón
- Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute, San Sebastian, Spain
| | - A Guisasola
- Department of Radiology, Osatek, San Sebastian, Spain
| | - M T I Gaspar
- Clinical Epidemiology Unit, Donostia University Hospital, San Sebastian, Spain
| | - J Diaz-Manera
- Unitat de Malaties Neuromuscularis, Servei de Neurologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle, UK
| | - M Maneiro
- Department of Neurology, Donostia University Hospital, San Sebastian, Spain
| | - M Zulaica
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute, San Sebastian, Spain
| | - V Olasagasti
- Department of Neurology, Donostia University Hospital, San Sebastian, Spain
| | - A F Formica
- Department of Neurology, Donostia University Hospital, San Sebastian, Spain
| | - J B Espinal
- Department of Neurology, Donostia University Hospital, San Sebastian, Spain
| | - M Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - A Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - A Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - J J Poza
- Department of Neurology, Donostia University Hospital, San Sebastian, Spain
| | - A López de Munain
- Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute, San Sebastian, Spain.,Neuroscience Department, School of Medicine of the University of the Basque Country, San Sebastian, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Ishihara S, Okamoto Y, Tanabe H, Yoshimura A, Higuchi Y, Yuan J, Hashiguchi A, Ishiura H, Mitsui J, Suwazono S, Oya Y, Sasaki M, Nakagawa M, Tsuji S, Ohya Y, Takashima H. Clinical features of inherited neuropathy with
BSCL2
mutations in Japan. J Peripher Nerv Syst 2020; 25:125-131. [DOI: 10.1111/jns.12369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Satoshi Ishihara
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Department of Cardiovascular Medicine, Nephrology and Neurology, Graduate School of MedicineUniversity of the Ryukyus Okinawa Japan
| | - Yuji Okamoto
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Hajime Tanabe
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Akiko Yoshimura
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Yujiro Higuchi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Jun‐Hui Yuan
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Akihiro Hashiguchi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of MedicineThe University of Tokyo Tokyo Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of MedicineThe University of Tokyo Tokyo Japan
| | - Shugo Suwazono
- National Hospital Organization Okinawa National Hospital Okinawa Japan
| | - Yasushi Oya
- Department of NeurologyNational Center of Neurology and Psychiatry Tokyo Japan
| | - Masayuki Sasaki
- Department of Child NeurologyNational Center of Neurology and Psychiatry Tokyo Japan
| | - Masanori Nakagawa
- North Medical CenterKyoto Prefectural University of Medicine Kyoto Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of MedicineThe University of Tokyo Tokyo Japan
| | - Yusuke Ohya
- Department of Cardiovascular Medicine, Nephrology and Neurology, Graduate School of MedicineUniversity of the Ryukyus Okinawa Japan
| | - Hiroshi Takashima
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| |
Collapse
|
10
|
Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front Neurosci 2020; 14:48. [PMID: 32116502 PMCID: PMC7025499 DOI: 10.3389/fnins.2020.00048] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The physical continuity of axons over long cellular distances poses challenges for their maintenance. One organelle that faces this challenge is endoplasmic reticulum (ER); unlike other intracellular organelles, this forms a physically continuous network throughout the cell, with a single membrane and a single lumen. In axons, ER is mainly smooth, forming a tubular network with occasional sheets or cisternae and low amounts of rough ER. It has many potential roles: lipid biosynthesis, glucose homeostasis, a Ca2+ store, protein export, and contacting and regulating other organelles. This tubular network structure is determined by ER-shaping proteins, mutations in some of which are causative for neurodegenerative disorders such as hereditary spastic paraplegia (HSP). While axonal ER shares many features with the tubular ER network in other contexts, these features must be adapted to the long and narrow dimensions of axons. ER appears to be physically continuous throughout axons, over distances that are enormous on a subcellular scale. It is therefore a potential channel for long-distance or regional communication within neurons, independent of action potentials or physical transport of cargos, but involving its physiological roles such as Ca2+ or organelle homeostasis. Despite its apparent stability, axonal ER is highly dynamic, showing features like anterograde and retrograde transport, potentially reflecting continuous fusion and breakage of the network. Here we discuss the transport processes that must contribute to this dynamic behavior of ER. We also discuss the model that these processes underpin a homeostatic process that ensures both enough ER to maintain continuity of the network and repair breaks in it, but not too much ER that might disrupt local cellular physiology. Finally, we discuss how failure of ER organization in axons could lead to axon degenerative diseases, and how a requirement for ER continuity could make distal axons most susceptible to degeneration in conditions that disrupt ER continuity.
Collapse
Affiliation(s)
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
11
|
Elsayed LEO, Eltazi IZM, Ahmed AEM, Stevanin G. Hereditary spastic paraplegias: time for an objective case definition and a new nosology for neurogenetic disorders to facilitate biomarker/therapeutic studies. Expert Rev Neurother 2019; 19:409-415. [PMID: 31037979 DOI: 10.1080/14737175.2019.1608824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are heterogeneous neurodegenerative disorders characterized by progressive lower limb weakness and spasticity as core symptoms of the degeneration of the corticospinal motor neurons. Even after exclusion of infectious and toxic mimickers of these disorders, the definitive diagnosis remains tricky, mainly in sporadic forms, as there is significant overlap with other disorders. Since their first description, various attempts failed to reach an appropriate classification. This was due to the constant expansion of the clinical spectrum of these diseases and the discovery of new genes, a significant number of them was involved in overlapping diseases. Areas covered: In this perspective review, an extensive literature study was conducted on the historical progress of HSP research. We also revised the previous and the current classifications of HSP and the closely related neurogenetic disorders and analyzed the areas of overlap. Expert opinion: There is undeniable need for objective case definition and reclassification of all neurogenetic disorders including HSPs, a prerequisite to improve patient follow-up, biomarker identification and develop therapeutics. The challenge is to understand why mutations can give rise to multiple phenotypic presentations along this spectrum of diseases in which the corticospinal tract is affected.
Collapse
Affiliation(s)
| | - Isra Z M Eltazi
- a Faculty of Medicine , University of Khartoum , Khartoum , Sudan
| | - Ammar E M Ahmed
- a Faculty of Medicine , University of Khartoum , Khartoum , Sudan
| | - Giovanni Stevanin
- b Basic to Translational Neurogenetics team , Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Université UMR_S1127 , Paris , France.,c Neurogenetics team , Ecole Pratique des Hautes Etudes, EPHE, PSL Research University , Paris , France
| |
Collapse
|
12
|
Celia's encephalopathy and c.974dupG in BSCL2 gene: a hidden change in a known variant. Neurogenetics 2019; 20:73-82. [PMID: 30903322 DOI: 10.1007/s10048-019-00574-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/17/2019] [Indexed: 12/11/2022]
Abstract
Celia's encephalopathy (progressive encephalopathy with/without lipodystrophy (PELD)) is a childhood neurodegenerative disorder with a fatal prognosis before the age of 10, due to the variant c.985C>T in the BSCL2 gene that causes a cryptic splicing site leading to skipping of exon 7. For years, different authors have reported cases of congenital generalized lipodystrophy due to the variant c.974dupG in BSCL2 associated with neurological manifestations of variable severity, although some of them clearly superimposable to PELD. To identify the molecular mechanisms responsible for these neurological alterations in two patients with c.974dupG. Clinical characterization, biochemistry, and neuroimaging studies of two girls carrying this variant. In silico analysis, PCR amplification, and BSCL2 cDNA sequencing. BSCL2-201 transcript expression, which lacks exon 7, by qPCR in fibroblasts from the index case, from a healthy child as a control and from two patients with PELD, and in leukocytes from the index case and her parents. One with a severe encephalopathy including a picture of intellectual deficiency, severe language impairment, myoclonic epilepsy, and lipodystrophy as described in PELD, dying at 9 years and 9 months of age. The other 2-year-old patient showed incipient signs of neurological involvement. In silico and cDNA sequencing studies showed that variant c.974dupG gives rise to skipping of exon 7. The expression of BSCL2-201 in fibroblasts was significantly higher in the index case than in the healthy child, although less than in the case with homozygous PELD due to c.985C>T variant. The expression of this transcript was approximately half in the healthy carrier parents of this patient. The c.974dupG variant leads to the skipping of exon 7 of the BSCL2 gene and is responsible for a variant of Celia's encephalopathy, with variable phenotypic expression.
