1
|
Alrayashi R, Braun RD, Muca A, Kühl A, Hali M, Holt AG. Postmortem neuroimaging: Temporal and spatial sensitivity of manganese-enhanced magnetic resonance imaging (MEMRI) and impact of Mn 2+ uptake. Hear Res 2021; 407:108276. [PMID: 34107410 DOI: 10.1016/j.heares.2021.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/20/2021] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
Magnetic resonance imaging data collection and analysis have been challenges in the field of auditory neuroscience. Recent studies have addressed these concerns by using manganese-enhanced magnetic resonance imaging (MEMRI). Basic challenges for in vivo application of MEMRI in rodents includes how to set inclusion criteria for adequate Mn2+ uptake and whether valid data can be collected from brains postmortem. Since brain Mn2+ uptake is complete within 2-4 h and clearance can take 2-4 weeks, one assumption has been that Mn2+-enhanced R1 values continue to reliably reflect the degree of Mn2+-uptake for some indeterminate time after death. To address these issues, the impact of death on R1 values was determined in rats administered Mn2+ and rats that were not. Images of auditory nuclei were collected at fixed intervals from rats before and after death for up to 10 h postmortem. By taking a ratio of pituitary and muscle T1-W intensities (P/M), a reliable quantitative method for assessing adequate brain Mn2+ uptake was created and suggest that P/M ratios should be adopted to objectively measure the quality of the Mn2+ injection. Postmortem R1 values decreased in all brain regions in both the After Mn2+ and No Mn2+ groups. However, the time-course of postmortem changes in R1 was dependent on brain region and degree of Mn2+ uptake. Thus, postmortem R1 values not only differ after death, but vary with time and across brain regions. Postmortem R1 values in unfixed brain tissue, including the auditory nuclei, should be interpreted with caution.
Collapse
Affiliation(s)
- Rasheed Alrayashi
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Antonela Muca
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mirabela Hali
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA; John D. Dingell VAMC, Detroit, MI, USA.
| |
Collapse
|
2
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Mukherjee A, Katiyar R, Dembla E, Dembla M, Kumar P, Belkacemi A, Jung M, Beck A, Flockerzi V, Schwarz K, Schmitz F. Disturbed Presynaptic Ca 2+ Signaling in Photoreceptors in the EAE Mouse Model of Multiple Sclerosis. iScience 2020; 23:101830. [PMID: 33305185 PMCID: PMC7711289 DOI: 10.1016/j.isci.2020.101830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease caused by an auto-reactive immune system. Recent studies also demonstrated synapse dysfunctions in MS patients and MS mouse models. We previously observed decreased synaptic vesicle exocytosis in photoreceptor synapses in the EAE mouse model of MS at an early, preclinical stage. In the present study, we analyzed whether synaptic defects are associated with altered presynaptic Ca2+ signaling. Using high-resolution immunolabeling, we found a reduced signal intensity of Cav-channels and RIM2 at active zones in early, preclinical EAE. In line with these morphological alterations, depolarization-evoked increases of presynaptic Ca2+ were significantly smaller. In contrast, basal presynaptic Ca2+ was elevated. We observed a decreased expression of Na+/K+-ATPase and plasma membrane Ca2+ ATPase 2 (PMCA2), but not PMCA1, in photoreceptor terminals of EAE mice that could contribute to elevated basal Ca2+. Thus, complex Ca2+ signaling alterations contribute to synaptic dysfunctions in photoreceptors in early EAE. Less Cav-channels and RIM2 at the active zones of EAE photoreceptor synapses Decreased depolarization-evoked Ca2+-responses in EAE photoreceptor synapses Elevated basal, resting Ca2+ levels in preclinical EAE photoreceptor terminals Decreased expression of PMCA2 and Na+/K+-ATPase in EAE photoreceptor synapses
Collapse
Affiliation(s)
- Amrita Mukherjee
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Rashmi Katiyar
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Ekta Dembla
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Mayur Dembla
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Praveen Kumar
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Anouar Belkacemi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Martin Jung
- Institute of Medical Biochemistry and Molecular Biology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Andreas Beck
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Karin Schwarz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| |
Collapse
|
4
|
Yang J, Li Q. Manganese-Enhanced Magnetic Resonance Imaging: Application in Central Nervous System Diseases. Front Neurol 2020; 11:143. [PMID: 32161572 PMCID: PMC7052353 DOI: 10.3389/fneur.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on the strong paramagnetism of Mn2+. Mn2+ is a calcium ion analog and can enter excitable cells through voltage-gated calcium channels. Mn2+ can be transported along the axons of neurons via microtubule-based fast axonal transport. Based on these properties, MEMRI is used to describe neuroanatomical structures, monitor neural activity, and evaluate axonal transport rates. The application of MEMRI in preclinical animal models of central nervous system (CNS) diseases can provide more information for the study of disease mechanisms. In this article, we provide a brief review of MEMRI use in CNS diseases ranging from neurodegenerative diseases to brain injury and spinal cord injury.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| |
