1
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Stevens DA, Workman CI, Kuwabara H, Butters MA, Savonenko A, Nassery N, Gould N, Kraut M, Joo JH, Kilgore J, Kamath V, Holt DP, Dannals RF, Nandi A, Onyike CU, Smith GS. Regional amyloid correlates of cognitive performance in ageing and mild cognitive impairment. Brain Commun 2022; 4:fcac016. [PMID: 35233522 PMCID: PMC8882008 DOI: 10.1093/braincomms/fcac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Beta-amyloid deposition is one of the earliest pathological markers associated with Alzheimer's disease. Mild cognitive impairment in the setting of beta-amyloid deposition is considered to represent a preclinical manifestation of Alzheimer's disease. In vivo imaging studies are unique in their potential to advance our understanding of the role of beta-amyloid deposition in cognitive deficits in Alzheimer's disease and in mild cognitive impairment. Previous work has shown an association between global cortical measures of beta-amyloid deposition ('amyloid positivity') in mild cognitive impairment with greater cognitive deficits and greater risk of progression to Alzheimer's disease. The focus of the present study was to examine the relationship between the regional distribution of beta-amyloid deposition and specific cognitive deficits in people with mild cognitive impairment and cognitively normal elderly individuals. Forty-seven participants with multi-domain, amnestic mild cognitive impairment (43% female, aged 57-82 years) and 37 healthy, cognitively normal comparison subjects (42% female, aged 55-82 years) underwent clinical and neuropsychological assessments and high-resolution positron emission tomography with the radiotracer 11C-labelled Pittsburgh compound B to measure beta-amyloid deposition. Brain-behaviour partial least-squares analysis was conducted to identify spatial patterns of beta-amyloid deposition that correlated with the performance on neuropsychological assessments. Partial least-squares analysis identified a single significant (P < 0.001) latent variable which accounted for 80% of the covariance between demographic and cognitive measures and beta-amyloid deposition. Performance in immediate verbal recall (R = -0.46 ± 0.07, P < 0.001), delayed verbal recall (R = -0.39 ± 0.09, P < 0.001), immediate visual-spatial recall (R = -0.39 ± 0.08, P < 0.001), delayed visual-spatial recall (R = -0.45 ± 0.08, P < 0.001) and semantic fluency (R = -0.33 ± 0.11, P = 0.002) but not phonemic fluency (R = -0.05 ± 0.12, P < 0.705) negatively covaried with beta-amyloid deposition in the identified regions. Partial least-squares analysis of the same cognitive measures with grey matter volumes showed similar associations in overlapping brain regions. These findings suggest that the regional distribution of beta-amyloid deposition and grey matter volumetric decreases is associated with deficits in executive function and memory in mild cognitive impairment. Longitudinal analysis of these relationships may advance our understanding of the role of beta-amyloid deposition in relation to grey matter volumetric decreases in cognitive decline.
Collapse
Affiliation(s)
- Daniel A. Stevens
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Clifford I. Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hiroto Kuwabara
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meryl A. Butters
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Najilla Nassery
- Department of General Internal Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Neda Gould
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Kraut
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Hui Joo
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Kilgore
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Vidya Kamath
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel P. Holt
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert F. Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chiadi U. Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gwenn S. Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Lee JS. A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3009269] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22042033. [PMID: 33670778 PMCID: PMC7922581 DOI: 10.3390/ijms22042033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia in elderly individuals, is marked by progressive neuron loss. Despite more than 100 years of research on AD, there is still no treatment to cure or prevent the disease. High levels of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain are neuropathological hallmarks of AD. However, based on postmortem analyses, up to 44% of individuals have been shown to have high Aβ deposits with no clinical signs, due to having a “cognitive reserve”. The biochemical mechanism explaining the prevention of cognitive impairment in the presence of Aβ plaques is still unknown. It seems that in addition to protein aggregation, neuroinflammatory changes associated with aging are present in AD brains that are correlated with a higher level of brain iron and oxidative stress. It has been shown that iron accumulates around amyloid plaques in AD mouse models and postmortem brain tissues of AD patients. Iron is required for essential brain functions, including oxidative metabolism, myelination, and neurotransmitter synthesis. However, an imbalance in brain iron homeostasis caused by aging underlies many neurodegenerative diseases. It has been proposed that high iron levels trigger an avalanche of events that push the progress of the disease, accelerating cognitive decline. Patients with increased amyloid plaques and iron are highly likely to develop dementia. Our observations indicate that the butyrylcholinesterase (BChE) level seems to be iron-dependent, and reports show that BChE produced by reactive astrocytes can make cognitive functions worse by accelerating the decay of acetylcholine in aging brains. Why, even when there is a genetic risk, do symptoms of the disease appear after many years? Here, we discuss the relationship between genetic factors, age-dependent iron tissue accumulation, and inflammation, focusing on AD.
Collapse
|
5
|
Jorge L, Martins R, Canário N, Xavier C, Abrunhosa A, Santana I, Castelo-Branco M. Investigating the Spatial Associations Between Amyloid-β Deposition, Grey Matter Volume, and Neuroinflammation in Alzheimer's Disease. J Alzheimers Dis 2021; 80:113-132. [PMID: 33523050 PMCID: PMC8075404 DOI: 10.3233/jad-200840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: It has been proposed that amyloid-β (Aβ) plays a causal role in Alzheimer’s disease (AD) by triggering a series of pathologic events—possibly including neuroinflammation—which culminate in progressive brain atrophy. However, the interplay between the two pathological molecular events and how both are associated with neurodegeneration is still unclear. Objective: We aimed to estimate the spatial inter-relationship between neurodegeneration, neuroinflammation and Aβ deposition in a cohort of 20 mild AD patients and 17 healthy controls (HC). Methods: We resorted to magnetic resonance imaging to measure cortical atrophy, using the radiotracer 11C-PK11195 PET to measure neuroinflammation levels and 11C-PiB PET to assess Aβ levels. Between-group comparisons were computed to explore AD-related changes in the three types of markers. To examine the effects of each one of the molecular pathologic mechanisms on neurodegeneration we computed: 1) ANCOVAs with the anatomic data, controlling for radiotracer uptake differences between groups and 2) voxel-based multiple regression analysis between-modalities. In addition, associations in anatomically defined regions of interests were also investigated. Results: We found significant differences between AD and controls in the levels of atrophy, neuroinflammation, and Aβ deposition. Associations between Aβ aggregation and brain atrophy were detected in AD in a widely distributed pattern, whereas associations between microglia activation and structural measures of neurodegeneration were restricted to few anatomically regions. Conclusion: In summary, Aβ deposition, as opposed to neuroinflammation, was more associated with cortical atrophy, suggesting a prominent role of Aβ in neurodegeneration at a mild stage of the AD.
Collapse
Affiliation(s)
- Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina Xavier
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Antero Abrunhosa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Department of Neurology, Coimbra University Hospital, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Huang Y, Cho HJ, Bandara N, Sun L, Tran D, Rogers BE, Mirica LM. Metal-chelating benzothiazole multifunctional compounds for the modulation and 64Cu PET imaging of Aβ aggregation. Chem Sci 2020; 11:7789-7799. [PMID: 34094152 PMCID: PMC8163150 DOI: 10.1039/d0sc02641g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
While Alzheimer's Disease (AD) is the most common neurodegenerative disease, there is still a dearth of efficient therapeutic and diagnostic agents for this disorder. Reported herein are a series of new multifunctional compounds (MFCs) with appreciable affinity for amyloid aggregates that can be potentially used for both the modulation of Aβ aggregation and its toxicity, as well as positron emission tomography (PET) imaging of Aβ aggregates. Firstly, among the six compounds tested HYR-16 is shown to be capable to reroute the toxic Cu-mediated Aβ oligomerization into the formation of less toxic amyloid fibrils. In addition, HYR-16 can also alleviate the formation of reactive oxygen species (ROS) caused by Cu2+ ions through Fenton-like reactions. Secondly, these MFCs can be easily converted to PET imaging agents by pre-chelation with the 64Cu radioisotope, and the Cu complexes of HYR-4 and HYR-17 exhibit good fluorescent staining and radiolabeling of amyloid plaques both in vitro and ex vivo. Importantly, the 64Cu-labeled HYR-17 is shown to have a significant brain uptake of up to 0.99 ± 0.04 %ID per g. Overall, by evaluating the various properties of these MFCs valuable structure-activity relationships were obtained that should aid the design of improved therapeutic and diagnostic agents for AD.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine St. Louis Missouri 63108 USA
| | - Liang Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
| | - Diana Tran
- Department of Radiation Oncology, Washington University School of Medicine St. Louis Missouri 63108 USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine St. Louis Missouri 63108 USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
- Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis MO 63110 USA
| |
Collapse
|
7
|
Correlation between β-amyloid deposits revealed by BF-227-PET imaging and brain atrophy detected by voxel-based morphometry-MR imaging: a pilot study. Nucl Med Commun 2020; 40:905-912. [PMID: 31246935 PMCID: PMC6708599 DOI: 10.1097/mnm.0000000000001042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate whether β-amyloid (Aβ) deposition was associated with local atrophy of corresponding areas in the brain. METHODS [11C]2-[2-(2-Dimethylaminothiazol-5-yl) ethenyl-6-[2-(fluoro)ethoxy]benzoxazole (BF-227)-PET, MRI and neuropsychological tests were carried out on 56 subjects, out of which 21 were patients with Alzheimer's disease (AD), 20 were patients with mild cognitive impairment (MCI) and 15 were normal controls (NC). The BF-227 uptake in each local brain region was set up with automated anatomical labeling atlas using Wake Forest University PickAtlas software and local standardized uptake value ratios of BF-227 were calculated as the average value of right and left using the MRIcron software. RESULTS Group comparisons of Aβ deposition as determined by BF-227 uptake using PET imaging showed no significant differences between MCI and AD. Aβ deposition was significantly higher in MCI and AD than in NC. The correlation analysis between local Aβ deposition and gray matter atrophy showed that in AD, the Aβ deposition in the inferior temporal gyrus was strongly related to the gray matter atrophy in this region. On the contrary, the Aβ deposition in the precuneus was associated with the atrophy in the right occipital-temporal region. In the NC, the Aβ deposition in the inferior temporal gyrus was associated with the atrophy in the precuneus. CONCLUSION In the AD, the relationship between the Aβ deposition and local atrophy is area-dependent. In NC, Aβ deposition in the inferior temporal gyrus correlated to the atrophy in the precuneus.