Collapse
|
13
|
Exploring Seipin: From Biochemistry to Bioinformatics Predictions. Int J Cell Biol 2018; 2018:5207608. [PMID: 30402103 PMCID: PMC6192094 DOI: 10.1155/2018/5207608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/12/2018] [Accepted: 09/03/2018] [Indexed: 01/30/2023] Open
Abstract
Seipin is a nonenzymatic protein encoded by the BSCL2 gene. It is involved in lipodystrophy and seipinopathy diseases. Named in 2001, all seipin functions are still far from being understood. Therefore, we reviewed much of the research, trying to find a pattern that could explain commonly observed features of seipin expression disorders. Likewise, this review shows how this protein seems to have tissue-specific functions. In an integrative view, we conclude by proposing a theoretical model to explain how seipin might be involved in the triacylglycerol synthesis pathway.
Collapse
|
14
|
Seipin deficiency in mice causes loss of dopaminergic neurons via aggregation and phosphorylation of α-synuclein and neuroinflammation. Cell Death Dis 2018; 9:440. [PMID: 29670081 PMCID: PMC5906676 DOI: 10.1038/s41419-018-0471-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022]
Abstract
Seipin gene is originally found in type 2 congenital generalized lipodystrophy (CGL2) to involve lipid droplet formation. Recently, decrease of seipin expression is reported in substantia nigra of Parkinson’s disease patients. Dopaminergic neurons in substantia nigra pars compacta expressed the seipin protein. The objective of this study is to investigate influence of the seipin deficiency on dopaminergic neurons and motor behaviors. Neuronal seipin knockout (seipin-nKO) mice (3–12 months of age) displayed an age-related deficit in motor coordination. The number of dopaminergic neurons in seipin-nKO mice was age dependently reduced with increase in cleaved caspase-3. The levels of αSyn oligomers and oligomer phosphorylation (S129), but not αSyn monomers, were elevated in dopaminergic neurons and substantia nigra of seipin-nKO mice. The PPARγ expression in seipin-nKO mice was reduced. In seipin-nKO mice, the phosphorylation of GSK3β was increased at Tyr216 and was reduced at Ser9, which was corrected by the PPARγ agonist rosiglitazone. The increased IL-6 level in seipin-nKO mice was sensitive to rosiglitazone and GSK3β inhibitor AR-A014418. The enhanced phosphorylation of αSyn was prevented by rosiglitazone and AR-A014418, while the increase in αSyn oligomers was corrected only by rosiglitazone. The treatment of seipin-nKO mice with rosiglitazone and AR-A014418 rescued the death of dopaminergic neurons, which was accompanied by the improvement of motor coordination. Therefore, the results indicate that seipin deficiency causes an age-related loss of dopaminergic neurons and impairment of motor coordination through reducing PPARγ to enhance aggregation and phosphorylation of αSyn and neuroinflammation.
Collapse
|
15
|
Minami K, Takahashi S, Nihei Y, Oki K, Suzuki S, Ito D, Takashima H, Suzuki N. The First Report of a Japanese Case of Seipinopathy with a BSCL2 N88S Mutation. Intern Med 2018; 57:613-615. [PMID: 29269637 PMCID: PMC5849563 DOI: 10.2169/internalmedicine.8765-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Seipinopathy is an autosomal dominant neurodegenerative disease caused by mutations of the Berardinelli-Seip Congenital Lipodystrophy 2 (BSCL2) gene. We report the first Japanese case of seipinopathy with a heterozygous mutation of p.N88S in the BSCL2 gene. The patient showed bilateral hyperreflexia of the biceps, triceps, brachioradialis, and knee, as well as the pes cavus and distal dominant weakness and atrophy of both arms and legs, suggesting the involvement of both upper and lower motor neurons. Mutations of the BSCL2 gene have been known to cause motor neuron degeneration through endoplasmic reticulum stress. Seipinopathy should be considered in patients with symptoms mimicking amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kazushi Minami
- Department of Neurology, Keio University School of Medicine, Japan
| | | | - Yoshihiro Nihei
- Department of Neurology, Keio University School of Medicine, Japan
| | - Koichi Oki
- Department of Neurology, Keio University School of Medicine, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Japan
| | - Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Japan
| |
Collapse
|
16
|
Bock AS, Günther S, Mohr J, Goldberg LV, Jahic A, Klisch C, Hübner CA, Biskup S, Beetz C. A nonstop variant in REEP1 causes peripheral neuropathy by unmasking a 3'UTR-encoded, aggregation-inducing motif. Hum Mutat 2017; 39:193-196. [PMID: 29124833 DOI: 10.1002/humu.23369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Single-nucleotide variants that abolish the stop codon ("nonstop" alterations) are a unique type of substitution in genomic DNA. Whether they confer instability of the mutant mRNA or result in expression of a C-terminally extended protein depends on the absence or presence of a downstream in-frame stop codon, respectively. Of the predicted protein extensions, only few have been functionally characterized. In a family with autosomal dominant Charcot-Marie-Tooth disease type 2, that is, an axonopathy affecting sensory neurons as well as lower motor neurons, we identified a heterozygous nonstop variant in REEP1. Mutations in this gene have classically been associated with the upper motor neuron disorder hereditary spastic paraplegia (HSP). We show that the C-terminal extension resulting from the nonstop variant triggers self-aggregation of REEP1 and of several reporters. Our findings support the recently proposed concept of 3'UTR-encoded "cryptic amyloidogenic elements." Together with a previous report on an aggregation-prone REEP1 deletion variant in distal hereditary motor neuropathy, they also suggest that toxic gain of REEP1 function, rather than loss-of-function as relevant for HSP, specifically affects lower motor neurons. A search for similar correlations between genotype, phenotype, and effect of mutant protein may help to explain the wide clinical spectra also in other genetically determined disorders.
Collapse
Affiliation(s)
- Andrea S Bock
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Julia Mohr
- CeGaT GmbH und Praxis für Humangenetik, Tübingen, Germany
| | - Lisa V Goldberg
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Amir Jahic
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | | | - Saskia Biskup
- CeGaT GmbH und Praxis für Humangenetik, Tübingen, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
ALS and MMN mimics in patients with BSCL2 mutations: the expanding clinical spectrum of SPG17 hereditary spastic paraplegia. J Neurol 2016; 264:11-20. [DOI: 10.1007/s00415-016-8301-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
18
|
Horga A, Tomaselli PJ, Gonzalez MA, Laurà M, Muntoni F, Manzur AY, Hanna MG, Blake JC, Houlden H, Züchner S, Reilly MM. SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome. Neurology 2016; 87:1607-1612. [PMID: 27629094 PMCID: PMC5067545 DOI: 10.1212/wnl.0000000000003212] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor-1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. METHODS We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. RESULTS In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. CONCLUSIONS We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies.