Collapse
|
5
|
Bojcevski J, Stojic A, Hoffmann DB, Williams SK, Müller A, Diem R, Fairless R. Influence of retinal NMDA receptor activity during autoimmune optic neuritis. J Neurochem 2020; 153:693-709. [PMID: 32031240 DOI: 10.1111/jnc.14980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Autoimmune optic neuritis (AON), a model of multiple sclerosis-associated optic neuritis, is accompanied by degeneration of retinal ganglion cells (RGCs) and optic nerve demyelination and axonal loss. In order to investigate the role of N-methyl-d-aspartate (NMDA) receptors in mediating RGC degeneration, upstream changes in the optic nerve actin cytoskeleton and associated deterioration in visual function, we induced AON in Brown Norway rats by immunization with myelin oligodendrocyte glycoprotein. Subsequently, visual acuity was assessed by recording visual evoked potentials and electroretinograms prior to extraction of optic nerves for western blot analysis and retinas for quantification of RGCs. As previously reported, in Brown Norway rats RGC degeneration is observed prior to onset of immune cell infiltration and demyelination of the optic nerves. However, within the optic nerve, destabilization of the actin cytoskeleton could be seen as indicated by an increase in the globular to filamentous actin ratio. Interestingly, these changes could be mimicked by intravitreal injection of glutamate, and similarly blocked by application of the NMDA receptor blocker MK-801, leading us to propose that prior to optic nerve lesion formation, NMDA receptor activation within the retina leads to retinal calcium accumulation, actin destabilization within the optic nerve as well as a deterioration of visual acuity during AON.
Collapse
Affiliation(s)
- Jovana Bojcevski
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,CCU Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Aleksandar Stojic
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,CCU Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Dorit B Hoffmann
- Department of Neurology, Saarland University, Homburg, Germany.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,CCU Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Andreas Müller
- Department of Diagnostic and Interventional Radiology, Saarland University, Homburg, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,CCU Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,CCU Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Deng W, Faiq MA, Liu C, Adi V, Chan KC. Applications of Manganese-Enhanced Magnetic Resonance Imaging in Ophthalmology and Visual Neuroscience. Front Neural Circuits 2019; 13:35. [PMID: 31156399 PMCID: PMC6530364 DOI: 10.3389/fncir.2019.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms of vision in health and disease requires knowledge of the anatomy and physiology of the eye and the neural pathways relevant to visual perception. As such, development of imaging techniques for the visual system is crucial for unveiling the neural basis of visual function or impairment. Magnetic resonance imaging (MRI) offers non-invasive probing of the structure and function of the neural circuits without depth limitation, and can help identify abnormalities in brain tissues in vivo. Among the advanced MRI techniques, manganese-enhanced MRI (MEMRI) involves the use of active manganese contrast agents that positively enhance brain tissue signals in T1-weighted imaging with respect to the levels of connectivity and activity. Depending on the routes of administration, accumulation of manganese ions in the eye and the visual pathways can be attributed to systemic distribution or their local transport across axons in an anterograde fashion, entering the neurons through voltage-gated calcium channels. The use of the paramagnetic manganese contrast in MRI has a wide range of applications in the visual system from imaging neurodevelopment to assessing and monitoring neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this review, we present four major domains of scientific inquiry where MEMRI can be put to imperative use — deciphering neuroarchitecture, tracing neuronal tracts, detecting neuronal activity, and identifying or differentiating glial activity. We deliberate upon each category studies that have successfully employed MEMRI to examine the visual system, including the delivery protocols, spatiotemporal characteristics, and biophysical interpretation. Based on this literature, we have identified some critical challenges in the field in terms of toxicity, and sensitivity and specificity of manganese enhancement. We also discuss the pitfalls and alternatives of MEMRI which will provide new avenues to explore in the future.