Collapse
|
8
|
Chandra A, Valkimadi PE, Pagano G, Cousins O, Dervenoulas G, Politis M. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer's disease and mild cognitive impairment. Hum Brain Mapp 2019; 40:5424-5442. [PMID: 31520513 PMCID: PMC6864887 DOI: 10.1002/hbm.24782] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease for which there is no cure. Mild cognitive impairment (MCI) is considered a prodromal stage of the disease. Molecular imaging with positron emission tomography (PET) allows for the in vivo visualisation and tracking of pathophysiological changes in AD and MCI. PET is a very promising methodology for differential diagnosis and novel targets of PET imaging might also serve as biomarkers for disease-modifying therapeutic interventions. This review provides an overview of the current status and applications of in vivo molecular imaging of AD pathology, specifically amyloid, tau, and microglial activation. PET imaging studies were included and evaluated as potential biomarkers and for monitoring disease progression. Although the majority of radiotracers showed the ability to discriminate AD and MCI patients from healthy controls, they had various limitations that prevent the recommendation of a single technique or tracer as an optimal biomarker. Newer research examining amyloid, tau, and microglial PET imaging in combination suggest an alternative approach in studying the disease process.
Collapse
Affiliation(s)
- Avinash Chandra
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Polytimi-Eleni Valkimadi
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Oliver Cousins
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - George Dervenoulas
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| |
Collapse
|
9
|
Gyanwali B, Shaik MA, Tan CS, Vrooman H, Venketasubramanian N, Chen C, Hilal S. Mixed-location cerebral microbleeds as a biomarker of neurodegeneration in a memory clinic population. Aging (Albany NY) 2019; 11:10581-10596. [PMID: 31767809 PMCID: PMC6914397 DOI: 10.18632/aging.102478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022]
Abstract
Cerebral microbleeds (CMBs) in the lobar and deep locations are associated with two distinct pathologies: cerebral amyloid angiopathy and hypertensive arteriopathy. However, the role of mixed-location CMBs in neurodegeneration remains unexplored. We investigated the associations between strictly lobar, strictly deep and mixed-location CMBs with markers of neurodegeneration. This study recruited 477 patients from a memory clinic who underwent 3T MRI scans. CMBs were categorized into strictly lobar, strictly deep and mixed-location. Cortical thickness, white matter volume and subcortical structural volumes were quantified using Free-Surfer. Linear regression models were performed to assess the association between CMBs and cerebral atrophy, and the mean difference (β) and 95% confidence intervals (CIs) were reported. In the regression analyses, mixed-location CMBs were associated with smaller cortical thickness of limbic region [β= -0.01; 95% CI= -0.02, -0.00, p=0.007) as well as with smaller accumbens volume [β= -0.01; 95% CI= -0.02, -0.00, p=0.004) and presubiculum region of hippocampus [β= -0.01; 95% CI= -0.02, -0.00, p=0.002). Strictly lobar CMBs were associated with smaller total white matter volume [β= -0.03; 95% CI= -0.04, -0.01, p<0.001] and with region specific white matter volumes. The underlying mechanism requires further research and may involve shared mechanisms of vascular dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Memory Aging and Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Muhammad Amin Shaik
- Ageing Research Institute for Society and Education, Nanyang Technological University, Singapore
| | - Chuen Seng Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Henri Vrooman
- Departments of Radiology and Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Auvity S, Tonietto M, Caillé F, Bodini B, Bottlaender M, Tournier N, Kuhnast B, Stankoff B. Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11C-MeDAS, and 11C-PiB. Eur J Nucl Med Mol Imaging 2019; 47:490-501. [PMID: 31686177 DOI: 10.1007/s00259-019-04516-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Drugs promoting myelin repair represent a promising therapeutic approach in multiple sclerosis and several candidate molecules are currently being evaluated, fostering the need of a quantitative method to specifically measure myelin content in vivo. PET using the benzothiazole derivative 11C-PiB has been successfully used to quantify myelin content changes in humans. Stilbene derivatives, such as 11C-MeDAS, have also been shown to bind to myelin in animals and are considered a promising radiopharmaceutical class for myelin imaging. Fluorinated compounds from both classes are now commercially available and thus should constitute clinically useful myelin radiotracers. The aim of this study is to provide a head-to-head comparison of 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol, 11C-MeDAS, and 11C-PiB with regard to brain kinetics and binding in white matter (WM). METHODS Four baboons underwent a 90-min dynamic PET scan for each radioligand. Arterial blood samples were collected during the exam for each radiotracer, except for 18F-florbetapir, to obtain a radiometabolite-corrected input function. Standardized uptake value ratio between 75 at 90 min (SUVR75-90), binding potential (BP) estimated with Logan method with input function, and distribution volume ratio (DVR) estimated with Logan reference method (using cerebellar gray matter as reference region) were calculated in WM and compared between tracers using mixed effect models. RESULTS In WM, 18F-florbetapir had the highest SUVR75-90 (1.38 ± 0.03), followed by 18F-flutemetamol (1.34 ± 0.02), 18F-florbetaben (1.32 ± 0.07), 11C-MeDAS (1.27 ± 0.04), and 11C-PiB (1.25 ± 0.07). With regard to BP, 18F-florbetaben had the highest value (0.32 ± 0.06) compared with 18F-flutemetamol (0.20 ± 0.03), 11C-MeDAS (0.17 ± 0.03), and 11C-PiB (0.16 ± 0.03). No difference in DVR was detected between 18F-florbetaben (1.26 ± 0.06) and 18F-florbetapir (1.27 ± 0.03), but both were significantly higher in DVR than 18F-flutemetamol (1.17 ± 0.02), 11C-MeDAS (1.16 ± 0.03), and 11C-PiB (1.14 ± 0.02). CONCLUSIONS Given their higher binding and longer half-life, our study indicates that 18F-florbetapir and 18F-florbetaben are promising tracers for myelin imaging which are readily available for clinical application in demyelinating diseases.
Collapse
Affiliation(s)
- Sylvain Auvity
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Matteo Tonietto
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - Fabien Caillé
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Benedetta Bodini
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - Michel Bottlaender
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Nicolas Tournier
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Bertrand Kuhnast
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Bruno Stankoff
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France.
| |
Collapse
|
11
|
Abstract
Technologies for imaging the pathophysiology of Alzheimer disease (AD) now permit studies of the relationships between the two major proteins deposited in this disease - amyloid-β (Aβ) and tau - and their effects on measures of neurodegeneration and cognition in humans. Deposition of Aβ in the medial parietal cortex appears to be the first stage in the development of AD, although tau aggregates in the medial temporal lobe (MTL) precede Aβ deposition in cognitively healthy older people. Whether aggregation of tau in the MTL is the first stage in AD or a fairly benign phenomenon that may be transformed and spread in the presence of Aβ is a major unresolved question. Despite a strong link between Aβ and tau, the relationship between Aβ and neurodegeneration is weak; rather, it is tau that is associated with brain atrophy and hypometabolism, which, in turn, are related to cognition. Although there is support for an interaction between Aβ and tau resulting in neurodegeneration that leads to dementia, the unknown nature of this interaction, the strikingly different patterns of brain Aβ and tau deposition and the appearance of neurodegeneration in the absence of Aβ and tau are challenges to this model that ultimately must be explained.
Collapse
|
12
|
Kreimerman I, Reyes AL, Paolino A, Pardo T, Porcal W, Ibarra M, Oliver P, Savio E, Engler H. Biological Assessment of a 18F-Labeled Sulforhodamine 101 in a Mouse Model of Alzheimer's Disease as a Potential Astrocytosis Marker. Front Neurosci 2019; 13:734. [PMID: 31379487 PMCID: PMC6646682 DOI: 10.3389/fnins.2019.00734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases have mainly been associated with neuronal death. Recent investigations have shown that astroglia may modulate neuroinflammation in the early and late stages of the disease. [11C]Deuterodeprenyl ([11C]DED) is a tracer that has been used for reactive astrocyte detection in Alzheimer’s disease, Creutzfeldt–Jakob disease and amyotrophic lateral sclerosis, among others, with some limitations. To develop a new radiotracer for detecting astrocytosis and overcoming associated difficulties, we recently reported the synthesis of a sulfonamide derivative of Sulforhodamine 101 (SR101), labeled with 18F, namely SR101 N-(3-[18F]Fluoropropyl) sulfonamide ([18F]2B-SRF101). The red fluorescent dye SR101 has been used as a specific marker of astroglia in the neocortex of rodents using in vivo models. In the present work we performed a biological characterisation of the new tracer including biodistribution and micro-PET/computed tomography (CT) images. PET/CT studies with [11C]DED were also done to compare with [18F]2B-SRF101 in order to assess its potential as an astrocyte marker. Biodistribution studies with [18F]2B-SRF101 were carried out in C57BL6J black and transgenic (3xTg) mice. A hepatointestinal metabolization as well as the pharmacokinetic profile were determined, showing appropriate characteristics to become a PET diagnostic agent. Dynamic PET/CT studies were carried out with [18F]2B-SRF101 and [11C]DED to evaluate the distribution of both tracers in the brain. A significant difference in [18F]2B-SRF101 uptake was especially observed in the cortex and hippocampus, and it was higher in 3xTg mice than it was in the control group. These results suggested that [18F]2B-SRF101 is a promising candidate for more extensive evaluation as an astrocyte tracer. The difference observed for [18F]2B-SRF101 was not found in the case of [11C]DED. The comparative studies between [18F]2B-SRF101 and [11C]DED suggest that both tracers have different roles as astrocytosis markers in this animal model, and could provide different and complementary information at the same time. In this way, by means of a multitracer approach, useful information could be obtained for the staging of the disease.
Collapse
Affiliation(s)
- Ingrid Kreimerman
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Ana Laura Reyes
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Andrea Paolino
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Tania Pardo
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Williams Porcal
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay.,Department of Organic Chemistry, Faculty of Chemistry, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Manuel Ibarra
- Pharmaceutical Sciences Department, Faculty of Chemistry, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Patricia Oliver
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Henry Engler
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| |
Collapse
|
13
|
Gallardo G, Holtzman DM. Amyloid-β and Tau at the Crossroads of Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:187-203. [PMID: 32096039 DOI: 10.1007/978-981-32-9358-8_16] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized neuropathologically by senile plaques and neurofibrillary tangles (NFTs). Early breakthroughs in AD research led to the discovery of amyloid-β as the major component of senile plaques and tau protein as the major component of NFTs. Shortly following the identification of the amyloid-β (Aβ) peptide was the discovery that a genetic mutation in the amyloid precursor protein (APP), a type1 transmembrane protein, can be a cause of autosomal dominant familial AD (fAD). These discoveries, coupled with other breakthroughs in cell biology and human genetics, have led to a theory known as the "amyloid hypothesis", which postulates that amyloid-β is the predominant driving factor in AD development. Nonetheless, more recent advances in imaging analysis, biomarkers and mouse models are now redefining this original hypothesis, as it is likely amyloid-β, tau and other pathophysiological mechanism such as inflammation, come together at a crossroads that ultimately leads to the development of AD.