Collapse
Affiliation(s)
- Alejandro Horga
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Pedro J Tomaselli
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Michael A Gonzalez
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Matilde Laurà
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Francesco Muntoni
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Adnan Y Manzur
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Michael G Hanna
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Julian C Blake
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Henry Houlden
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Stephan Züchner
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK
| | - Mary M Reilly
- From the MRC Centre for Neuromuscular Diseases (A.H., P.J.T., M.L., M.G.H., J.C.B., H.H., M.M.R.), UCL Institute of Neurology, Queen Square, London, UK; Department of Human Genetics and Hussman Institute for Human Genomics (M.A.G., S.Z.), Miller School of Medicine, University of Miami; The Genesis Project Foundation (M.A.G.), Miami, FL; The Dubowitz Neuromuscular Centre (F.M., A.Y.M.), UCL Institute of Child Health, London; and Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norwich, UK.
| |
Collapse
|
19
|
Harlalka GV, McEntagart ME, Gupta N, Skrzypiec AE, Mucha MW, Chioza BA, Simpson MA, Sreekantan-Nair A, Pereira A, Günther S, Jahic A, Modarres H, Moore-Barton H, Trembath RC, Kabra M, Baple EL, Thakur S, Patton MA, Beetz C, Pawlak R, Crosby AH. Novel Genetic, Clinical, and Pathomechanistic Insights into TFG-Associated Hereditary Spastic Paraplegia. Hum Mutat 2016; 37:1157-1161. [PMID: 27492651 DOI: 10.1002/humu.23060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/30/2016] [Indexed: 11/05/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically and clinically heterogeneous axonopathies primarily affecting upper motor neurons and, in complex forms, additional neurons. Here, we report two families with distinct recessive mutations in TFG, previously suggested to cause HSP based on findings in a single small family with complex HSP. The first carried a homozygous c.317G>A (p.R106H) variant and presented with pure HSP. The second carried the same homozygous c.316C>T (p.R106C) variant previously reported and displayed a similarly complex phenotype including optic atrophy. Haplotyping and bisulfate sequencing revealed evidence for a c.316C>T founder allele, as well as for a c.316_317 mutation hotspot. Expression of mutant TFG proteins in cultured neurons revealed mitochondrial fragmentation, the extent of which correlated with clinical severity. Our findings confirm the causal nature of bi-allelic TFG mutations for HSP, broaden the clinical and mutational spectra, and suggest mitochondrial impairment to represent a pathomechanistic link to other neurodegenerative conditions.
Collapse
Affiliation(s)
- Gaurav V Harlalka
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Meriel E McEntagart
- Medical Genetics Unit, Floor 0, Jenner Wing, St. George's University of London, Cranmer Terrace, London, UK
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, Old O.T. Block, All India Institute of Medical Sciences, New Delhi, India
| | - Anna E Skrzypiec
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Mariusz W Mucha
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Barry A Chioza
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Michael A Simpson
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, UK
| | - Ajith Sreekantan-Nair
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Anthony Pereira
- Department of Neurology, Atkinson Morley Wing, St. George's Hospital, Tooting, London, UK
| | - Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Amir Jahic
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Hamid Modarres
- Department of Neurology, Atkinson Morley Wing, St. George's Hospital, Tooting, London, UK
| | - Heather Moore-Barton
- Medical Genetics Unit, Floor 0, Jenner Wing, St. George's University of London, Cranmer Terrace, London, UK
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, UK
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, Old O.T. Block, All India Institute of Medical Sciences, New Delhi, India
| | - Emma L Baple
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Seema Thakur
- Department of Genetics and Fetal Medicine, Fortis La femme, S-549, New Delhi, India
| | - Michael A Patton
- Medical Genetics Unit, Floor 0, Jenner Wing, St. George's University of London, Cranmer Terrace, London, UK
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany.
| | - Robert Pawlak
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Andrew H Crosby
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| |
Collapse
|
20
|
Hsiao CT, Tsai PC, Lin CC, Liu YT, Huang YH, Liao YC, Huang HW, Lin KP, Soong BW, Lee YC. Clinical and Molecular Characterization of BSCL2 Mutations in a Taiwanese Cohort with Hereditary Neuropathy. PLoS One 2016; 11:e0147677. [PMID: 26815532 PMCID: PMC4729478 DOI: 10.1371/journal.pone.0147677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A small group of patients with inherited neuropathy that has been shown to be caused by mutations in the BSCL2 gene. However, little information is available about the role of BSCL2 mutations in inherited neuropathies in Taiwan. METHODOLOGY AND PRINCIPAL FINDINGS Utilizing targeted sequencing, 76 patients with molecularly unassigned Charcot-Marie-Tooth disease type 2 (CMT2) and 8 with distal hereditary motor neuropathy (dHMN), who were selected from 348 unrelated patients with inherited neuropathies, were screened for mutations in the coding regions of BSCL2. Two heterozygous BSCL2 mutations, p.S90L and p.R96H, were identified, of which the p.R96H mutation is novel. The p.S90L was identified in a pedigree with CMT2 while the p.R96H was identified in a patient with apparently sporadic dHMN. In vitro studies demonstrated that the p.R96H mutation results in a remarkably low seipin expression and reduced cell viability. CONCLUSION BSCL2 mutations account for a small number of patients with inherited neuropathies in Taiwan. The p.R96H mutation is associated with dHMN. This study expands the molecular spectrum of BSCL2 mutations and also emphasizes the pathogenic role of BSCL2 mutations in molecularly unassigned hereditary neuropathies.
Collapse
Affiliation(s)
- Cheng-Tsung Hsiao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Pei-Chien Tsai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chou-Ching Lin
- Department of Neurology, School of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Yo-Tsen Liu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Yen-Hua Huang
- Institute of Biomedical Informatics, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Han-Wei Huang
- Department of Neurology, School of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Kon-Ping Lin
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Bing-Wen Soong
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Schottmann G, Seelow D, Seifert F, Morales-Gonzalez S, Gill E, von Au K, von Moers A, Stenzel W, Schuelke M. Recessive REEP1 mutation is associated with congenital axonal neuropathy and diaphragmatic palsy. NEUROLOGY-GENETICS 2015; 1:e32. [PMID: 27066569 PMCID: PMC4811389 DOI: 10.1212/nxg.0000000000000032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To identify the underlying genetic cause of a congenital neuropathy in a 5-year-old boy as part of a cohort of 32 patients from 23 families with genetically unresolved neuropathies. METHODS We used autozygosity mapping coupled with next-generation sequencing to investigate a consanguineous family from Lebanon with 1 affected and 2 healthy children. Variants were investigated for segregation in the family by Sanger sequencing. A splice site mutation was further evaluated on the messenger RNA level by quantitative reverse transcription PCR. Subsequently, a larger cohort was specifically screened for receptor expression-enhancing protein 1 (REEP1) gene mutations. RESULTS We detected a homozygous splice donor mutation in REEP1 (c.303+1-7GTAATAT>AC, p.F62Kfs23*; NM_022912) that cosegregated with the phenotype in the family, leading to complete skipping of exon 4 and a premature stop codon. The phenotype of the patient is similar to spinal muscular atrophy with respiratory distress type 1 (SMARD1) with additional distal arthrogryposis and involvement of the upper motor neuron manifested by pronounced hyperreflexia. CONCLUSION To date, only dominant REEP1 mutations have been reported to be associated with a slowly progressive hereditary spastic paraplegia. The findings from our patient expand the phenotypical spectrum and the mode of inheritance of REEP1-associated disorders. Recessive mutations in REEP1 should be considered in the molecular genetic workup of patients with a neuromuscular disorder resembling SMARD1, especially if additional signs of upper motor neuron involvement and distal arthrogryposis are present.