Collapse
Affiliation(s)
- Wenyu Deng
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Muneeb A Faiq
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Crystal Liu
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Vishnu Adi
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Kevin C Chan
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Department of Radiology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States
| |
Collapse
|
7
|
Moutal A, Kalinin S, Kowal K, Marangoni N, Dupree J, Lin SX, Lis K, Lisi L, Hensley K, Khanna R, Feinstein DL. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis. ASN Neuro 2019; 11:1759091419892090. [PMID: 31795726 PMCID: PMC6893573 DOI: 10.1177/1759091419892090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 01/17/2023] Open
Abstract
We previously showed that treatment with lanthionine ketimine ethyl ester (LKE) reduced disease severity and axonal damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis and increased neuronal maturation and survival in vitro . A major target of LKE is collapsin response mediator protein 2 (CRMP2), suggesting this protein may mediate LKE actions. We now show that conditional knockout of CRMP2 from neurons using a CamK2a promoter to drive Cre recombinase expression reduces disease severity in the myelin oligodendrocyte glycoprotein (MOG)35–55 EAE model, associated with decreased spinal cord axonal damage, and less glial activation in the cerebellum, but not the spinal cord. Immunohistochemical staining and quantitative polymerase chain reaction show CRMP2 depletion from descending motor neurons in the motor cortex, but not from spinal cord neurons, suggesting that the benefits of CRMP2 depletion on EAE may stem from effects on upper motor neurons. In addition, mice in which CRMP2 S522 phosphorylation was prevented by substitution for an alanine residue also showed reduced EAE severity. These results show that modification of CRMP2 expression and phosphorylation can influence the course of EAE and suggests that treatment with CRMP2 modulators such as LKE act in part by reducing CRMP2 S522 phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kinga Lis
- University of Illinois, Chicago, IL, USA
| | - Lucia Lisi
- Universita Cattolica del Sacro Cuore, Rome,
Italy
| | - Kenneth Hensley
- Arkansas College of Osteopathic Medicine, Fort Smith,
AR, USA
| | | | - Douglas L. Feinstein
- University of Illinois, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
Keil M, Sonner JK, Lanz TV, Oezen I, Bunse T, Bittner S, Meyer HV, Meuth SG, Wick W, Platten M. General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. J Neuroimmunol 2016; 297:117-26. [PMID: 27397084 DOI: 10.1016/j.jneuroim.2016.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023]
Abstract
Relapsing-remitting multiple sclerosis (MS)(2) is characterized by phases of acute neuroinflammation followed by spontaneous remission. Termination of inflammation is accompanied by an influx of regulatory T cells (Tregs).(3) The molecular mechanisms responsible for directing Tregs into the inflamed CNS tissue, however, are incompletely understood. In an MS mouse model we show that the stress kinase general control non-derepressible 2 (GCN2),(4) expressed in T cells, contributes to the resolution of autoimmune neuroinflammation. Failure to recover from acute inflammation was associated with reduced frequencies of CNS-infiltrating Tregs. GCN2 deficient Tregs displayed impaired migration to a CCL2 gradient. These data suggest an important contribution of the T cell stress response to the resolution of autoimmune neuroinflammation.
Collapse
MESH Headings
- Animals
- Annexin A5/metabolism
- Astrocytes/metabolism
- Brain/cytology
- Cell Movement/physiology
- Cytokines/metabolism
- Cytokines/pharmacology
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Endothelial Cells/physiology
- Female
- Flow Cytometry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Statistics, Nonparametric
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/physiology
- Time Factors
Collapse
Affiliation(s)
- Melanie Keil
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Jana K Sonner
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Tobias V Lanz
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Neurology and National Center of Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| | - Iris Oezen
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Hannah V Meyer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Wolfgang Wick
- Department of Neurology and National Center of Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; DKTK Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Neurology and National Center of Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Retinal Cell Degeneration in Animal Models. Int J Mol Sci 2016; 17:ijms17010110. [PMID: 26784179 PMCID: PMC4730351 DOI: 10.3390/ijms17010110] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/25/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.