Collapse
Affiliation(s)
- Gilbert Gallardo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA. .,Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA. .,Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
14
|
Martikainen IK, Kemppainen N, Johansson J, Teuho J, Helin S, Liu Y, Helisalmi S, Soininen H, Parkkola R, Ngandu T, Kivipelto M, Rinne JO. Brain β-Amyloid and Atrophy in Individuals at Increased Risk of Cognitive Decline. AJNR Am J Neuroradiol 2018; 40:80-85. [PMID: 30545837 DOI: 10.3174/ajnr.a5891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 10/12/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE The relationship between brain β-amyloid and regional atrophy is still incompletely understood in elderly individuals at risk of dementia. Here, we studied the associations between brain β-amyloid load and regional GM and WM volumes in older adults who were clinically evaluated as being at increased risk of cognitive decline based on cardiovascular risk factors. MATERIALS AND METHODS Forty subjects (63-81 years of age) were recruited as part of a larger study, the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability. Neuroimaging consisted of PET using 11C Pittsburgh compound-B and T1-weighted 3D MR imaging for the measurement of brain β-amyloid and GM and WM volumes, respectively. All subjects underwent clinical, genetic, and neuropsychological evaluations for the assessment of cognitive function and the identification of cardiovascular risk factors. RESULTS Sixteen subjects were visually evaluated as showing cortical β-amyloid (positive for β-amyloid). In the voxel-by-voxel analyses, no significant differences were found in GM and WM volumes between the samples positive and negative for β-amyloid. However, in the sample positive for β-amyloid, increases in 11C Pittsburgh compound-B uptake were associated with reductions in GM volume in the left prefrontal (P = .02) and right temporal lobes (P = .04). CONCLUSIONS Our results show a significant association between increases in brain β-amyloid and reductions in regional GM volume in individuals at increased risk of cognitive decline. This evidence is consistent with a model in which increases in β-amyloid incite neurodegeneration in memory systems before cognitive impairment manifests.
Collapse
Affiliation(s)
- I K Martikainen
- From the Department of Radiology (I.K.M.), Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| | - N Kemppainen
- Division of Clinical Neurosciences (N.K., J.O.R.), Turku University Hospital, Turku, Finland.,Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| | - J Johansson
- Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| | - J Teuho
- Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| | - S Helin
- Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| | - Y Liu
- Department of Neurology (Y.L., S. Helisalmi, H.S., M.K.), University of Eastern Finland, Kuopio, Finland.,Neurocenter (Y.L., H.S., M.K.), Neurology, Kuopio University Hospital, Kuopio, Finland
| | - S Helisalmi
- Department of Neurology (Y.L., S. Helisalmi, H.S., M.K.), University of Eastern Finland, Kuopio, Finland
| | - H Soininen
- Department of Neurology (Y.L., S. Helisalmi, H.S., M.K.), University of Eastern Finland, Kuopio, Finland.,Neurocenter (Y.L., H.S., M.K.), Neurology, Kuopio University Hospital, Kuopio, Finland
| | - R Parkkola
- Department of Radiology (R.P.), University of Turku and Turku University Hospital, Turku, Finland
| | - T Ngandu
- Department of Public Health Solutions (T.N., M.K.), Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland.,Division of Clinical Geriatrics (T.N., M.K.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - M Kivipelto
- Department of Neurology (Y.L., S. Helisalmi, H.S., M.K.), University of Eastern Finland, Kuopio, Finland.,Neurocenter (Y.L., H.S., M.K.), Neurology, Kuopio University Hospital, Kuopio, Finland.,Department of Public Health Solutions (T.N., M.K.), Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland.,Division of Clinical Geriatrics (T.N., M.K.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - J O Rinne
- Division of Clinical Neurosciences (N.K., J.O.R.), Turku University Hospital, Turku, Finland.,Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| |
Collapse
|
15
|
Abstract
The past decade has seen tremendous efforts in biomarker discovery and validation for neurodegenerative diseases. The source and type of biomarkers has continued to grow for central nervous system diseases, from biofluid-based biomarkers (blood or cerebrospinal fluid (CSF)), to nucleic acids, tissue, and imaging. While DNA remains a predominant biomarker used to identify familial forms of neurodegenerative diseases, various types of RNA have more recently been linked to familial and sporadic forms of neurodegenerative diseases during the past few years. Imaging approaches continue to evolve and are making major contributions to target engagement and early diagnostic biomarkers. Incorporation of biomarkers into drug development and clinical trials for neurodegenerative diseases promises to aid in the development and demonstration of target engagement and drug efficacy for neurologic disorders. This review will focus on recent advancements in developing biomarkers for clinical utility in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
| | - Robert Bowser
- Iron Horse Diagnostics, Inc., Scottsdale, AZ, 85255, USA.
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
16
|
In Vivo and In Vitro Characteristics of Radiolabeled Vesamicol Analogs as the Vesicular Acetylcholine Transporter Imaging Agents. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4535476. [PMID: 30008624 PMCID: PMC6020543 DOI: 10.1155/2018/4535476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
Abstract
The vesicular acetylcholine transporter (VAChT), a presynaptic cholinergic neuron marker, is a potential internal molecular target for the development of an imaging agent for early diagnosis of neurodegenerative disorders with cognitive decline such as Alzheimer's disease (AD). Since vesamicol has been reported to bind to VAChT with high affinity, many vesamicol analogs have been studied as VAChT imaging agents for the diagnosis of cholinergic neurodeficit disorder. However, because many vesamicol analogs, as well as vesamicol, bound to sigma receptors (σ1 and σ2) besides VAChT, almost all the vesamicol analogs have been shown to be unsuitable for clinical trials. In this report, the relationships between the chemical structure and the biological characteristics of these developed vesamicol analogs were investigated, especially the in vitro binding profile and the in vivo regional brain accumulation.
Collapse
|
17
|
Gordon BA, McCullough A, Mishra S, Blazey TM, Su Y, Christensen J, Dincer A, Jackson K, Hornbeck RC, Morris JC, Ances BM, Benzinger TL. Cross-sectional and longitudinal atrophy is preferentially associated with tau rather than amyloid β positron emission tomography pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2018; 10:245-252. [PMID: 29780869 PMCID: PMC5956934 DOI: 10.1016/j.dadm.2018.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Structural magnetic resonance imaging is a marker of gray matter health and decline that is sensitive to impaired cognition and Alzheimer's disease pathology. Prior work has shown that both amyloid β (Aβ) and tau biomarkers are related to cortical thinning, but it is unclear what unique influences they have on the brain. METHODS Aβ pathology was measured with [18F] AV-45 (florbetapir) positron emission tomography (PET) and tau was assessed with [18F] AV-1451 (flortaucipir) PET in a population of 178 older adults, of which 123 had longitudinal magnetic resonance imaging assessments (average of 5.7 years) that preceded the PET acquisitions. RESULTS In cross-sectional analyses, greater tau PET pathology was associated with thinner cortices. When examined independently in longitudinal models, both Aβ and tau were associated with greater antecedent loss of gray matter. However, when examined in a combined model, levels of tau, but not Aβ, were still highly related to change in cortical thickness. DISCUSSION Measures of tau PET are strongly related to gray matter atrophy and likely mediate relationships between Aβ and gray matter.
Collapse
Affiliation(s)
- Brian A. Gordon
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Austin McCullough
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Shruti Mishra
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Tyler M. Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Yi Su
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - John Christensen
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Aylin Dincer
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Kelley Jackson
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Russ C. Hornbeck
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - John C. Morris
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Beau M. Ances
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| |
Collapse
|
18
|
Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol 2018; 14:225-236. [DOI: 10.1038/nrneurol.2018.9] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Taylor MK, Sullivan DK, Swerdlow RH, Vidoni ED, Morris JK, Mahnken JD, Burns JM. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr 2017; 106:1463-1470. [PMID: 29070566 PMCID: PMC5698843 DOI: 10.3945/ajcn.117.162263] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Little is known about the relation between dietary intake and cerebral amyloid accumulation in aging.Objective: We assessed the association of dietary glycemic measures with cerebral amyloid burden and cognitive performance in cognitively normal older adults.Design: We performed cross-sectional analyses relating dietary glycemic measures [adherence to a high-glycemic-load diet (HGLDiet) pattern, intakes of sugar and carbohydrates, and glycemic load] with cerebral amyloid burden (measured by florbetapir F-18 positron emission tomography) and cognitive performance in 128 cognitively normal older adults who provided eligibility screening data for the University of Kansas's Alzheimer's Prevention through Exercise (APEX) Study. The study began in November 2013 and is currently ongoing.Results: Amyloid was elevated in 26% (n = 33) of participants. HGLDiet pattern adherence (P = 0.01), sugar intake (P = 0.03), and carbohydrate intake (P = 0.05) were significantly higher in participants with elevated amyloid burden. The HGLDiet pattern was positively associated with amyloid burden both globally and in all regions of interest independently of age, sex, and education (all P ≤ 0.001). Individual dietary glycemic measures (sugar intake, carbohydrate intake, and glycemic load) were also positively associated with global amyloid load and nearly all regions of interest independently of age, sex, and educational level (P ≤ 0.05). Cognitive performance was associated only with daily sugar intake, with higher sugar consumption associated with poorer global cognitive performance (global composite measure and Mini-Mental State Examination) and performance on subtests of Digit Symbol, Trail Making Test B, and Block Design, controlling for age, sex, and education.Conclusion: A high-glycemic diet was associated with greater cerebral amyloid burden, which suggests diet as a potential modifiable behavior for cerebral amyloid accumulation and subsequent Alzheimer disease risk. This trial was registered at clinicaltrials.gov as NCT02000583.
Collapse
Affiliation(s)
- Matthew K Taylor
- Departments of Dietetics and Nutrition and,University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | - Debra K Sullivan
- Departments of Dietetics and Nutrition and,University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | | | - Eric D Vidoni
- University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | - Jill K Morris
- University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | - Jonathan D Mahnken
- Biostatistics, University of Kansas Medical Center, Kansas City, KS; and,University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Center, Fairway, KS
| |
Collapse
|
20
|
Current Role for Biomarkers in Clinical Diagnosis of Alzheimer Disease and Frontotemporal Dementia. Curr Treat Options Neurol 2017; 19:46. [PMID: 29134465 DOI: 10.1007/s11940-017-0484-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose of review Alzheimer's disease (AD) and frontotemporal dementia can often be diagnosed accurately with careful clinical history, cognitive testing, neurological examination, and structural brain MRI. However, there are certain circumstances wherein detection of specific biomarkers of neurodegeneration or underlying AD pathology will impact the clinical diagnosis or treatment plan. We will review the currently available biomarkers for AD and frontotemporal dementia (FTD) and discuss their clinical importance. Recent findings With the advent of 18F-labeled tracers that bind amyloid plaques, amyloid PET is now clinically available for the detection of amyloid pathology and to aid in a biomarker-supported diagnosis of AD or mild cognitive impairment (MCI) due to AD. It is not yet possible to test for the specific FTD pathologies (tau or TDP-43); however, a diagnosis of FTD may be "imaging supported" based upon specific MRI or FDG-PET findings. Cerebrospinal fluid measures of amyloid-beta, total-tau, and phospho-tau are clinically available and allow detection of both of the cardinal pathologies of AD: amyloid and tau pathology. Summary It is appropriate to pursue biomarker testing in cases of MCI and dementia when there remains diagnostic uncertainty and the result will impact diagnosis or treatment. Practically speaking, due to the rising prevalence of amyloid positivity with advancing age, measurement of biomarkers in cases of MCI and dementia is most helpful in early-onset patients, patients with atypical clinical presentations, or when considering referral for AD clinical trials.