Collapse
Affiliation(s)
- Gudrun Schottmann
- Departments of Neuropediatrics (G.S., D.S., F.S., S.M.-G., E.G., M.S.) and Neuropediatrics/SPZ (K.v.A.), NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany; the Department of Neuropathology (W.S.), Charité-Universitätsmedizin Berlin, Germany; and the DRK Children's Hospital Berlin (A.v.M.), Germany
| | - Dominik Seelow
- Departments of Neuropediatrics (G.S., D.S., F.S., S.M.-G., E.G., M.S.) and Neuropediatrics/SPZ (K.v.A.), NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany; the Department of Neuropathology (W.S.), Charité-Universitätsmedizin Berlin, Germany; and the DRK Children's Hospital Berlin (A.v.M.), Germany
| | - Franziska Seifert
- Departments of Neuropediatrics (G.S., D.S., F.S., S.M.-G., E.G., M.S.) and Neuropediatrics/SPZ (K.v.A.), NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany; the Department of Neuropathology (W.S.), Charité-Universitätsmedizin Berlin, Germany; and the DRK Children's Hospital Berlin (A.v.M.), Germany
| | - Susanne Morales-Gonzalez
- Departments of Neuropediatrics (G.S., D.S., F.S., S.M.-G., E.G., M.S.) and Neuropediatrics/SPZ (K.v.A.), NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany; the Department of Neuropathology (W.S.), Charité-Universitätsmedizin Berlin, Germany; and the DRK Children's Hospital Berlin (A.v.M.), Germany
| | - Esther Gill
- Departments of Neuropediatrics (G.S., D.S., F.S., S.M.-G., E.G., M.S.) and Neuropediatrics/SPZ (K.v.A.), NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany; the Department of Neuropathology (W.S.), Charité-Universitätsmedizin Berlin, Germany; and the DRK Children's Hospital Berlin (A.v.M.), Germany
| | - Katja von Au
- Departments of Neuropediatrics (G.S., D.S., F.S., S.M.-G., E.G., M.S.) and Neuropediatrics/SPZ (K.v.A.), NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany; the Department of Neuropathology (W.S.), Charité-Universitätsmedizin Berlin, Germany; and the DRK Children's Hospital Berlin (A.v.M.), Germany
| | - Arpad von Moers
- Departments of Neuropediatrics (G.S., D.S., F.S., S.M.-G., E.G., M.S.) and Neuropediatrics/SPZ (K.v.A.), NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany; the Department of Neuropathology (W.S.), Charité-Universitätsmedizin Berlin, Germany; and the DRK Children's Hospital Berlin (A.v.M.), Germany
| | - Werner Stenzel
- Departments of Neuropediatrics (G.S., D.S., F.S., S.M.-G., E.G., M.S.) and Neuropediatrics/SPZ (K.v.A.), NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany; the Department of Neuropathology (W.S.), Charité-Universitätsmedizin Berlin, Germany; and the DRK Children's Hospital Berlin (A.v.M.), Germany
| | - Markus Schuelke
- Departments of Neuropediatrics (G.S., D.S., F.S., S.M.-G., E.G., M.S.) and Neuropediatrics/SPZ (K.v.A.), NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany; the Department of Neuropathology (W.S.), Charité-Universitätsmedizin Berlin, Germany; and the DRK Children's Hospital Berlin (A.v.M.), Germany
| |
Collapse
|
22
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
23
|
Cen Z, Lu X, Wang Z, Ouyang Z, Xie F, Luo W. BSCL2 S90L mutation in a Chinese family with Silver syndrome with a review of the literature. J Clin Neurosci 2015; 22:429-30. [DOI: 10.1016/j.jocn.2014.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 07/30/2014] [Accepted: 08/03/2014] [Indexed: 11/29/2022]
|
24
|
Ollivier Y, Magot A, Latour P, Perrier J, Mercier S, Maisonobe T, Péréon Y. Clinical and electrophysiological features in a French family presenting with seipinopathy. Neuromuscul Disord 2015; 25:161-4. [DOI: 10.1016/j.nmd.2014.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
25
|
Drew AP, Zhu D, Kidambi A, Ly C, Tey S, Brewer MH, Ahmad-Annuar A, Nicholson GA, Kennerson ML. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015; 3:143-54. [PMID: 25802885 PMCID: PMC4367087 DOI: 10.1002/mgg3.126] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 12/31/2022] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of related diseases primarily affecting the peripheral motor and sensory neurons. They include the hereditary sensory neuropathies (HSN), hereditary motor neuropathies (HMN), and Charcot-Marie-Tooth disease (CMT). Using whole-exome sequencing (WES) to achieve a genetic diagnosis is particularly suited to IPNs, where over 80 genes are involved with weak genotype–phenotype correlations beyond the most common genes. We performed WES for 110 index patients with IPN where the genetic cause was undetermined after previous screening for mutations in common genes selected by phenotype and mode of inheritance. We identified 41 missense sequence variants in the known IPN genes in our cohort of 110 index patients. Nine variants (8%), identified in the genes MFN2, GJB1, BSCL2, and SETX, are previously reported mutations and considered to be pathogenic in these families. Twelve novel variants (11%) in the genes NEFL, TRPV4, KIF1B, BICD2, and SETX are implicated in the disease but require further evidence of pathogenicity. The remaining 20 variants were confirmed as polymorphisms (not causing the disease) and are detailed here to help interpret sequence variants identified in other family studies. Validation using segregation, normal controls, and bioinformatics tools was valuable as supporting evidence for sequence variants implicated in disease. In addition, we identified one SETX sequence variant (c.7640T>C), previously reported as a putative mutation, which we have confirmed as a nonpathogenic rare polymorphism. This study highlights the advantage of using WES for genetic diagnosis in highly heterogeneous diseases such as IPNs and has been particularly powerful in this cohort where genetic diagnosis could not be achieved due to phenotype and mode of inheritance not being previously obvious. However, first tier testing for common genes in clinically well-defined cases remains important and will account for most positive results.