Collapse
|
10
|
Lin TH, Kim JH, Perez-Torres C, Chiang CW, Trinkaus K, Cross AH, Song SK. Axonal transport rate decreased at the onset of optic neuritis in EAE mice. Neuroimage 2014; 100:244-53. [PMID: 24936685 DOI: 10.1016/j.neuroimage.2014.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
Optic neuritis is frequently the first symptom of multiple sclerosis (MS), an inflammatory demyelinating neurodegenerative disease. Impaired axonal transport has been considered as an early event of neurodegenerative diseases. However, few studies have assessed the integrity of axonal transport in MS or its animal models. We hypothesize that axonal transport impairment occurs at the onset of optic neuritis in experimental autoimmune encephalomyelitis (EAE) mice. In this study, we employed manganese-enhanced MRI (MEMRI) to assess axonal transport in optic nerves in EAE mice at the onset of optic neuritis. Axonal transport was assessed as (a) optic nerve Mn(2+) accumulation rate (in % signal change/h) by measuring the rate of increased total optic nerve signal enhancement, and (b) Mn(2+) transport rate (in mm/h) by measuring the rate of change in optic nerve length enhanced by Mn(2+). Compared to sham-treated healthy mice, Mn(2+) accumulation rate was significantly decreased by 19% and 38% for EAE mice with moderate and severe optic neuritis, respectively. The axonal transport rate of Mn(2+) was significantly decreased by 43% and 65% for EAE mice with moderate and severe optic neuritis, respectively. The degree of axonal transport deficit correlated with the extent of impaired visual function and diminished microtubule-associated tubulins, as well as the severity of inflammation, demyelination, and axonal injury at the onset of optic neuritis.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO 63130, USA
| | - Joong Hee Kim
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Perez-Torres
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chia-Wen Chiang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Kathryn Trinkaus
- Divison of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Sühs KW, Fairless R, Williams SK, Heine K, Cavalié A, Diem R. N-Methyl-d-Aspartate Receptor Blockade Is Neuroprotective in Experimental Autoimmune Optic Neuritis. J Neuropathol Exp Neurol 2014; 73:507-18. [DOI: 10.1097/nen.0000000000000073] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Lin TH, Chiang CW, Trinkaus K, Spees WM, Sun P, Song SK. Manganese-enhanced MRI (MEMRI) via topical loading of Mn(2+) significantly impairs mouse visual acuity: a comparison with intravitreal injection. NMR IN BIOMEDICINE 2014; 27:390-398. [PMID: 24436112 PMCID: PMC3994194 DOI: 10.1002/nbm.3073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Manganese-enhanced MRI (MEMRI) with topical loading of MnCl2 provides optic nerve enhancement comparable to that seen by intravitreal injection. However, the impact of this novel and non-invasive Mn(2+) loading method on visual function requires further assessments. The objective of this study is to determine the optimal topical Mn(2+) loading dosage for MEMRI and to assess visual function after MnCl2 loading. Intravitreal administration was performed to compare the two approaches of MnCl2 loading. Twenty-four hours after topical loading of 0, 0.5, 0.75, and 1 M MnCl2 , T1 -weighted, T2-weighted, diffusion tensor imaging and visual acuity (VA) assessments were performed to determine the best topical loading dosage for MEMRI measurements and to assess the integrity of retinas and optic nerves. Mice were perfusion fixed immediately after in vivo experiments for hematoxylin and eosin and immunohistochemistry staining. Topical loading of 1 M MnCl2 damaged the retinal photoreceptor layer with no detectable damage to retina ganglion cell layers or prechiasmatic optic nerves. For the topical loading, 0.75 M MnCl2 was required to see sufficient enhancement of the optic nerve. At this concentration the visual function was significantly affected, followed by a slow recovery. Intravitreal injection (0.25 μL of 0.2 M MnCl2 ) slightly affected VA, with full recovery a day later. To conclude, intravitreal MnCl2 injection provides more reproducible results with less adverse side-effects than topical loading.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
13
|
Schattling B, Eggert B, Friese MA. Acquired channelopathies as contributors to development and progression of multiple sclerosis. Exp Neurol 2014; 262 Pt A:28-36. [PMID: 24656770 DOI: 10.1016/j.expneurol.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/13/2013] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS), the most frequent inflammatory disease of the central nervous system (CNS), affects about two and a half million individuals worldwide and causes major burdens to the patients, which develop the disease usually at the age of 20 to 40. MS is likely referable to a breakdown of immune cell tolerance to CNS self-antigens resulting in focal immune cell infiltration, activation of microglia and astrocytes, demyelination and axonal and neuronal loss. Here we discuss how altered expression patterns and dysregulated functions of ion channels contribute on a molecular level to nearly all pathophysiological steps of the disease. In particular the detrimental redistribution of ion channels along axons, as well as neuronal excitotoxicity with regard to imbalanced glutamate homeostasis during chronic CNS inflammation will be discussed in detail. Together, we describe which ion channels in the immune and nervous system commend as attractive future drugable targets in MS treatment.