Collapse
|
21
|
Sharma AK, Schultz JW, Prior JT, Rath NP, Mirica LM. Coordination Chemistry of Bifunctional Chemical Agents Designed for Applications in 64Cu PET Imaging for Alzheimer's Disease. Inorg Chem 2017; 56:13801-13814. [PMID: 29112419 PMCID: PMC5698879 DOI: 10.1021/acs.inorgchem.7b01883] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Positron emission
tomography (PET) is emerging as one of the most important diagnostic
tools for brain imaging, yet the most commonly used radioisotopes
in PET imaging, 11C and 18F, have short half-lives,
and their usage is thus somewhat limited. By comparison, the 64Cu radionuclide has a half-life of 12.7 h, which is ideal
for administering and imaging purposes. In spite of appreciable research
efforts, high-affinity copper chelators suitable for brain imaging
applications are still lacking. Herein, we present the synthesis and
characterization of a series of bifunctional compounds (BFCs) based
on macrocyclic 1,4,7-triazacyclononane and 2,11-diaza[3.3](2,6)pyridinophane
ligand frameworks that exhibit a high affinity for Cu2+ ions. In addition, these BFCs contain a 2-phenylbenzothiazole fragment
that is known to interact tightly with amyloid β fibrillar aggregates.
Determination of the protonation constants (pKa values) and stability constants (log β values) of these
BFCs, as well as characterization of the isolated copper complexes
using X-ray crystallography, electron paramagnetic resonance spectroscopy,
and electrochemical studies, suggests that these BFCs exhibit desirable
properties for the development of novel 64Cu PET imaging
agents for Alzheimer’s disease. Novel bifunctional chelators
(BFCs) containing 1,4,7-triazacyclononane or pyridinophane macrocycles
and amyloid-binding 2-phenylbenzothiazole fragments have been synthesized,
and their copper coordination properties have been characterized in
detail. These BFCs are attractive candidates for the development of
novel 64Cu-labeled PET imaging agents for Alzheimer’s
disease.
Collapse
Affiliation(s)
- Anuj K Sharma
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Jason W Schultz
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - John T Prior
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri St. Louis , One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M Mirica
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
22
|
Bandara N, Sharma AK, Krieger S, Schultz JW, Han BH, Rogers BE, Mirica LM. Evaluation of 64Cu-Based Radiopharmaceuticals that Target Aβ Peptide Aggregates as Diagnostic Tools for Alzheimer's Disease. J Am Chem Soc 2017; 139:12550-12558. [PMID: 28823165 PMCID: PMC5677763 DOI: 10.1021/jacs.7b05937] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/23/2022]
Abstract
Positron emission tomography (PET) imaging agents that detect amyloid plaques containing amyloid beta (Aβ) peptide aggregates in the brain of Alzheimer's disease (AD) patients have been successfully developed and recently approved by the FDA for clinical use. However, the short half-lives of the currently used radionuclides 11C (20.4 min) and 18F (109.8 min) may limit the widespread use of these imaging agents. Therefore, we have begun to evaluate novel AD diagnostic agents that can be radiolabeled with 64Cu, a radionuclide with a half-life of 12.7 h, ideal for PET imaging. Described herein are a series of bifunctional chelators (BFCs), L1-L5, that were designed to tightly bind 64Cu and shown to interact with Aβ aggregates both in vitro and in transgenic AD mouse brain sections. Importantly, biodistribution studies show that these compounds exhibit promising brain uptake and rapid clearance in wild-type mice, and initial microPET imaging studies of transgenic AD mice suggest that these compounds could serve as lead compounds for the development of improved diagnostic agents for AD.
Collapse
Affiliation(s)
- Nilantha Bandara
- Mallinckrodt
Institute of Radiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Radiation Oncology, Washington University
School of Medicine, St. Louis, Missouri 63108, United States
| | - Anuj K. Sharma
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Stephanie Krieger
- Department
of Radiation Oncology, Washington University
School of Medicine, St. Louis, Missouri 63108, United States
| | - Jason W. Schultz
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Byung Hee Han
- Department
of Pharmacology, A.T. Still University of
Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, Missouri 63501, United States
| | - Buck E. Rogers
- Mallinckrodt
Institute of Radiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Radiation Oncology, Washington University
School of Medicine, St. Louis, Missouri 63108, United States
| | - Liviu M. Mirica
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130, United States
- Hope
Center for Neurological Disorders, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
23
|
Sheikh-Bahaei N, Sajjadi SA, Manavaki R, Gillard JH. Imaging Biomarkers in Alzheimer's Disease: A Practical Guide for Clinicians. J Alzheimers Dis Rep 2017; 1:71-88. [PMID: 30480230 PMCID: PMC6159632 DOI: 10.3233/adr-170013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although recent developments in imaging biomarkers have revolutionized the diagnosis of Alzheimer’s disease at early stages, the utility of most of these techniques in clinical setting remains unclear. The aim of this review is to provide a clear stepwise algorithm on using multitier imaging biomarkers for the diagnosis of Alzheimer’s disease to be used by clinicians and radiologists for day-to-day practice. We summarized the role of most common imaging techniques and their appropriate clinical use based on current consensus guidelines and recommendations with brief sections on acquisition and analysis techniques for each imaging modality. Structural imaging, preferably MRI or alternatively high resolution CT, is the essential first tier of imaging. It improves the accuracy of clinical diagnosis and excludes other potential pathologies. When the results of clinical examination and structural imaging, assessed by dementia expert, are still inconclusive, functional imaging can be used as a more advanced option. PET with ligands such as amyloid tracers and 18F-fluorodeoxyglucose can improve the sensitivity and specificity of diagnosis particularly at the early stages of the disease. There are, however, limitations in using these techniques in wider community due to a combination of lack of facilities and expertise to interpret the findings. The role of some of the more recent imaging techniques including tau imaging, functional MRI, or diffusion tensor imaging in clinical practice, remains to be established in the ongoing and future studies.
Collapse
Affiliation(s)
- Nasim Sheikh-Bahaei
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Roido Manavaki
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | |
Collapse
|
24
|
Webster L, Groskreutz D, Grinbergs-Saull A, Howard R, O'Brien JT, Mountain G, Banerjee S, Woods B, Perneczky R, Lafortune L, Roberts C, McCleery J, Pickett J, Bunn F, Challis D, Charlesworth G, Featherstone K, Fox C, Goodman C, Jones R, Lamb S, Moniz-Cook E, Schneider J, Shepperd S, Surr C, Thompson-Coon J, Ballard C, Brayne C, Burke O, Burns A, Clare L, Garrard P, Kehoe P, Passmore P, Holmes C, Maidment I, Murtagh F, Robinson L, Livingston G. Development of a core outcome set for disease modification trials in mild to moderate dementia: a systematic review, patient and public consultation and consensus recommendations. Health Technol Assess 2017; 21:1-192. [PMID: 28625273 PMCID: PMC5494514 DOI: 10.3310/hta21260] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is currently no disease-modifying treatment available to halt or delay the progression of the disease pathology in dementia. An agreed core set of the best-available and most appropriate outcomes for disease modification would facilitate the design of trials and ensure consistency across disease modification trials, as well as making results comparable and meta-analysable in future trials. OBJECTIVES To agree a set of core outcomes for disease modification trials for mild to moderate dementia with the UK dementia research community and patient and public involvement (PPI). DATA SOURCES We included disease modification trials with quantitative outcomes of efficacy from (1) references from related systematic reviews in workstream 1; (2) searches of the Cochrane Dementia and Cognitive Improvement Group study register, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature, EMBASE, Latin American and Caribbean Health Sciences Literature and PsycINFO on 11 December 2015, and clinical trial registries [International Standard Randomised Controlled Trial Number (ISRCTN) and clinicaltrials.gov] on 22 and 29 January 2016; and (3) hand-searches of reference lists of relevant systematic reviews from database searches. REVIEW METHODS The project consisted of four workstreams. (1) We obtained related core outcome sets and work from co-applicants. (2) We systematically reviewed published and ongoing disease modification trials to identify the outcomes used in different domains. We extracted outcomes used in each trial, recording how many used each outcome and with how many participants. We divided outcomes into the domains measured and searched for validation data. (3) We consulted with PPI participants about recommended outcomes. (4) We presented all the synthesised information at a conference attended by the wider body of National Institute for Health Research (NIHR) dementia researchers to reach consensus on a core set of outcomes. RESULTS We included 149 papers from the 22,918 papers screened, referring to 125 individual trials. Eighty-one outcomes were used across trials, including 72 scales [31 cognitive, 12 activities of daily living (ADLs), 10 global, 16 neuropsychiatric and three quality of life] and nine biological techniques. We consulted with 18 people for PPI. The conference decided that only cognition and biological markers are core measures of disease modification. Cognition should be measured by the Mini Mental State Examination (MMSE) or the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog), and brain changes through structural magnetic resonance imaging (MRI) in a subset of participants. All other domains are important but not core. We recommend using the Neuropsychiatric Inventory for neuropsychiatric symptoms: the Disability Assessment for Dementia for ADLs, the Dementia Quality of Life Measure for quality of life and the Clinical Dementia Rating scale to measure dementia globally. LIMITATIONS Most of the trials included participants with Alzheimer's disease, so recommendations may not apply to other types of dementia. We did not conduct economic analyses. The PPI consultation was limited to members of the Alzheimer's Society Research Network. CONCLUSIONS Cognitive outcomes and biological markers form the core outcome set for future disease modification trials, measured by the MMSE or ADAS-Cog, and structural MRI in a subset of participants. FUTURE WORK We envisage that the core set may be superseded in the future, particularly for other types of dementia. There is a need to develop an algorithm to compare scores on the MMSE and ADAS-Cog. STUDY REGISTRATION The project was registered with Core Outcome Measures in Effectiveness Trials [ www.comet-initiative.org/studies/details/819?result=true (accessed 7 April 2016)]. The systematic review protocol is registered as PROSPERO CRD42015027346. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Lucy Webster