Collapse
Affiliation(s)
- Alexander P Drew
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney, Australia
| | - Danqing Zhu
- Molecular Medicine Laboratory, Concord Hospital Sydney, Australia
| | - Aditi Kidambi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney, Australia
| | - Carolyn Ly
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney, Australia
| | - Shelisa Tey
- Department of Biomedical Science, Faculty of Medicine, University of Malaya 50603, Kuala Lumpur, Malaysia
| | - Megan H Brewer
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney, Australia ; Sydney Medical School, University of Sydney Sydney, Australia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya 50603, Kuala Lumpur, Malaysia
| | - Garth A Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney, Australia ; Molecular Medicine Laboratory, Concord Hospital Sydney, Australia ; Sydney Medical School, University of Sydney Sydney, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney, Australia ; Molecular Medicine Laboratory, Concord Hospital Sydney, Australia ; Sydney Medical School, University of Sydney Sydney, Australia
| |
Collapse
|
26
|
Monteiro A, Real R, Nadais G, Silveira F, Leão M. BSCL2
N88S mutation in A Portuguese patient with the Silver syndrome. Muscle Nerve 2015; 51:456-8. [DOI: 10.1002/mus.24455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Monteiro
- Department of Neurology; Centro Hospitalar São João; Alameda Prof. Hernâni Monteiro 4200-319 Porto Portugal
| | - Raquel Real
- Department of Neurology; Centro Hospitalar São João; Alameda Prof. Hernâni Monteiro 4200-319 Porto Portugal
| | - Goreti Nadais
- Department of Neurology; Centro Hospitalar São João; Alameda Prof. Hernâni Monteiro 4200-319 Porto Portugal
| | - Fernando Silveira
- Department of Neurology; Centro Hospitalar São João; Alameda Prof. Hernâni Monteiro 4200-319 Porto Portugal
| | - Miguel Leão
- Department of Medical Genetics; Centro Hospitalar São João; Porto Portugal
| |
Collapse
|
27
|
Schabhüttl M, Wieland T, Senderek J, Baets J, Timmerman V, De Jonghe P, Reilly MM, Stieglbauer K, Laich E, Windhager R, Erwa W, Trajanoski S, Strom TM, Auer-Grumbach M. Whole-exome sequencing in patients with inherited neuropathies: outcome and challenges. J Neurol 2014; 261:970-82. [PMID: 24627108 DOI: 10.1007/s00415-014-7289-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 01/20/2023]
Abstract
Inherited peripheral neuropathies (IPN) are one of the most frequent inherited causes of neurological disability characterized by considerable phenotypic and genetic heterogeneity. Based on clinical and electrophysiological properties, they can be subdivided into three main groups: HMSN, dHMN, and HSN. At present, more than 50 IPN genes have been identified. Still, many patients and families with IPN have not yet received a molecular genetic diagnosis because clinical genetic testing usually only covers a subset of IPN genes. Moreover, a considerable proportion of IPN genes has to be identified. Here we present results of WES in 27 IPN patients excluded for mutations in many known IPN genes. Eight of the patients received a definite diagnosis. While six of these patients carried bona fide pathogenic mutations in known IPN genes, two patients had mutations in genes known to be involved in other types of neuromuscular disorders. A further group of eight patients carried sequence variations in IPN genes that could not unequivocally be classified as pathogenic. In addition, combining data of WES and linkage analysis identified SH3BP4, ITPR3, and KLHL13 as novel IPN candidate genes. Moreover, there was evidence that particular mutations in PEX12, a gene known to cause Zellweger syndrome, could also lead to an IPN phenotype. We show that WES is a useful tool for diagnosing IPN and we suggest an expanded phenotypic spectrum of some genes involved in other neuromuscular and neurodegenerative disorders. Nevertheless, interpretation of variants in known and potential novel disease genes has remained challenging.
Collapse
Affiliation(s)
- Maria Schabhüttl
- Department of Orthopaedics, Medical University Vienna, Währingergürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Falk J, Rohde M, Bekhite MM, Neugebauer S, Hemmerich P, Kiehntopf M, Deufel T, Hübner CA, Beetz C. Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum Mutat 2014; 35:497-504. [PMID: 24478229 DOI: 10.1002/humu.22521] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/22/2014] [Indexed: 12/26/2022]
Abstract
Hereditary axonopathies are frequently caused by mutations in proteins that reside in the endoplasmic reticulum (ER). Which of the many ER functions are pathologically relevant, however, remains to be determined. REEP1 is an ER protein mutated in hereditary spastic paraplegia (HSP) and hereditary motor neuropathy (HMN). We found that HSP-associated missense variants at the N-terminus of REEP1 abolish ER targeting, whereas two more central variants are either rare benign SNPs or confer pathogenicity via a different mechanism. The mis-targeted variants accumulate at lipid droplets (LDs). N-terminal tagging, deletion of the N-terminus, and expression of a minor REEP1 isoform had the same effect. We also confirmed an increase in LD size upon cooverexpression of atlastins and REEP1. Neither wild-type REEP1, LD-targeted HSP variants, nor a non-LD-targeted HMN variant reproduced this effect when expressed alone. We conclude that the N-terminus of REEP1 is necessary for proper targeting to and/or retention in the ER. The protein's potential to also associate with LDs corroborates a synergistic effect with atlastins on LD size. Interestingly, LD size is also altered upon knockdown of seipin, mutations of which also cause HSP and HMN. Regulation of LDs may thus be an ER function critical for long-term axonal maintenance.
Collapse
Affiliation(s)
- Julia Falk
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wei S, Soh SLY, Xia J, Ong WY, Pang ZP, Han W. Motor neuropathy-associated mutation impairs Seipin functions in neurotransmission. J Neurochem 2014; 129:328-38. [DOI: 10.1111/jnc.12638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Shunhui Wei
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
| | - Stephanie Li-Ying Soh
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
| | - Julia Xia
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
- Child Health Institute of New Jersey; Department of Neuroscience and Cell Biology; Rutgers Robert Wood Johnson Medical School; New Brunswick New Jersey USA
| | - Wei-Yi Ong
- Department of Anatomy; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Zhiping P. Pang
- Child Health Institute of New Jersey; Department of Neuroscience and Cell Biology; Rutgers Robert Wood Johnson Medical School; New Brunswick New Jersey USA
| | - Weiping Han
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
- Institute of Molecular and Cell Biology; A*STAR; Singapore
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- Cardiovascular and Metabolic Disorders Program; Duke-NUS Graduate Medical School; Singapore
| |
Collapse
|
30
|
Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 2013; 126:307-28. [PMID: 23897027 DOI: 10.1007/s00401-013-1115-8] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a syndrome designation describing inherited disorders in which lower extremity weakness and spasticity are the predominant symptoms. There are more than 50 genetic types of HSP. HSP affects individuals of diverse ethnic groups with prevalence estimates ranging from 1.2 to 9.6 per 100,000. Symptoms may begin at any age. Gait impairment that begins after childhood usually worsens very slowly over many years. Gait impairment that begins in infancy and early childhood may not worsen significantly. Postmortem studies consistently identify degeneration of corticospinal tract axons (maximal in the thoracic spinal cord) and degeneration of fasciculus gracilis fibers (maximal in the cervico-medullary region). HSP syndromes thus appear to involve motor-sensory axon degeneration affecting predominantly (but not exclusively) the distal ends of long central nervous system (CNS) axons. In general, proteins encoded by HSP genes have diverse functions including (1) axon transport (e.g. SPG30/KIF1A, SPG10/KIF5A and possibly SPG4/Spastin); (2) endoplasmic reticulum morphology (e.g. SPG3A/Atlastin, SPG4/Spastin, SPG12/reticulon 2, and SPG31/REEP1, all of which interact); (3) mitochondrial function (e.g. SPG13/chaperonin 60/heat-shock protein 60, SPG7/paraplegin; and mitochondrial ATP6); (4) myelin formation (e.g. SPG2/Proteolipid protein and SPG42/Connexin 47); (5) protein folding and ER-stress response (SPG6/NIPA1, SPG8/K1AA0196 (Strumpellin), SGP17/BSCL2 (Seipin), "mutilating sensory neuropathy with spastic paraplegia" owing to CcT5 mutation and presumably SPG18/ERLIN2); (6) corticospinal tract and other neurodevelopment (e.g. SPG1/L1 cell adhesion molecule and SPG22/thyroid transporter MCT8); (7) fatty acid and phospholipid metabolism (e.g. SPG28/DDHD1, SPG35/FA2H, SPG39/NTE, SPG54/DDHD2, and SPG56/CYP2U1); and (8) endosome membrane trafficking and vesicle formation (e.g. SPG47/AP4B1, SPG48/KIAA0415, SPG50/AP4M1, SPG51/AP4E, SPG52/AP4S1, and VSPG53/VPS37A). The availability of animal models (including bovine, murine, zebrafish, Drosophila, and C. elegans) for many types of HSP permits exploration of disease mechanisms and potential treatments. This review highlights emerging concepts of this large group of clinically similar disorders.