Collapse
Affiliation(s)
- Benjamin Schattling
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Britta Eggert
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Manuel A Friese
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany.
| |
Collapse
|
14
|
Abstract
Multiple sclerosis (MS) is the most frequent chronic inflammatory disease of the CNS, and imposes major burdens on young lives. Great progress has been made in understanding and moderating the acute inflammatory components of MS, but the pathophysiological mechanisms of the concomitant neurodegeneration--which causes irreversible disability--are still not understood. Chronic inflammatory processes that continuously disturb neuroaxonal homeostasis drive neurodegeneration, so the clinical outcome probably depends on the balance of stressor load (inflammation) and any remaining capacity for neuronal self-protection. Hence, suitable drugs that promote the latter state are sorely needed. With the aim of identifying potential novel therapeutic targets in MS, we review research on the pathological mechanisms of neuroaxonal dysfunction and injury, such as altered ion channel activity, and the endogenous neuroprotective pathways that counteract oxidative stress and mitochondrial dysfunction. We focus on mechanisms inherent to neurons and their axons, which are separable from those acting on inflammatory responses and might, therefore, represent bona fide neuroprotective drug targets with the capability to halt MS progression.
Collapse
|
15
|
Fairless R, Williams SK, Diem R. Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration. Cell Tissue Res 2013; 357:455-62. [PMID: 24326615 DOI: 10.1007/s00441-013-1758-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 02/07/2023]
Abstract
Neurodegeneration has been increasingly recognised as the leading structural correlate of disability progression in autoimmune diseases such as multiple sclerosis. Since calcium signalling is known to regulate the development of degenerative processes in many cell types, it is believed to play significant roles in mediating neurodegeneration. Because of its function as a major juncture linking various insults and injuries associated with inflammatory attack on neuronal cell bodies and axons, it provides potential for the development of neuroprotective strategies. This is of great significance because of the lack of neuroprotective agents presently available to supplement the current array of immunomodulatory treatments. In this review, we summarise the role that various calcium channels and pumps have been shown to play in the development of neurodegeneration under inflammatory autoimmune conditions. The identification of suitable targets might also provide insights into applications in non-inflammatory neurodegenerative diseases.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neuro-oncology, University Clinic Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
16
|
Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 2013; 11:276-97. [PMID: 24179464 PMCID: PMC3648780 DOI: 10.2174/1570159x11311030004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022] Open
Abstract
It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Italy
| |
Collapse
|
17
|
Hoffmann DB, Williams SK, Bojcevski J, Müller A, Stadelmann C, Naidoo V, Bahr BA, Diem R, Fairless R. Calcium influx and calpain activation mediate preclinical retinal neurodegeneration in autoimmune optic neuritis. J Neuropathol Exp Neurol 2013; 72:745-57. [PMID: 23860028 DOI: 10.1097/nen.0b013e31829c7370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Recently, the neurodegenerative component of multiple sclerosis has come under focus particularly because permanent disability in patients correlates well with neurodegeneration; and observations in both humans and multiple sclerosis animal models highlight neurodegeneration of retinal ganglion cells as an early event. After myelin oligodendrocyte glycoprotein immunization of Brown Norway rats, significant retinal ganglion cell loss precedes the onset of pathologically defined autoimmune optic neuritis. To study the role calcium and calpain activation may play in mediating early degeneration, manganese-enhanced magnetic resonance imaging was used to monitor preclinical calcium elevations in the retina and optic nerve of myelin oligodendrocyte glycoprotein-immunized Brown Norway rats. Calcium elevation correlated with an increase in calpain activation during the induction phase of optic neuritis, as revealed by increased calpain-specific cleavage of spectrin. The relevance of early calpain activation to neurodegeneration during disease induction was addressed by performing treatment studies with the calpain inhibitor calpeptin. Treatment not only reduced calpain activity but also protected retinal ganglion cells from preclinical degeneration. These data indicate that elevation of retinal calcium levels and calpain activation are early events in autoimmune optic neuritis, providing a potential therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Dorit B Hoffmann
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Focal increases of axoplasmic Ca2+, aggregation of sodium-calcium exchanger, N-type Ca2+ channel, and actin define the sites of spheroids in axons undergoing oxidative stress. J Neurosci 2012; 32:12028-37. [PMID: 22933787 DOI: 10.1523/jneurosci.0408-12.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal spheroids occur as part of the pathology of a variety of neurologic diseases. Reactive oxygen species (ROS) trigger formation of spheroids, axonal severing, and Ca(2+) overload. The mechanisms by which ROS lead to the spheroid formation at specific axonal sites remain elusive. Here, using adult mouse primary neurons, we investigate the role of Ca(2+), its regulating systems, and cytoskeletal changes in formation of axonal spheroids triggered by ROS. The results reveal that dramatically higher axoplasmic Ca(2+) levels occur at the sites of axonal spheroids than in the rest of the axon. High focal axoplasmic Ca(2+) levels correlate with focal aggregation of the reverse Na(+)/Ca(2+) exchanger 1, voltage-gated N-type Ca(2+) channel α1B subunit, and actin at the sites of spheroids in individual axons. This study provides new insights into the mechanism of a spheroid formation at specific sites along axons undergoing oxidative stress and a basis for new neuroprotective strategies.