- Division of Psychiatry, University College London, London, UK
| | - Derek Groskreutz
- Division of Psychology and Language Sciences, University College London, London, UK
| | | | - Rob Howard
- Division of Psychiatry, University College London, London, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gail Mountain
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Sube Banerjee
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Bob Woods
- Dementia Services Development Centre Wales, Bangor University, Bangor, UK
| | - Robert Perneczky
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Louise Lafortune
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Charlotte Roberts
- International Consortium for Health Outcomes Measurement, London, UK
| | | | | | - Frances Bunn
- Centre for Research in Primary and Community Care, University of Hertfordshire, Hatfield, UK
| | - David Challis
- Personal Social Services Research Unit, University of Manchester, Manchester, UK
| | - Georgina Charlesworth
- Research Department of Clinical, Educational, and Health Psychology, University College London, London, UK
| | | | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Claire Goodman
- Centre for Research in Primary and Community Care, University of Hertfordshire, Hatfield, UK
| | - Roy Jones
- Research Institute for the Care of Older People, University of Bath, Bath, UK
| | - Sallie Lamb
- Oxford Clinical Trials Research Unit, University of Oxford, Oxford, UK
| | - Esme Moniz-Cook
- Faculty of Health and Social Care, University of Hull, Hull, UK
| | - Justine Schneider
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Sasha Shepperd
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Claire Surr
- School of Health & Community Studies, Leeds Beckett University, Leeds, UK
| | - Jo Thompson-Coon
- Collaboration for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter, Exeter, UK
| | - Clive Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Orlaith Burke
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alistair Burns
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Linda Clare
- Collaboration for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter, Exeter, UK
- School of Psychology, University of Exeter, Exeter, UK
- Centre for Research in Ageing and Cognitive Health, University of Exeter Medical School, Exeter, UK
| | - Peter Garrard
- Neuroscience Research Centre, St George's, University of London, UK
| | - Patrick Kehoe
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter Passmore
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Clive Holmes
- School of Medicine, University of Southampton, Southampton, UK
| | - Ian Maidment
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | - Fliss Murtagh
- Cicely Saunders Institute, King's College London, London, UK
| | - Louise Robinson
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Gill Livingston
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
- North Thames Collaboration for Leadership in Applied Health Research and Care, London, UK
| |
Collapse
|
25
|
Safety of disclosing amyloid status in cognitively normal older adults. Alzheimers Dement 2017; 13:1024-1030. [PMID: 28263740 DOI: 10.1016/j.jalz.2017.01.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Disclosing amyloid status to cognitively normal individuals remains controversial given our lack of understanding the test's clinical significance and unknown psychological risk. METHODS We assessed the effect of amyloid status disclosure on anxiety and depression before disclosure, at disclosure, and 6 weeks and 6 months postdisclosure and test-related distress after disclosure. RESULTS Clinicians disclosed amyloid status to 97 cognitively normal older adults (27 had elevated cerebral amyloid). There was no difference in depressive symptoms across groups over time. There was a significant group by time interaction in anxiety, although post hoc analyses revealed no group differences at any time point, suggesting a minimal nonsustained increase in anxiety symptoms immediately postdisclosure in the elevated group. Slight but measureable increases in test-related distress were present after disclosure and were related to greater baseline levels of anxiety and depression. DISCUSSION Disclosing amyloid imaging results to cognitively normal adults in the clinical research setting with pre- and postdisclosure counseling has a low risk of psychological harm.
Collapse
|
26
|
Villemagne VL, Doré V, Bourgeat P, Burnham SC, Laws S, Salvado O, Masters CL, Rowe CC. Aβ-amyloid and Tau Imaging in Dementia. Semin Nucl Med 2017; 47:75-88. [DOI: 10.1053/j.semnuclmed.2016.09.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Abstract
Amyloid imaging represents a significant advance as an adjunct in the diagnosis of Alzheimer's disease (AD) because it is the first imaging modality that identifies in vivo changes known to be associated with the pathogenesis. Initially, 11C-PIB was developed, which was the prototype for many 18F compounds, including florbetapir, florbetaben, and flutemetamol, among others. Despite the high sensitivity and specificity of amyloid imaging, it is not commonly used in clinical practice, mainly because it is not reimbursed under current Center for Medicare and Medicaid Services guidelines in the USA. To guide the field in who would be most appropriate for the utility of amyloid positron emission tomography, current studies are underway [Imaging Dementia Evidence for Amyloid Scanning (IDEAS) Study] that will inform the field on the utilization of amyloid positron emission tomography in clinical practice. With the advent of monoclonal antibodies that specifically target amyloid antibody, there is an interest, possibly a mandate, to screen potential treatment recipients to ensure that they are suitable for treatment. In this review, we summarize progress in the field to date.
Collapse
Affiliation(s)
- Keshav Anand
- St. Joseph’s Hospital and Medical Center, 350 W. Thomas Road, Phoenix, AZ 85013 USA
| | - Marwan Sabbagh
- Alzhiemer’s and Memory Disorders Division, Barrow Neurological Institute, 240 W. Thomas Road, Ste 301, Phoenix, AZ 85013 USA
| |
Collapse
|
28
|
Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ. Biomarkers for the Early Detection and Progression of Alzheimer's Disease. Neurotherapeutics 2017; 14:35-53. [PMID: 27738903 PMCID: PMC5233625 DOI: 10.1007/s13311-016-0481-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The recent failures of potential disease-modifying drugs for Alzheimer's disease (AD) may reflect the fact that the enrolled participants in clinical trials are already too advanced to derive a clinical benefit. Thus, well-validated biomarkers for the early detection and accurate diagnosis of the preclinical stages of AD will be crucial for therapeutic advancement. The combinatorial use of biomarkers derived from biological fluids, such as cerebrospinal fluid (CSF), with advanced molecular imaging and neuropsychological testing may eventually achieve the diagnostic sensitivity and specificity necessary to identify people in the earliest stages of the disease when drug modification is most likely possible. In this regard, positive amyloid or tau tracer retention on positron emission tomography imaging, low CSF concentrations of the amyloid-β 1-42 peptide, high CSF concentrations in total tau and phospho-tau, mesial temporal lobe atrophy on magnetic resonance imaging, and temporoparietal/precuneus hypometabolism or hypoperfusion on 18F-fluorodeoxyglucose positron emission tomography have all emerged as biomarkers for the progression to AD. However, the ultimate AD biomarker panel will likely involve the inclusion of novel CSF and blood biomarkers more precisely associated with confirmed pathophysiologic mechanisms to improve its reliability for detecting preclinical AD. This review highlights advancements in biological fluid and imaging biomarkers that are moving the field towards achieving the goal of a preclinical detection of AD.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Natosha Mercado
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Irving E Vega
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
29
|
Sarro L, Senjem ML, Lundt ES, Przybelski SA, Lesnick TG, Graff-Radford J, Boeve BF, Lowe VJ, Ferman TJ, Knopman DS, Comi G, Filippi M, Petersen RC, Jack CR, Kantarci K. Amyloid-β deposition and regional grey matter atrophy rates in dementia with Lewy bodies. Brain 2016; 139:2740-2750. [PMID: 27452602 PMCID: PMC5035818 DOI: 10.1093/brain/aww193] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease pathology frequently coexists with Lewy body disease at autopsy in patients with probable dementia with Lewy bodies. More than half of patients with probable dementia with Lewy bodies have high amyloid-β deposition as measured with 11C-Pittsburgh compound B binding on positron emission tomography. Biomarkers of amyloid-β deposition precede neurodegeneration on magnetic resonance imaging during the progression of Alzheimer's disease, but little is known about how amyloid-β deposition relates to longitudinal progression of atrophy in patients with probable dementia with Lewy bodies. We investigated the associations between baseline 11C-Pittsburgh compound B binding on positron emission tomography and the longitudinal rates of grey matter atrophy in a cohort of clinically diagnosed patients with dementia with Lewy bodies (n = 20), who were consecutively recruited to the Mayo Clinic Alzheimer's Disease Research Centre. All patients underwent 11C-Pittsburgh compound B positron emission tomography and magnetic resonance imaging examinations at baseline. Follow-up magnetic resonance imaging was performed after a mean (standard deviation) interval of 2.5 (1.1) years. Regional grey matter loss was determined on three-dimensional T1-weighted magnetic resonance imaging with the tensor-based morphometry-symmetric normalization technique. Linear regression was performed between baseline 11C-Pittsburgh compound B standard unit value ratio and longitudinal change in regional grey matter volumes from an in-house modified atlas. We identified significant associations between greater baseline 11C-Pittsburgh compound B standard unit value ratio and greater grey matter loss over time in the posterior cingulate gyrus, lateral and medial temporal lobe, and occipital lobe as well as caudate and putamen nuclei, after adjusting for age (P < 0.05). Greater baseline 11C-Pittsburgh compound B standard unit value ratio was also associated with greater ventricular expansion rates (P < 0.01) and greater worsening over time in Clinical Dementia Rating Scale, sum of boxes (P = 0.02). In conclusion, in patients with probable dementia with Lewy bodies, higher amyloid-β deposition at baseline is predictive of faster neurodegeneration in the cortex and also in the striatum. This distribution is suggestive of possible interactions among amyloid-β, tau and α-synuclein aggregates, which needs further investigation. Furthermore, higher amyloid-β deposition at baseline predicts a faster clinical decline over time in patients with probable dementia with Lewy bodies.