Collapse
|
31
|
Nakhro K, Park JM, Choi BO, Chung KW. Missense mutations ofmitofusin 2in axonal Charcot–Marie–Tooth neuropathy: polymorphic or incomplete penetration? Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.814587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
32
|
Rahman OU, Khawar N, Khan MA, Ahmed J, Khattak K, Al-Aama JY, Naeem M, Jelani M. Deletion mutation in BSCL2 gene underlies congenital generalized lipodystrophy in a Pakistani family. Diagn Pathol 2013; 8:78. [PMID: 23659685 PMCID: PMC3655832 DOI: 10.1186/1746-1596-8-78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/06/2013] [Indexed: 11/25/2022] Open
Abstract
Background Congenital generalized lipodystrophy (CGL) also known as Berardinelli-Seip Congenital Lipodystrophy (BSCL) is a genetically heterogeneous disorder characterized by loss of adipose tissues, Acanthosis nigricans, diabetes mellitus, muscular hypertrophy, hepatomegaly and hypertriglyceridemia. There are four subclinical phenotypes of CGL (CGL1-4) and mutations in four genes AGPAT2, BSCL2, CAV1 and PTRF have been assigned to each type. Methods The study included clinical and molecular investigations of CGL disease in a consanguineous Pakistani family. For mutation screening all the coding exons including splice junctions of AGPAT2, BSCL2, CAV1 and PTRF genes were PCR amplified and sequenced directly using an automated DNA sequencer ABI3730. Results Sequence analysis revealed a single base pair deletion mutation (c.636delC; p.Tyr213ThrfsX20) in exon 5 of BSCL2 gene causing a frame shift and premature termination codon. Conclusion Mutation identified here in BSCL2 gene causing congenital generalized lipodystrophy is the first report in Pakistani population. The patients exhibited characteristic features of generalized lipodystrophy, Acanthosis nigricans, diabetes mellitus and hypertrophic cardiomyopathy. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1913913076864247.
Collapse
Affiliation(s)
- Obaid Ur Rahman
- Medical Genetics and Molecular Biology Unit, Biochemistry Department, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Guillén-Navarro E, Sánchez-Iglesias S, Domingo-Jiménez R, Victoria B, Ruiz-Riquelme A, Rábano A, Loidi L, Beiras A, González-Méndez B, Ramos A, López-González V, Ballesta-Martínez MJ, Garrido-Pumar M, Aguiar P, Ruibal A, Requena JR, Araújo-Vilar D. A new seipin-associated neurodegenerative syndrome. J Med Genet 2013; 50:401-9. [PMID: 23564749 DOI: 10.1136/jmedgenet-2013-101525] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Seipin/BSCL2 mutations can cause type 2 congenital generalised lipodystrophy (BSCL) or dominant motor neurone diseases. Type 2 BSCL is frequently associated with some degree of intellectual impairment, but not to fatal neurodegeneration. In order to unveil the aetiology and pathogenetic mechanisms of a new neurodegenerative syndrome associated with a novel BSCL2 mutation, six children, four of them showing the BSCL features, were studied. METHODS Mutational and splicing analyses of BSCL2 were performed. The brain of two of these children was examined postmortem. Relative expression of BSCL2 transcripts was analysed by real-time reverse transcription-polymerase chain reaction (RT-PCR) in different tissues of the index case and controls. Overexpressed mutated seipin in HeLa cells was analysed by immunofluorescence and western blotting. RESULTS Two patients carried a novel homozygous c.985C>T mutation, which appeared in the other four patients in compound heterozygosity. Splicing analysis showed that the c.985C>T mutation causes an aberrant splicing site leading to skipping of exon 7. Expression of exon 7-skipping transcripts was very high with respect to that of the non-skipped transcripts in all the analysed tissues of the index case. Neuropathological studies showed severe neurone loss, astrogliosis and intranuclear ubiquitin(+) aggregates in neurones from multiple cortical regions and in the caudate nucleus. CONCLUSIONS Our results suggest that exon 7 skipping in the BSCL2 gene due to the c.985C>T mutation is responsible for a novel early onset, fatal neurodegenerative syndrome involving cerebral cortex and basal ganglia.
Collapse
Affiliation(s)
- Encarna Guillén-Navarro
- Unit of Medical Genetics and Dysmorphology, Division of Pediatrics, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chaudhry R, Kidambi A, Brewer MH, Antonellis A, Mathews K, Nicholson G, Kennerson M. Re-analysis of an original CMTX3 family using exome sequencing identifies a known BSCL2 mutation. Muscle Nerve 2013; 47:922-4. [PMID: 23553728 DOI: 10.1002/mus.23743] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Charcot-Marie-Tooth (CMT) disease is a group of peripheral neuropathies affecting both motor and sensory nerves. CMTX3 is an X-linked CMT locus, which maps to chromosome Xq26.3-q27.3. Initially, CMTX3 was mapped to a 31.2-Mb region in 2 American families. We have reexamined 1 of the original families (US-PED2) by next generation sequencing. METHODS Three members of the family underwent exome sequencing. Candidate variants were validated by PCR and Sanger sequencing analysis. CONCLUSION No pathogenic coding variants localizing to the CMTX3 region were identified. However, exome sequencing identified a known BSCL2 mutation (N88S). This study demonstrates the power of exome sequencing as a tool to identify gene mutations for a small family in the absence of statistically significant linkage data.
Collapse
Affiliation(s)
- Rabia Chaudhry
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Gate 3, Hospital Road, Concord, New South Wales, 2761, Australia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure. Proc Natl Acad Sci U S A 2013; 110:5091-6. [PMID: 23479643 DOI: 10.1073/pnas.1217197110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hereditary spastic paraplegias are a clinically and genetically heterogeneous group of gait disorders. Their pathological hallmark is a length-dependent distal axonopathy of nerve fibers in the corticospinal tract. Involvement of other neurons can cause additional neurological symptoms, which define a diverse set of complex hereditary spastic paraplegias. We present two siblings who have the unusual combination of early-onset spastic paraplegia, optic atrophy, and neuropathy. Genome-wide SNP-typing, linkage analysis, and exome sequencing revealed a homozygous c.316C>T (p.R106C) variant in the Trk-fused gene (TFG) as the only plausible mutation. Biochemical characterization of the mutant protein demonstrated a defect in its ability to self-assemble into an oligomeric complex, which is critical for normal TFG function. In cell lines, TFG inhibition slows protein secretion from the endoplasmic reticulum (ER) and alters ER morphology, disrupting organization of peripheral ER tubules and causing collapse of the ER network onto the underlying microtubule cytoskeleton. The present study provides a unique link between altered ER architecture and neurodegeneration.
Collapse
|
36
|
Guo J, Qiu W, Soh SLY, Wei S, Radda GK, Ong WY, Pang ZP, Han W. Motor neuron degeneration in a mouse model of seipinopathy. Cell Death Dis 2013; 4:e535. [PMID: 23470542 PMCID: PMC3613842 DOI: 10.1038/cddis.2013.64] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterozygosity for missense mutations (N88S/S90L) in BSCL2 (Berardinelli–Seip congenital lipodystrophy type 2)/Seipin is associated with a broad spectrum of motoneuron diseases. To understand the underlying mechanisms how the mutations lead to motor neuropathy, we generated transgenic mice with neuron-specific expression of wild-type (tgWT) or N88S/S90L mutant (tgMT) human Seipin. Transgenes led to the broad expression of WT or mutant Seipin in the brain and spinal cord. TgMT, but not tgWT, mice exhibited late-onset altered locomotor activities and gait abnormalities that recapitulate symptoms of seipinopathy patients. We found loss of alpha motor neurons in tgMT spinal cord. Mild endoreticular stress was present in both tgMT and tgWT neurons; however, only tgMT mice exhibited protein aggregates and disrupted Golgi apparatus. Furthermore, autophagosomes were significantly increased, along with elevated light chain 3 (LC3)-II level in tgMT spinal cord, consistent with the activation of autophagy pathway in response to mutant Seipin expression and protein aggregation. These results suggest that induction of autophagy pathway is involved in the cellular response to mutant Seipin in seipinopathy and that motoneuron loss is a key pathogenic process underlying the development of locomotor abnormalities.