Collapse
|
20
|
Abstract
Neurodegeneration plays a major role in multiple sclerosis (MS), in which it is thought to be the main determinant of permanent disability. However, the relationship between the immune response and the onset of neurodegeneration is still a matter of debate. Moreover, recent findings in MS patients raised the question of whether primary neurodegenerative changes can occur in the retina independent of optic nerve inflammation. Using a rat model of MS that frequently leads to optic neuritis, we have investigated the interconnection between neurodegenerative and inflammatory changes in the retina and the optic nerves with special focus on preclinical disease stages. We report that, before manifestation of optic neuritis, characterized by inflammatory infiltration and demyelination of the optic nerve, degeneration of retinal ganglion cell bodies had already begun and ultrastructural signs of axon degeneration could be detected. In addition, we observed an early activation of resident microglia in the retina. In the optic nerve, the highest density of activated microglia was found within the optic nerve head. In parallel, localized breakdown in the integrity of the blood-retinal barrier and aberrations in the organization of the blood-brain barrier marker aquaporin-4 in the optic nerves were observed during the preclinical phase, before onset of optic neuritis. From these findings, we conclude that early and subtle inflammatory changes in the retina and/or the optic nerve head reminiscent of those suggested for preclinical MS lesions may initiate the process of neurodegeneration in the retina before major histopathological signs of MS become manifest.
Collapse
|
21
|
Lingor P, Koch JC, Tönges L, Bähr M. Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res 2012; 349:289-311. [PMID: 22392734 PMCID: PMC3375418 DOI: 10.1007/s00441-012-1362-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022]
Abstract
Degeneration of the axon is an important step in the pathomechanism of traumatic, inflammatory and degenerative neurological diseases. Increasing evidence suggests that axonal degeneration occurs early in the course of these diseases and therefore represents a promising target for future therapeutic strategies. We review the evidence for axonal destruction from pathological findings and animal models with particular emphasis on neurodegenerative and neurotraumatic disorders. We discuss the basic morphological and temporal modalities of axonal degeneration (acute, chronic and focal axonal degeneration and Wallerian degeneration). Based on the mechanistic concepts, we then delineate in detail the major molecular mechanisms that underlie the degenerative cascade, such as calcium influx, axonal transport, protein aggregation and autophagy. We finally concentrate on putative therapeutic targets based on the mechanistic prerequisites.
Collapse
Affiliation(s)
- Paul Lingor
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
22
|
Virgili N, Espinosa-Parrilla JF, Mancera P, Pastén-Zamorano A, Gimeno-Bayon J, Rodríguez MJ, Mahy N, Pugliese M. Oral administration of the KATP channel opener diazoxide ameliorates disease progression in a murine model of multiple sclerosis. J Neuroinflammation 2011; 8:149. [PMID: 22047130 PMCID: PMC3215935 DOI: 10.1186/1742-2094-8-149] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022] Open
Abstract
Background Multiple Sclerosis (MS) is an acquired inflammatory demyelinating disorder of the central nervous system (CNS) and is the leading cause of nontraumatic disability among young adults. Activated microglial cells are important effectors of demyelination and neurodegeneration, by secreting cytokines and others neurotoxic agents. Previous studies have demonstrated that microglia expresses ATP-sensitive potassium (KATP) channels and its pharmacological activation can provide neuroprotective and anti-inflammatory effects. In this study, we have examined the effect of oral administration of KATP channel opener diazoxide on induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Methods Anti-inflammatory effects of diazoxide were studied on lipopolysaccharide (LPS) and interferon gamma (IFNγ)-activated microglial cells. EAE was induced in C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Mice were orally treated daily with diazoxide or vehicle for 15 days from the day of EAE symptom onset. Treatment starting at the same time as immunization was also assayed. Clinical signs of EAE were monitored and histological studies were performed to analyze tissue damage, demyelination, glial reactivity, axonal loss, neuronal preservation and lymphocyte infiltration. Results Diazoxide inhibited in vitro nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production and inducible nitric oxide synthase (iNOS) expression by activated microglia without affecting cyclooxygenase-2 (COX-2) expression and phagocytosis. Oral treatment of mice with diazoxide ameliorated EAE clinical signs but did not prevent disease. Histological analysis demonstrated that diazoxide elicited a significant reduction in myelin and axonal loss accompanied by a decrease in glial activation and neuronal damage. Diazoxide did not affect the number of infiltrating lymphocytes positive for CD3 and CD20 in the spinal cord. Conclusion Taken together, these results demonstrate novel actions of diazoxide as an anti-inflammatory agent, which might contribute to its beneficial effects on EAE through neuroprotection. Treatment with this widely used and well-tolerated drug may be a useful therapeutic intervention in ameliorating MS disease.