Collapse
Affiliation(s)
- Lidia Sarro
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA 2 Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 3 Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthew L Senjem
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA 4 Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Emily S Lundt
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J Lowe
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- 7 Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Giancarlo Comi
- 3 Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- 2 Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 3 Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Ronald C Petersen
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA 6 Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Kejal Kantarci
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
30
|
Mandal M, Wu Y, Misiaszek J, Li G, Buevich A, Caldwell JP, Liu X, Mazzola RD, Orth P, Strickland C, Voigt J, Wang H, Zhu Z, Chen X, Grzelak M, Hyde LA, Kuvelkar R, Leach PT, Terracina G, Zhang L, Zhang Q, Michener MS, Smith B, Cox K, Grotz D, Favreau L, Mitra K, Kazakevich I, McKittrick BA, Greenlee W, Kennedy ME, Parker EM, Cumming JN, Stamford AW. Structure-Based Design of an Iminoheterocyclic β-Site Amyloid Precursor Protein Cleaving Enzyme (BACE) Inhibitor that Lowers Central Aβ in Nonhuman Primates. J Med Chem 2016; 59:3231-48. [DOI: 10.1021/acs.jmedchem.5b01995] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mihirbaran Mandal
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yusheng Wu
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jeffrey Misiaszek
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Guoqing Li
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Alexei Buevich
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - John P. Caldwell
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaoxiang Liu
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Robert D. Mazzola
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Peter Orth
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Corey Strickland
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Johannes Voigt
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hongwu Wang
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zhaoning Zhu
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xia Chen
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Michael Grzelak
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lynn A. Hyde
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Reshma Kuvelkar
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Prescott T. Leach
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Giuseppe Terracina
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lili Zhang
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Qi Zhang
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Maria S. Michener
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Brad Smith
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kathleen Cox
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Diane Grotz
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Leonard Favreau
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kaushik Mitra
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Irina Kazakevich
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Brian A. McKittrick
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - William Greenlee
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Matthew E. Kennedy
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Eric M. Parker
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jared N. Cumming
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Andrew W. Stamford
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
31
|
Uno I, Kozaka T, Miwa D, Kitamura Y, Azim MAU, Ogawa K, Taki J, Kinuya S, Shiba K. In Vivo Differences between Two Optical Isomers of Radioiodinated o-iodo-trans-decalinvesamicol for Use as a Radioligand for the Vesicular Acetylcholine Transporter. PLoS One 2016; 11:e0146719. [PMID: 26752172 PMCID: PMC4713475 DOI: 10.1371/journal.pone.0146719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/20/2015] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To develop a superior VAChT imaging probe for SPECT, radiolabeled (-)-OIDV and (+)-OIDV were isolated and investigated for differences in their binding affinity and selectivity to VAChT, as well as their in vivo activities. PROCEDURES Radioiodinated o-iodo-trans-decalinvesamicol ([125I]OIDV) has a high binding affinity for vesicular acetylcholine transporter (VAChT) both in vitro and in vivo. Racemic [125I]OIDV was separated into its two optical isomers (-)-[125I]OIDV and (+)-[125I]OIDV by HPLC. To investigate VAChT binding affinity (Ki) of two OIDV isomers, in vitro binding assays were performed. In vivo biodistribution study of each [125I]OIDV isomer in blood, brain regions and major organs of rats was performed at 2,30 and 60 min post-injection. In vivo blocking study were performed to reveal the binding selectivity of two [125I]OIDV isomers to VAChT in vivo. Ex vivo autoradiography were performed to reveal the regional brain distribution of two [125I]OIDV isomers and (-)-[123I]OIDV for SPECT at 60 min postinjection. RESULTS VAChT binding affinity (Ki) of (-)-[125I]OIDV and (+)-[125I]OIDV was 22.1 nM and 79.0 nM, respectively. At 2 min post-injection, accumulation of (-)-[125I]OIDV was the same as that of (+)-[125I]OIDV. However, (+)-[125I]OIDV clearance from the brain was faster than (-)-[125I]OIDV. At 30 min post-injection, accumulation of (-)-[125I]OIDV (0.62 ± 0.10%ID/g) was higher than (+)-[125I]OIDV (0.46 ± 0.07%ID/g) in the cortex. Inhibition of OIDV binding showed that (-)-[125I]OIDV was selectively accumulated in regions known to express VAChT in the rat brain, and ex vivo autoradiography further confirmed these results showing similar accumulation of (-)-[125I]OIDV in these regions. Furthermore, (-)-[123I]OIDV for SPECT showed the same regional brain distribution as (-)-[125I]OIDV. CONCLUSION These results suggest that radioiodinated (-)-OIDV may be a potentially useful tool for studying presynaptic cholinergic neurons in the brain.
Collapse
Affiliation(s)
- Izumi Uno
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Ishikawa, 920-8640, Japan.,Clinical Laboratory, Kanazawa University Hospital, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takashi Kozaka
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Ishikawa, 920-8640, Japan
| | - Daisuke Miwa
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Ishikawa, 920-8640, Japan.,Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, 920-8640, Japan
| | - Yoji Kitamura
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Ishikawa, 920-8640, Japan
| | - Mohammad Anwar-Ul Azim
- National Institute of Nuclear Medicine and Allied Sciences; Bangladesh Atomic Energy Commission, BSM Medical University Campus, Dhaka-1000, Bangladesh
| | - Kazuma Ogawa
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, 920-8640, Japan
| | - Junichi Taki
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, 920-8640, Japan
| | - Seigo Kinuya
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, 920-8640, Japan
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Ishikawa, 920-8640, Japan
| |
Collapse
|
32
|
Coutu JP, Goldblatt A, Rosas HD, Salat DH. White Matter Changes are Associated with Ventricular Expansion in Aging, Mild Cognitive Impairment, and Alzheimer's Disease. J Alzheimers Dis 2016; 49:329-42. [PMID: 26444767 PMCID: PMC5996384 DOI: 10.3233/jad-150306] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
White matter lesions are highly prevalent in individuals with Alzheimer's disease (AD). Although these lesions are presumed to be of vascular origin and linked to small vessel disease in older adults, little information exists about their relationship to markers of classical AD neurodegeneration. Thus, we examined the link between these white matter changes (WMC) segmented on T1-weighted MRI and imaging markers presumed to be altered due to primary AD neurodegenerative processes. Tissue microstructure of WMC was quantified using diffusion tensor imaging and the relationship of WMC properties and volume to neuroimaging markers was examined in 219 cognitively healthy older adults and individuals with mild cognitive impairment and AD using data from the Alzheimer's Disease Neuroimaging Initiative. No significant group differences in WMC properties were found. However, there were strong associations between diffusivity of WMC and ventricular volume, volume of WMC and total WM volume. In comparison, group differences in parahippocampal white matter microstructure were found for all diffusion metrics and were largely explained by hippocampal volume. Factor analysis on neuroimaging markers suggested two independent sets of covarying degenerative changes, with potentially age- and vascular-mediated tissue damage contributing to one factor and classical neurodegenerative changes associated with AD contributing to a second factor. These data demonstrate two potentially distinct classes of degenerative change in AD, with one factor strongly linked to aging, ventricular expansion, and both volume and tissue properties of white matter lesions, while the other factor related to classical patterns of cortical and hippocampal neurodegeneration in AD.
Collapse
Affiliation(s)
- Jean-Philippe Coutu
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison Goldblatt
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - H. Diana Rosas
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David H. Salat
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| | | |
Collapse
|
33
|
Oh H, Steffener J, Razlighi QR, Habeck C, Liu D, Gazes Y, Janicki S, Stern Y. Aβ-related hyperactivation in frontoparietal control regions in cognitively normal elderly. Neurobiol Aging 2015; 36:3247-3254. [PMID: 26382734 PMCID: PMC4788982 DOI: 10.1016/j.neurobiolaging.2015.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 01/18/2023]
Abstract
The accumulation of amyloid-beta (Aβ) peptides, a pathologic hallmark of Alzheimer's disease, has been associated with functional alterations in cognitively normal elderly, most often in the context of episodic memory with a particular emphasis on the medial temporal lobes. The topography of Aβ deposition, however, highly overlaps with frontoparietal control (FPC) regions implicated in cognitive control/working memory. To examine Aβ-related functional alternations in the FPC regions during a working memory task, we imaged 42 young and 57 cognitively normal elderly using functional magnetic resonance imaging during a letter Sternberg task with varying load. Based on (18)F-florbetaben-positron emission tomography scan, we determined older subjects' amyloid positivity (Aβ+) status. Within brain regions commonly recruited by all subject groups during the delay period, age and Aβ deposition were independently associated with load-dependent frontoparietal hyperactivation, whereas additional compensatory Aβ-related hyperactivity was found beyond the FPC regions. The present results suggest that Aβ-related hyperactivation is not specific to the episodic memory system but occurs in the PFC regions as well.
Collapse
Affiliation(s)
- Hwamee Oh
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Jason Steffener
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Qolamreza R Razlighi
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Dan Liu
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Sarah Janicki
- Division of Aging and Dementia, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
34
|
Pasqualetti G, Tognini S, Calsolaro V, Polini A, Monzani F. Potential drug-drug interactions in Alzheimer patients with behavioral symptoms. Clin Interv Aging 2015; 10:1457-66. [PMID: 26392756 PMCID: PMC4573195 DOI: 10.2147/cia.s87466] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The use of multi drug regimens among the elderly population has increased tremendously over the last decade although the benefits of medications are always accompanied by potential harm, even when prescribed at recommended doses. The elderly populations are particularly at an increased risk of adverse drug reactions considering comorbidity, poly-therapy, physiological changes affecting the pharmacokinetics and pharmacodynamics of many drugs and, in some cases, poor compliance due to cognitive impairment and/or depression. In this setting, drug–drug interaction may represent a serious and even life-threatening clinical condition. Moreover, the inability to distinguish drug-induced symptoms from a definitive medical diagnosis often results in addition of yet another drug to treat the symptoms, which in turn increases drug–drug interactions. Cognitive enhancers, including acetylcholinesterase inhibitors and memantine, are the most widely prescribed agents for Alzheimer’s disease (AD) patients. Behavioral and psychological symptoms of dementia, including psychotic symptoms and behavioral disorders, represent noncognitive disturbances frequently observed in AD patients. Antipsychotic drugs are at high risk of adverse events, even at modest doses, and may interfere with the progression of cognitive impairment and interact with several drugs including anti-arrhythmics and acetylcholinesterase inhibitors. Other medications often used in AD patients are represented by anxiolytic, like benzodiazepine, or antidepressant agents. These agents also might interfere with other concomitant drugs through both pharmacokinetic and pharmacodynamic mechanisms. In this review we focus on the most frequent drug–drug interactions, potentially harmful, in AD patients with behavioral symptoms considering both physiological and pathological changes in AD patients, and potential pharmacodynamic/pharmacokinetic drug interaction mechanisms.
Collapse
Affiliation(s)
- Giuseppe Pasqualetti
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Tognini
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Valeria Calsolaro
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Polini
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Monzani
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Snir JA, Suchy M, Lawrence KS, Hudson RH, Pasternak S, Bartha R. Prolonged In Vivo Retention of a Cathepsin D Targeted Optical Contrast Agent in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2015; 48:73-87. [DOI: 10.3233/jad-150123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jonatan A. Snir
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Mojmir Suchy
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Robert H.E. Hudson
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Stephen H. Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Robert Bartha
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
36
|
Cohen AD, Klunk WE. Early detection of Alzheimer's disease using PiB and FDG PET. Neurobiol Dis 2014; 72 Pt A:117-22. [PMID: 24825318 DOI: 10.1016/j.nbd.2014.05.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 12/16/2022] Open
Abstract
Use of biomarkers in the detection of early and preclinical Alzheimer's disease (AD) has become of central importance following publication of the NIA-Alzheimer's Association revised criteria for the diagnosis of AD, mild cognitive impairment (MCI) and preclinical AD. The use of in vivo amyloid imaging agents, such a Pittsburgh Compound-B and markers of neurodegeneration, such as fluoro-2-deoxy-D-glucose (FDG) is able to detect early AD pathological processes and subsequent neurodegeneration. Imaging with PiB and FDG thus has many potential clinical benefits: early or perhaps preclinical detection of disease and accurately distinguishing AD from dementias of other etiologies in patients presenting with mild or atypical symptoms or confounding comorbidities in which the diagnostic distinction is difficult to make clinically. From a research perspective, this allows us to study relationships between amyloid pathology and changes in cognition, brain structure, and function across the continuum from normal aging to MCI to AD. The present review focuses on use of PiB and FDG-PET and their relationship to one another.