Collapse
Affiliation(s)
- J Guo
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pareyson D, Marchesi C, Salsano E. Dominant Charcot-Marie-Tooth syndrome and cognate disorders. HANDBOOK OF CLINICAL NEUROLOGY 2013; 115:817-845. [PMID: 23931817 DOI: 10.1016/b978-0-444-52902-2.00047-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a group of genetically heterogeneous disorders sharing a similar phenotype, characterized by wasting and weakness mainly involving the distal muscles of lower and upper limbs, variably associated with distal sensory loss and skeletal deformities. This chapter deals with dominantly transmitted CMT and related disorders, namely hereditary neuropathy with liability to pressure palsies (HNPP) and hereditary neuralgic amyotrophy (HNA). During the last 20 years, several genes have been uncovered associated with CMT and our understanding of the underlying molecular mechanisms has greatly improved. Consequently, a precise genetic diagnosis is now possible in the majority of cases, thus allowing proper genetic counseling. Although, unfortunately, treatment is still unavailable for all types of CMT, several cellular and animal models have been developed and some compounds have proved effective in these models. The first trials with ascorbic acid in CMT type 1A have been completed and, although negative, are providing relevant information on disease course and on how to prepare for future trials.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinics of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy.
| | | | | |
Collapse
|
38
|
Abstract
The inherited neuropathies are a clinically and genetically heterogeneous group of disorders in which there have been rapid advances in the last two decades. Molecular genetic testing is now an integral part of the evaluation of patients with inherited neuropathies. In this chapter we describe the genes responsible for the primary inherited neuropathies. We briefly discuss the clinical phenotype of each of the known inherited neuropathy subgroups, describe algorithms for molecular genetic testing of affected patients and discuss genetic counseling. The basic principles of careful phenotyping, documenting an accurate family history, and testing the available genes in an appropriate manner should identify the vast majority of individuals with CMT1 and many of those with CMT2. In this chapter we also describe the current methods of genetic testing. As advances are made in molecular genetic technologies and improvements are made in bioinformatics, it is likely that the current time-consuming methods of DNA sequencing will give way to quicker and more efficient high-throughput methods, which are briefly discussed here.
Collapse
|
39
|
Wei S, Soh SLY, Qiu W, Yang W, Seah CJY, Guo J, Ong WY, Pang ZP, Han W. Seipin regulates excitatory synaptic transmission in cortical neurons. J Neurochem 2012; 124:478-89. [PMID: 23173741 DOI: 10.1111/jnc.12099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022]
Abstract
Heterozygosity for missense mutations in Seipin, namely N88S and S90L, leads to a broad spectrum of motor neuropathy, while a number of loss-of-function mutations in Seipin are associated with the Berardinelli-Seip congenital generalized lipodystrophy type 2 (CGL2, BSCL2), a condition that is characterized by severe lipoatrophy, insulin resistance, and intellectual impairment. The mechanisms by which Seipin mutations lead to motor neuropathy, lipodystrophy, and insulin resistance, and the role Seipin plays in central nervous system (CNS) remain unknown. The goal of this study is to understand the functions of Seipin in the CNS using a loss-of-function approach, i.e. by knockdown (KD) of Seipin gene expression. Excitatory post-synaptic currents (EPSCs) were impaired in Seipin-KD neurons, while the inhibitory post-synaptic currents (IPSCs) remained unaffected. Expression of a shRNA-resistant human Seipin rescued the impairment of EPSC produced by Seipin KD. Furthermore, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced whole-cell currents were significantly reduced in Seipin KD neurons, which could be rescued by expression of a shRNA-resistant human Seipin. Fluorescent imaging and biochemical studies revealed reduced level of surface AMPA receptors, while no obvious ultrastructural changes in the pre-synapse were found. These data suggest that Seipin regulates excitatory synaptic function through a post-synaptic mechanism.
Collapse
Affiliation(s)
- Shunhui Wei
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Beetz C, Pieber TR, Hertel N, Schabhüttl M, Fischer C, Trajanoski S, Graf E, Keiner S, Kurth I, Wieland T, Varga RE, Timmerman V, Reilly MM, Strom TM, Auer-Grumbach M. Exome sequencing identifies a REEP1 mutation involved in distal hereditary motor neuropathy type V. Am J Hum Genet 2012; 91:139-45. [PMID: 22703882 DOI: 10.1016/j.ajhg.2012.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/13/2012] [Accepted: 05/03/2012] [Indexed: 01/08/2023] Open
Abstract
The distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of neurodegenerative disorders affecting the lower motoneuron. In a family with both autosomal-dominant dHMN and dHMN type V (dHMN/dHMN-V) present in three generations, we excluded mutations in all genes known to be associated with a dHMN phenotype through Sanger sequencing and defined three potential loci through linkage analysis. Whole-exome sequencing of two affected individuals revealed a single candidate variant within the linking regions, i.e., a splice-site alteration in REEP1 (c.304-2A>G). A minigene assay confirmed complete loss of splice-acceptor functionality and skipping of the in-frame exon 5. The resulting mRNA is predicted to be expressed at normal levels and to encode an internally shortened protein (p.102_139del). Loss-of-function REEP1 mutations have previously been identified in dominant hereditary spastic paraplegia (HSP), a disease associated with upper-motoneuron pathology. Consistent with our clinical-genetic data, we show that REEP1 is strongly expressed in the lower motoneurons as well. Upon exogeneous overexpression in cell lines we observe a subcellular localization defect for p.102_139del that differs from that observed for the known HSP-associated missense mutation c.59C>A (p.Ala20Glu). Moreover, we show that p.102_139del, but not p.Ala20Glu, recruits atlastin-1, i.e., one of the REEP1 binding partners, to the altered sites of localization. These data corroborate the loss-of-function nature of REEP1 mutations in HSP and suggest that a different mechanism applies in REEP1-associated dHMN.