Collapse
Affiliation(s)
- Noemí Virgili
- Neurotec Pharma SL, Bioincubadora PCB-Santander, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bucher D, Goaillard JM. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 2011; 94:307-46. [PMID: 21708220 PMCID: PMC3156869 DOI: 10.1016/j.pneurobio.2011.06.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.
Collapse
Affiliation(s)
- Dirk Bucher
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
24
|
Bissig D, Berkowitz BA. Same-session functional assessment of rat retina and brain with manganese-enhanced MRI. Neuroimage 2011; 58:749-60. [PMID: 21749922 DOI: 10.1016/j.neuroimage.2011.06.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 06/24/2011] [Indexed: 11/27/2022] Open
Abstract
Manganese-enhanced MRI (MEMRI) is a powerful non-invasive approach for objectively measuring either retina or binocular visual brain activity in vivo. In this study, we investigated the sensitivity of MEMRI to monocular stimulation using a new protocol for providing within-subject functional comparisons in the retina and brain in the same scanning session. Adult Sprague Dawley or Long-Evans rats had one eye covered with an opaque patch. After intraperitoneal Mn(2+) administration on the following day, rats underwent visual stimulation for 8h. Animals were then anesthetized, and the brain and each eye examined by MEMRI. Function was assessed through pairwise comparisons of the patched (dark-adapted) versus unpatched (light-exposed) eyes, and of differentially-stimulated brain structures - the dorsal lateral geniculate nucleus, superior colliculus, and visual cortical regions - contralateral to the patched versus unpatched eye. As expected, Mn(2+) uptake was greater in the outer retina of dark-adapted, relative to light-exposed, eyes (P<0.05). Contralateral to the unpatched eye, significantly more Mn(2+) uptake was found throughout the visual brain regions than in the corresponding structures contralateral to the patched eye (P<0.05). Notably, this regional pattern of activity corresponded well to previous work with monocular stimulation. No stimulation-dependent differences in Mn(2+) uptake were observed in negative control brain regions (P>0.05). Post-hoc assessment of functional data by animal age and strain revealed no significant effects. These results demonstrate, for the first time, the acquisition of functional MRI data from the eye and visual brain regions in a single scanning session.
Collapse
Affiliation(s)
- David Bissig
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
25
|
Gadjanski I, Williams SK, Hein K, Sättler MB, Bähr M, Diem R. Correlation of optical coherence tomography with clinical and histopathological findings in experimental autoimmune uveoretinitis. Exp Eye Res 2011; 93:82-90. [PMID: 21586286 DOI: 10.1016/j.exer.2011.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/06/2011] [Accepted: 04/29/2011] [Indexed: 01/08/2023]
Abstract
Optical coherence tomography (OCT) is becoming the state-of-the-art method for the non-invasive imaging of a variety of ocular diseases. The aim of this study was to assess the application of OCT for the in vivo monitoring and follow-up of pathological changes during experimental autoimmune uveoretinitis (EAU) in rats. Initially we established OCT imaging in healthy brown Norway rats and correlated it with retinal histology. Subsequently, we induced EAU and imaged animals by OCT throughout the pre-peak, peak, and post-peak phases of the disease. The sensitivity of OCT imaging was determined by comparison with clinical EAU and histopathology scores obtained ex vivo at several time points throughout the disease course. Our data demonstrate that OCT imaging of the healthy rat retina closely correlates with histological observations and allows the clear visualization of all retinal layers. After induction of EAU, the first pathological changes could be detected by OCT at day (d) 8 post-immunization (p.i.) which corresponded to the time point of clinical disease onset. An increase in retinal thickness (RT) was detected from d10 p.i. onwards which peaked at d16 p.i. and decreased again to near control levels by d20 p.i. We introduce a novel semi-quantitative OCT scoring which correlates with histopathological findings and complements the clinical scores. Therefore, we conclude that OCT is an easily accessible, non-invasive tool for detection and follow-up of histopathological changes during EAU in rats. Indeed, significant differences in RT between different stages of EAU suggest that this OCT parameter is a sensitive marker for distinguishing disease phases in vivo.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Department of Neurology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
27
|