Collapse
Affiliation(s)
- Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA.
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; Department of Neurology, University of Pittsburgh School of Medicine, USA
| |
Collapse
|
37
|
Mattsson N, Tosun D, Insel PS, Simonson A, Jack CR, Beckett LA, Donohue M, Jagust W, Schuff N, Weiner MW. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment. ACTA ACUST UNITED AC 2014; 137:1550-61. [PMID: 24625697 DOI: 10.1093/brain/awu043] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
Collapse
Affiliation(s)
- Niklas Mattsson
- 1 Department of Veterans Affairs Medical Centre, Centre for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Li Y, Liu Y, Wang Z, Jiang Y. Clinical trials of amyloid-based immunotherapy for Alzheimer's disease: end of beginning or beginning of end? Expert Opin Biol Ther 2013; 13:1515-22. [PMID: 24053611 DOI: 10.1517/14712598.2013.838555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Amyloid deposit and hyperphosphorylated Tau protein contribute to pathological changes seen in Alzheimer's disease (AD) and imply that removal may reverse the cognitive decline. Immunotherapy is a potential way of reducing the load of amyloid or Tau in the brain. AREAS COVERED This review summarizes recent clinical trials that have investigated immunotherapy to treat AD and its potential mechanisms. In addition, the potential opportunities as well as challenges of immunotherapy for AD in clinical trials are also discussed. EXPERT OPINION Amyloid-based immunotherapy for AD is a novel method with potential; however, some clinical trials were terminated because of the adverse effects. Further studies need to determine the following questions: (i) which is better, passive, or active immunotherapy; (ii) which could be used for the vaccine, amyloid or Tau; (iii) which is better, short- or long-antigen vaccine; and (iv) the route of delivery for antigen or antibody.
Collapse
Affiliation(s)
- Yun Li
- Nanjing University School of Medicine, Jinling Hospital, Department of Neurology , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province , China +86 25 8480 1861 ; +86 25 8480 5169 ;
| | | | | | | |
Collapse
|
40
|
Tosun D, Joshi S, Weiner MW. Neuroimaging predictors of brain amyloidosis in mild cognitive impairment. Ann Neurol 2013; 74:188-98. [PMID: 23686534 DOI: 10.1002/ana.23921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To identify a neuroimaging signature predictive of brain amyloidosis as a screening tool to identify individuals with mild cognitive impairment (MCI) that are most likely to have high levels of brain amyloidosis or to be amyloid-free. METHODS The prediction model cohort included 62 MCI subjects screened with structural magnetic resonance imaging (MRI) and (11) C-labeled Pittsburgh compound B positron emission tomography (PET). We identified an anatomical shape variation-based neuroimaging predictor of brain amyloidosis and defined a structural MRI-based brain amyloidosis score (sMRI-BAS). Amyloid beta positivity (Aβ(+) ) predictive power of sMRI-BAS was validated on an independent cohort of 153 MCI patients with cerebrospinal fluid Aβ1-42 biomarker data but no amyloid PET scans. We compared the Aβ(+) predictive power of sMRI-BAS to those of apolipoprotein E (ApoE) genotype and hippocampal volume, the 2 most relevant candidate biomarkers for the prediction of brain amyloidosis. RESULTS Anatomical shape variations predictive of brain amyloidosis in MCI embraced a characteristic spatial pattern known for high vulnerability to Alzheimer disease pathology, including the medial temporal lobe, temporal-parietal association cortices, posterior cingulate, precuneus, hippocampus, amygdala, caudate, and fornix/stria terminals. Aβ(+) prediction performance of sMRI-BAS and ApoE genotype jointly was significantly better than the performance of each predictor separately (area under the curve [AUC] = 0.88 vs AUC = 0.70 and AUC = 0.81, respectively) with >90% sensitivity and specificity at 20% false-positive rate and false-negative rate thresholds. Performance of hippocampal volume as an independent predictor of brain amyloidosis in MCI was only marginally better than random chance (AUC = 0.56). INTERPRETATION As one of the first attempts to use an imaging technique that does not require amyloid-specific radioligands for identification of individuals with brain amyloidosis, our findings could lead to development of multidisciplinary/multimodality brain amyloidosis biomarkers that are reliable, minimally invasive, and widely available.
Collapse
Affiliation(s)
- Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA; Veterans Administration Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | | | | | | |
Collapse
|
41
|
Erten-Lyons D, Dodge HH, Woltjer R, Silbert LC, Howieson DB, Kramer P, Kaye JA. Neuropathologic basis of age-associated brain atrophy. JAMA Neurol 2013; 70:616-22. [PMID: 23552688 DOI: 10.1001/jamaneurol.2013.1957] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IMPORTANCE While brain volume changes are used as surrogate markers for Alzheimer disease neuropathology in clinical studies, the extent to which these changes are due to pathologic features of Alzheimer disease in the aging brain is not well established. This study aims to clarify the neuropathologic correlates of longitudinal brain atrophy. OBJECTIVE To examine the association between brain atrophy during life and neuropathology in an elderly population. DESIGN Autopsy study of a cohort of elderly individuals. SETTING Community-based population. PARTICIPANTS Seventy-one healthy elderly individuals were selected from participants of the Oregon Brain Aging Study for having an autopsy, more than 1 magnetic resonance imaging scan, and the last magnetic resonance imaging scan within 36 months of death. MAIN OUTCOMES AND MEASURES The associations between brain volume trajectories (ventricular, total brain, and hippocampal) and time interaction terms for neurofibrillary tangles, neuritic plaques, gross infarcts, microinfarcts, amyloid angiopathy, Lewy bodies, APOE ε4 presence, and clinical diagnosis (no cognitive impairment, mild cognitive impairment, or dementia as time-varying covariates) were examined in mixed-effects models, adjusting for duration of follow-up and age at death. RESULTS Ventricular volume trajectory was significantly associated with age, presence of infarcts, neurofibrillary tangle and neuritic plaque scores, APOE ε4 allele presence, and dementia diagnosis. Total brain volume trajectory was significantly associated with age and mild cognitive impairment diagnosis. Hippocampal volume trajectory was significantly associated with amyloid angiopathy. CONCLUSIONS AND RELEVANCE Ventricular volume trajectory is more sensitive than total brain and hippocampal volume trajectories as a marker of accruing Alzheimer disease and vascular pathology in elderly individuals. The association between brain volume trajectories and cognitive impairment (mild cognitive impairment and dementia) remained after controlling for the degree of neuropathology and other covariates. This suggests that there may be other factors not measured in this study that could be contributing to brain atrophy in those with cognitive impairment.
Collapse
Affiliation(s)
- Deniz Erten-Lyons
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In vivo imaging of amyloid-β (Aβ) with positron emission tomography has moved from the research arena into clinical practice. Clinicians working with cognitive decline and dementia must become familiar with its benefits and limitations. Amyloid imaging allows earlier diagnosis of Alzheimer disease and better differential diagnosis of dementia and provides prognostic information for mild cognitive impairment. It also has an increasingly important role in therapeutic trial recruitment and for evaluation of anti-Aβ treatments. Longitudinal observations are required to elucidate the role of Aβ deposition in the course of Alzheimer disease and provide information needed to fully use the prognostic power of this investigation.
Collapse
Affiliation(s)
- Christopher C Rowe
- Department of Nuclear Medicine, Centre for PET, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia.
| | | |
Collapse
|
43
|
Cohen AD, Rabinovici GD, Mathis CA, Jagust WJ, Klunk WE, Ikonomovic MD. Using Pittsburgh Compound B for in vivo PET imaging of fibrillar amyloid-beta. ADVANCES IN PHARMACOLOGY 2013; 64:27-81. [PMID: 22840744 DOI: 10.1016/b978-0-12-394816-8.00002-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of Aβ-PET imaging agents has allowed for detection of fibrillar Aβ deposition in vivo and marks a major advancement in understanding the role of Aβ in Alzheimer's disease (AD). Imaging Aβ thus has many potential clinical benefits: early or perhaps preclinical detection of disease and accurately distinguishing AD from dementias of other non-Aβ causes in patients presenting with mild or atypical symptoms or confounding comorbidities (in which the distinction is difficult to make clinically). From a research perspective, imaging Aβ allows us to study relationships between amyloid pathology and changes in cognition, brain structure, and function across the continuum from normal aging to mild cognitive impairment (MCI) to AD; and to monitor the effectiveness of anti-Aβ drugs and relate them to neurodegeneration and clinical symptoms. Here, we will discuss the application of one of the most broadly studied and widely used Aβ imaging agents, Pittsburgh Compound-B (PiB).
Collapse
Affiliation(s)
- Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chételat G, La Joie R, Villain N, Perrotin A, de La Sayette V, Eustache F, Vandenberghe R. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer's disease. Neuroimage Clin 2013; 2:356-65. [PMID: 24179789 PMCID: PMC3777672 DOI: 10.1016/j.nicl.2013.02.006] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/10/2013] [Accepted: 02/23/2013] [Indexed: 01/18/2023]
Abstract
Recent developments of PET amyloid ligands have made it possible to visualize the presence of Aβ deposition in the brain of living participants and to assess the consequences especially in individuals with no objective sign of cognitive deficits. The present review will focus on amyloid imaging in cognitively normal elderly, asymptomatic at-risk populations, and individuals with subjective cognitive decline. It will cover the prevalence of amyloid-positive cases amongst cognitively normal elderly, the influence of risk factors for AD, the relationships to cognition, atrophy and prognosis, longitudinal amyloid imaging and ethical aspects related to amyloid imaging in cognitively normal individuals. Almost ten years of research have led to a few consensual and relatively consistent findings: some cognitively normal elderly have Aβ deposition in their brain, the prevalence of amyloid-positive cases increases in at-risk populations, the prognosis for these individuals is worse than for those with no Aβ deposition, and significant increase in Aβ deposition over time is detectable in cognitively normal elderly. More inconsistent findings are still under debate; these include the relationship between Aβ deposition and cognition and brain volume, the sequence and cause-to-effect relations between the different AD biomarkers, and the individual outcome associated with an amyloid positive versus negative scan. Preclinical amyloid imaging also raises important ethical issues. While amyloid imaging is definitely useful to understand the role of Aβ in early stages, to define at-risk populations for research or for clinical trial, and to assess the effects of anti-amyloid treatments, we are not ready yet to translate research results into clinical practice and policy. More researches are needed to determine which information to disclose from an individual amyloid imaging scan, the way of disclosing such information and the impact on individuals and on society.