Collapse
Affiliation(s)
- Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Berciano J, Sevilla T, Casasnovas C, Sivera R, Vílchez J, Infante J, Ramón C, Pelayo-Negro A, Illa I. Guía diagnóstica en el paciente con enfermedad de Charcot-Marie-Tooth. Neurologia 2012; 27:169-78. [DOI: 10.1016/j.nrl.2011.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 01/31/2023] Open
|
42
|
Berciano J, Sevilla T, Casasnovas C, Sivera R, Vílchez J, Infante J, Ramón C, Pelayo-Negro A, Illa I. Guidelines for molecular diagnosis of Charcot-Marie-Tooth disease. NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2012.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
43
|
Pennisi M, Raggi A, Barone R, Muglia M, Citrigno L, Cantone M, Lanza G, Pennisi G, Ferri R, Bella R. Phenotypic heterogeneity in hereditary motor neuropathy type V: a new case report series. Acta Neurol Belg 2012; 112:57-64. [PMID: 22427291 DOI: 10.1007/s13760-012-0042-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/13/2012] [Indexed: 02/07/2023]
Abstract
Previous studies have revealed a wide phenotypic heterogeneity in hereditary motor neuropathy type V in which upper and lower motor neurons and peripheral motor axons are variously affected, even within the same family. In this case series, we describe the genetic, clinical and electrophysiological features of patients belonging to a four-generation Italian family. Because of a possible anticipation phenomenon, the disorder became apparent at an earlier age as it passed to the next generation, with a median age of onset of 65 years for the first 2 generations, 32 for the third, and 13.5 for the fourth. The symptoms at onset varied considerably among the sufferers, with a predominant impairment of the hands in seven cases, the impairment of the four limbs in one patient and only of the lower limbs in another. Also muscle atrophy was variable, from very mild to severe (wasting of the distal muscles of the limbs). Moreover, electrophysiological results were heterogeneous, including cases with isolated and with diffuse axonal motor neuropathy, and one case of motor sensory polyneuropathy. A novel polymorphism G→T was also found in the Berardinelli-Seip congenital lipodystrophy 2 gene on intron 4. This broad phenotypic and genotypic spectrum calls the clinician attention to this rare and still insufficiently known disease.
Collapse
Affiliation(s)
- Manuela Pennisi
- Biochemistry and Molecular Biology Section, Department of Chemistry, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Timmerman V, Clowes VE, Reid E. Overlapping molecular pathological themes link Charcot-Marie-Tooth neuropathies and hereditary spastic paraplegias. Exp Neurol 2012; 246:14-25. [PMID: 22285450 DOI: 10.1016/j.expneurol.2012.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/29/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
In this review we focus on Charcot-Marie-Tooth (CMT) neuropathies and hereditary spastic paraplegias (HSPs). Although these diseases differ in whether they primarily affect the peripheral or central nervous system, both are genetically determined, progressive, long axonopathies that affect motor and sensory pathways. This commonality suggests that there might be similarities in the molecular pathology underlying these conditions, and here we compare the molecular genetics and cellular pathology of the two groups.
Collapse
Affiliation(s)
- Vincent Timmerman
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium.
| | | | | |
Collapse
|
45
|
Rudnik-Schöneborn S, Arning L, Epplen JT, Zerres K. SETX gene mutation in a family diagnosed autosomal dominant proximal spinal muscular atrophy. Neuromuscul Disord 2011; 22:258-62. [PMID: 22088787 DOI: 10.1016/j.nmd.2011.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/11/2011] [Accepted: 09/27/2011] [Indexed: 12/14/2022]
Abstract
Autosomal dominant proximal spinal muscular atrophy (ADSMA) is a rare disorder with unknown gene defects in the majority of families. Here we describe a family where the diagnosis of juvenile and adult onset ADSMA was made in three individuals. Because of retained tendon reflexes an atypical course of juvenile amyotrophic lateral sclerosis (ALS4) was considered. SETX gene sequencing revealed the previously reported heterozygous missense mutation c.1166T<C, L389S in the patients. Moreover the index patient and his sister had an earlier age at onset (10 and 15 years) and a more pronounced weakness as compared to their father with an age at onset of 35 years. Both sibs additionally carried a second SETX missense mutation of unknown function V891A in trans. Altogether these results expand the phenotype associated with SETX mutations supporting the notion that patients with ADSMA should be investigated for SETX mutations.
Collapse
|
46
|
Ito D, Yagi T, Ikawa M, Suzuki N. Characterization of inclusion bodies with cytoprotective properties formed by seipinopathy-linked mutant seipin. Hum Mol Genet 2011; 21:635-46. [DOI: 10.1093/hmg/ddr497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
47
|
Ito D, Yagi T, Suzuki N. [BSCL2-related neurologic disorders/seipinopathy: endoplasmic reticulum stress in neurodegeneration]. Rinsho Shinkeigaku 2011; 51:1186-1188. [PMID: 22277529 DOI: 10.5692/clinicalneurol.51.1186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Seipin/BSCL2 gene was originally identified as a loss-of-function gene for congenital generalized lipodystrophy type 2, a condition characterized by severe lipoatrophy, insulin resistance, and hypertriglyceridemia. Whereas gain-of-toxic-function mutations (namely, mutations N88S and S90L) in the seipin gene have been identified in autosomal dominant motor neuron diseases such as Silver syndrome/spastic paraplegia 17 (SPG17) and distal hereditary motor neuropathy type V. Detailed phenotypic analyses have revealed that upper motor neurons, lower motor neurons and peripheral motor axons are variously affected in patients with these mutations. We recently showed that the N88S and S90L mutations disrupt the N-glycosylation motif, enhance ubiquitination, and appear to result in proteins that are improperly folded, leading to accumulation of the mutant protein in the endoplasmic reticulum (ER). We also showed that expression of mutant in cultured cells activates the UPR pathway and induces cell death, suggesting that seipinopathy is tightly associated with ER stress, which has recently been reported to be associated with other neurodegenerative diseases. Further study of the pathological mechanisms of the mutant forms of seipin may lead to important new insights into motor neuron diseases, including other spastic paraplegia diseases and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurology, School of Medicine, Keio University
| | | | | |
Collapse
|
48
|
Abstract
Charcot-Marie-Tooth (CMT) disease is the commonest inherited neuromuscular disorder affecting at least 1 in 2,500. Over the last two decades, there have been rapid advances in understanding the molecular basis for many forms of CMT with more than 30 causative genes now described. This has made obtaining an accurate genetic diagnosis possible but at times challenging for clinicians. This review aims to provide a simple, pragmatic approach to diagnosing CMT from a clinician's perspective.
Collapse
Affiliation(s)
- Mary M Reilly
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neurosciences, National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK.
| | | | | |
Collapse
|
49
|
|
50
|
Yagi T, Ito D, Nihei Y, Ishihara T, Suzuki N. N88S seipin mutant transgenic mice develop features of seipinopathy/BSCL2-related motor neuron disease via endoplasmic reticulum stress. Hum Mol Genet 2011; 20:3831-40. [PMID: 21750110 DOI: 10.1093/hmg/ddr304] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heterozygosity for mutations (N88S and P90L) in the N-glycosylation site of seipin/BSCL2 is associated with the autosomal dominant motor neuron diseases, spastic paraplegia 17 and distal hereditary motor neuropathy type V, referred to as 'seipinopathies'. Previous in vitro studies have shown that seipinopathy-linked mutations result in accumulation of unfolded proteins in the endoplasmic reticulum (ER), leading to the unfolded protein response and cell death, suggesting that seipinopathies is closely associated with ER stress. To further understand the molecular pathogenesis of seipinopathies, we generated a transgenic (tg) mouse line expressing the human N88S seipin mutant with the murine Thy-1 promoter to permit analyses of in vivo phenotypic changes. The N88S seipin tg mice develop a progressive spastic motor deficit, reactive gliosis in the spinal cord and neurogenic muscular atrophy, recapitulating the symptomatic and pathological phenotype in patients of seipinopathy. We also found that expression of mutant seipin in mice upregulated the ER stress marker, immunoglobulin-heavy-chain-binding protein, protein disulfide isomerase and X-box binding protein 1, but was not linked to significant neuronal loss in affected tissue, thereby indicating that ER stress is sufficient, while neuronal death is not necessary, for the development of motor phenotypes of seipinopathies. Our findings in the mutant seipin tg mouse provide clues to understand the relationship with ER stress and neurodegeneration, and the seipin tg mouse is a valid tool for the development of novel therapeutic strategies against ER stress-related diseases.
Collapse
Affiliation(s)
- Takuya Yagi
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|