Holt AG, Bissig D, Mirza N, Rajah G, Berkowitz B. Evidence of key tinnitus-related brain regions documented by a unique combination of manganese-enhanced MRI and acoustic startle reflex testing. PLoS One 2010; 5:e14260. [PMID: 21179508 PMCID: PMC3002264 DOI: 10.1371/journal.pone.0014260] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/10/2010] [Indexed: 11/19/2022] Open
Abstract
Animal models continue to improve our understanding of tinnitus pathogenesis and aid in development of new treatments. However, there are no diagnostic biomarkers for tinnitus-related pathophysiology for use in awake, freely moving animals. To address this disparity, two complementary methods were combined to examine reliable tinnitus models (rats repeatedly administered salicylate or exposed to a single noise event): inhibition of acoustic startle and manganese-enhanced MRI. Salicylate-induced tinnitus resulted in wide spread supernormal manganese uptake compared to noise-induced tinnitus. Neither model demonstrated significant differences in the auditory cortex. Only in the dorsal cortex of the inferior colliculus (DCIC) did both models exhibit supernormal uptake. Therefore, abnormal membrane depolarization in the DCIC appears to be important in tinnitus-mediated activity. Our results provide the foundation for future studies correlating the severity and longevity of tinnitus with hearing loss and neuronal activity in specific brain regions and tools for evaluating treatment efficacy across paradigms.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America.
| | | | | | | | | |
Collapse
|
28
|
Sättler MB, Bähr M. Future neuroprotective strategies. Exp Neurol 2010; 225:40-7. [DOI: 10.1016/j.expneurol.2009.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/27/2022]
|
29
|
Lassmann H. Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models. Exp Neurol 2009; 225:2-8. [PMID: 19840788 DOI: 10.1016/j.expneurol.2009.10.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/08/2009] [Accepted: 10/10/2009] [Indexed: 12/21/2022]
Abstract
Axonal and neuronal injury and loss are of critical importance for permanent clinical disability in multiple sclerosis patients. Axonal injury occurs already early during the disease and accumulates with disease progression. It is not restricted to focal demyelinated lesions in the white matter, but also affects the normal appearing white matter and the grey matter. Experimental studies show that many different immunological mechanisms may lead to axonal and neuronal injury, including antigen-specific destruction by specific T-cells and auto-antibodies as well as injury induced by products of activated macrophages and microglia. They all appear to be relevant for multiple sclerosis pathogensis in different patients and at different stages of the disease. However, in MS lesions a major mechanism of axonal and neuronal damage appears to be related to the action of reactive oxygen and nitrogen species, which may induce neuronal injury through impairment of mitochondrial function and subsequent energy failure.
Collapse
Affiliation(s)
- Hans Lassmann
- Centre for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Wien, Austria.
| |
Collapse
|
30
|
Boretius S, Kasper L, Tammer R, Michaelis T, Frahm J. MRI of cellular layers in mouse brain in vivo. Neuroimage 2009; 47:1252-60. [PMID: 19520174 DOI: 10.1016/j.neuroimage.2009.05.095] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/06/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022] Open
Abstract
Noninvasive imaging of the brain of animal models demands the detection of increasingly smaller structures by in vivo MRI. The purpose of this work was to elucidate the spatial resolution and structural contrast that can be obtained for studying the brain of C57BL/6J mice by optimized T2-weighted fast spin-echo MRI at 9.4 T. As a prerequisite for high-resolution imaging in vivo, motion artifacts were abolished by combining volatile anesthetics and positive pressure ventilation with a specially designed animal bed for fixation. Multiple substructures in the cortex, olfactory bulb, hippocampus, and cerebellum were resolved at 30 to 40 microm in-plane resolution and 200 to 300 microm section thickness as well as for relatively long echo times of 65 to 82 ms. In particular, the approach resulted in the differentiation of up to five cortical layers. In the olfactory bulb the images unraveled the mitral cell layer which has a thickness of mostly single cells. In the hippocampus at least five substructures could be separated. The molecular layer, Purkinje layer, and granular layer of the cerebellum could be clearly differentiated from the white matter. In conclusion, even without the use of a contrast agent, suitable adjustments of a widely available T2-weighted MRI sequence at high field allow for structural MRI of living mice at near single-cell layer resolution.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| | | | | | | | | |
Collapse
|