Collapse
Affiliation(s)
- Gaël Chételat
- INSERM, U1077 Caen, France
- Université de Caen Basse-Normandie, UMR-S1077, Caen, France
- Ecole Pratique des Hautes Etudes, UMR-S1077, Caen, France
- CHU de Caen, U1077 Caen, France
| | - Renaud La Joie
- INSERM, U1077 Caen, France
- Université de Caen Basse-Normandie, UMR-S1077, Caen, France
- Ecole Pratique des Hautes Etudes, UMR-S1077, Caen, France
- CHU de Caen, U1077 Caen, France
| | - Nicolas Villain
- INSERM, U1077 Caen, France
- Université de Caen Basse-Normandie, UMR-S1077, Caen, France
- Ecole Pratique des Hautes Etudes, UMR-S1077, Caen, France
- CHU de Caen, U1077 Caen, France
| | - Audrey Perrotin
- INSERM, U1077 Caen, France
- Université de Caen Basse-Normandie, UMR-S1077, Caen, France
- Ecole Pratique des Hautes Etudes, UMR-S1077, Caen, France
- CHU de Caen, U1077 Caen, France
| | - Vincent de La Sayette
- INSERM, U1077 Caen, France
- Université de Caen Basse-Normandie, UMR-S1077, Caen, France
- Ecole Pratique des Hautes Etudes, UMR-S1077, Caen, France
- CHU de Caen, U1077 Caen, France
- CHU de Caen, Service de Neurologie, Caen, France
| | - Francis Eustache
- INSERM, U1077 Caen, France
- Université de Caen Basse-Normandie, UMR-S1077, Caen, France
- Ecole Pratique des Hautes Etudes, UMR-S1077, Caen, France
- CHU de Caen, U1077 Caen, France
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Institute of Neuroscience and Disease, University of Leuven, Belgium
| |
Collapse
|
45
|
Oh H, Madison C, Villeneuve S, Markley C, Jagust WJ. Association of gray matter atrophy with age, β-amyloid, and cognition in aging. ACTA ACUST UNITED AC 2013; 24:1609-18. [PMID: 23389995 DOI: 10.1093/cercor/bht017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Both cognitive aging and β-amyloid (Aβ) deposition, a pathological hallmark of Alzheimer's disease, are associated with structural and cognitive changes in cognitively normal older people. To examine independent effects of age and Aβ deposition on cognition and brain structure in aging, 83 cognitively normal older adults underwent structural magnetic resonance imaging scans and neuropsychological tests and were classified as negative (PIB-) or positive (PIB+) for Aβ deposition using the radiotracer Pittsburgh compound B (PIB). Weighted composite discriminant scores represented subjects' cognition. Older adults showed age-related gray matter (GM) atrophy across the whole brain regardless of Aβ deposition. Amyloid burden within PIB+ subjects, however, was associated with GM atrophy in the frontal, parietal, and temporal cortices. Associations between cognition and volume in PIB- subjects were primarily seen throughout frontal regions and the striatum, while, in PIB+ subjects, these associations were seen in orbital-frontal and hippocampal regions. Furthermore, in PIB- subjects, cognition was related to putaminal volume, but not to hippocampus, while, in PIB+ subjects, cognition was related to hippocampal volume, but not to putamen. These findings highlight differential age and Aβ effects on brain structure, indicating effects of age and Aβ that operate somewhat independently to affect frontostriatal and medial temporal brain systems.
Collapse
Affiliation(s)
- Hwamee Oh
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA and
| | | | | | | | | |
Collapse
|
46
|
Grill JD, Johnson DK, Burns JM. Should we disclose amyloid imaging results to cognitively normal individuals? Neurodegener Dis Manag 2013; 3:43-51. [PMID: 25285157 PMCID: PMC4184474 DOI: 10.2217/nmt.12.75] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Demonstration of brain accumulation of fibrillar amyloid beta protein via positron emission tomography (PET) with amyloid specific ligands may support the diagnosis of Alzheimer's disease (AD). There is increasing recognition of the potential use of amyloid imaging to detect in vivo the pathology of AD in individuals with no ostensible cognitive impairment. Research use of amyloid PET in cognitively normal patients will be key to pursuit of therapies able to delay cognitive impairment and dementia due to AD. We review the pros and cons of disclosing amyloid imaging results to cognitively normal individuals in clinical and research settings and provide draft recommendations.
Collapse
Affiliation(s)
- Joshua D. Grill
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, UCLA David Geffen School of Medicine
| | | | | |
Collapse
|
47
|
Positron emission tomography imaging in neurological disorders. J Neurol 2013; 259:1769-80. [PMID: 22297461 DOI: 10.1007/s00415-012-6428-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 01/28/2023]
Abstract
Positron emission tomography (PET) is a powerful tool for in vivo imaging investigations of human brain function. It provides non-invasive quantification of brain metabolism, receptor binding of various neurotransmitter systems, and alterations in regional blood flow. The use of PET in a clinical setting is still limited due to the high costs of cyclotrons and radiochemical laboratories. However, once these limitations can be bypassed, PET could aid clinical practice by providing a useful imaging technique for the diagnosis, the planning of treatment, and the prediction outcome in various neurological diseases.This review aims to explain the PET imaging technique and its applications in neurological disorders such as Parkinson’s disease, Huntington’s disease, multiple sclerosis, and dementias.
Collapse
|
48
|
Mandal M, Zhu Z, Cumming JN, Liu X, Strickland C, Mazzola RD, Caldwell JP, Leach P, Grzelak M, Hyde L, Zhang Q, Terracina G, Zhang L, Chen X, Kuvelkar R, Kennedy ME, Favreau L, Cox K, Orth P, Buevich A, Voigt J, Wang H, Kazakevich I, McKittrick BA, Greenlee W, Parker EM, Stamford AW. Design and Validation of Bicyclic Iminopyrimidinones As Beta Amyloid Cleaving Enzyme-1 (BACE1) Inhibitors: Conformational Constraint to Favor a Bioactive Conformation. J Med Chem 2012; 55:9331-45. [DOI: 10.1021/jm301039c] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mihirbaran Mandal
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zhaoning Zhu
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jared N. Cumming
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaoxiang Liu
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Corey Strickland
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Robert D. Mazzola
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - John P. Caldwell
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Prescott Leach
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Michael Grzelak
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lynn Hyde
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Qi Zhang
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Giuseppe Terracina
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lili Zhang
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xia Chen
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Reshma Kuvelkar
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Matthew E. Kennedy
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Leonard Favreau
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kathleen Cox
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Peter Orth
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Alexei Buevich
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Johannes Voigt
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hongwu Wang
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Irina Kazakevich
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Brian A. McKittrick
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - William Greenlee
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Eric M. Parker
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| | - Andrew W. Stamford
- Department
of Medicinal Chemistry, ‡Department of Neuroscience, §Global Structural Chemistry, ∥Department of Analytical
Chemistry, ⊥Department of Basic Pharmaceutical Sciences, and #Department of Exploratory Drug Metabolism, Merck Research Laboratories, 2015 Galloping
Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
49
|
Palmqvist S, Sarwari A, Wattmo C, Bronge L, Zhang Y, Wahlund LO, Nägga K. Association between subcortical lesions and behavioral and psychological symptoms in patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2012; 32:417-23. [PMID: 22343788 DOI: 10.1159/000335778] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The most devastating features of Alz-heimer's disease (AD) are often the behavioral and psychological symptoms in dementia (BPSD). There is controversy as to whether subcortical lesions contribute to BPSD. The aim of this study was to examine the relationship between BPSD and subcortical lesions (white-matter lesions and lacunes) in AD. METHODS CT or MRI from 259 patients with mild-to-moderate AD were assessed with the Age-Related White Matter Changes scale. Linear measures of global and temporal atrophy and Mini-Mental State Examination scores were used to adjust for AD pathology and disease severity in logistic regression models with the BPSD items delusions, hallucinations, agitation, depression, anxiety, apathy and irritability. RESULTS Lacunes in the left basal ganglia were associated with delusions (OR 2.57, 95% CI 1.21-5.48) and hallucinations (OR 3.33, 95% CI 1.38-8.01) and lacunes in the right basal ganglia were associated with depression (OR 2.13, 95% CI 1.01-4.51). CONCLUSION Lacunes in the basal ganglia resulted in a 2- to 3-fold increased risk of delusions, hallucinations and depression, when adjusting for cognition and atrophy. This suggests that basal ganglia lesions can contribute to BPSD in patients with AD, independently of the AD process.
Collapse
Affiliation(s)
- Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
50
|
Amariglio RE, Becker JA, Carmasin J, Wadsworth LP, Lorius N, Sullivan C, Maye JE, Gidicsin C, Pepin LC, Sperling RA, Johnson KA, Rentz DM. Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia 2012; 50:2880-2886. [PMID: 22940426 DOI: 10.1016/j.neuropsychologia.2012.08.011] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/11/2012] [Accepted: 08/14/2012] [Indexed: 01/17/2023]
Abstract
Accumulating evidence suggests that subjective cognitive complaints (SCC) may indicate subtle cognitive decline characteristic of individuals with preclinical Alzheimer's disease (AD). In this study, we sought to build upon previous studies by associating SCC and amyloid-β deposition using positron emission tomography with Pittsburgh Compound B (PiB-PET) in cognitively normal older individuals. One-hundred thirty one subjects (mean age 73.5±6) were administered three subjective cognitive questionnaires and a brief neuropsychological battery. A relationship between a subjective memory complaints composite score and cortical PiB binding was found to be significant, even after controlling for depressive symptoms. By contrast, there were no significant relationships between objective cognitive measures of memory and executive functions and cortical PiB binding. Our study suggests that SCC may be an early indicator of AD pathology detectable prior to significant objective impairment.
Collapse
Affiliation(s)
- Rebecca E Amariglio
- Department of Neurology, Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, United States; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - J Alex Becker
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeremy Carmasin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lauren P Wadsworth
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Natacha Lorius
- Department of Neurology, Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, United States; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Caroline Sullivan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jacqueline E Maye
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher Gidicsin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lesley C Pepin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Reisa A Sperling
- Department of Neurology, Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, United States; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Keith A Johnson
- Department of Neurology, Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, United States; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dorene M Rentz
- Department of Neurology, Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, United States; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|