1
|
Yang F, Zhao LY, Yang WQ, Chao S, Ling ZX, Sun BY, Wei LP, Zhang LJ, Yu LM, Cai GY. Quantitative proteomics and multi-omics analysis identifies potential biomarkers and the underlying pathological molecular networks in Chinese patients with multiple sclerosis. BMC Neurol 2024; 24:423. [PMID: 39478468 PMCID: PMC11526627 DOI: 10.1186/s12883-024-03926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder caused by chronic inflammatory reactions in the central nervous system. Currently, little is known about the changes of plasma proteomic profiles in Chinese patients with MS (CpwMS) and its relationship with the altered profiles of multi-omics such as metabolomics and gut microbiome, as well as potential molecular networks that underlie the etiology of MS. To uncover the characteristics of proteomics landscape and potential multi-omics interaction networks in CpwMS, Plasma samples were collected from 22 CpwMS and 22 healthy controls (HCs) and analyzed using a Tandem Mass Tag (TMT)-based quantitative proteomics approach. Our results showed that the plasma proteomics pattern was significantly different in CpwMS compared to HCs. A total of 90 differentially expressed proteins (DEPs), such as LAMP1 and FCG2A, were identified in CpwMS plasma comparing to HCs. Furthermore, we also observed extensive and significant correlations between the altered proteomic profiles and the changes of metabolome, gut microbiome, as well as altered immunoinflammatory responses in MS-affected patients. For instance, the level of LAMP1 and ERN1 were significantly and positively correlated with the concentrations of metabolite L-glutamic acid and pro-inflammatory factor IL-17 (Padj < 0.05). However, they were negatively correlated with the amounts of other metabolites such as L-tyrosine and sphingosine 1-phosphate, as well as the concentrations of IL-8 and MIP-1α. This study outlined the underlying multi-omics integrated mechanisms that might regulate peripheral immunoinflammatory responses and MS progression. These findings are potentially helpful for developing new assisting diagnostic biomarker and therapeutic strategies for MS.
Collapse
Affiliation(s)
- Fan Yang
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China.
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Long-You Zhao
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China
| | - Wen-Qi Yang
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shan Chao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Xin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo-Yao Sun
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Ping Wei
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Juan Zhang
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Guang-Yong Cai
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China.
| |
Collapse
|
2
|
Xu T, Shi Y, Zheng G, Zhang G. Diagnostic Potential of Two Novel Biomarkers for Neuromyelitis Optica Spectrum Disorder and Multiple Sclerosis. Diagnostics (Basel) 2023; 13:diagnostics13091572. [PMID: 37174963 PMCID: PMC10178292 DOI: 10.3390/diagnostics13091572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Currently, no tests can definitively diagnose and distinguish neuromyelitis optica spectrum disorder (NMOSD) from multiple sclerosis (MS). METHODS Initially, cerebrospinal fluid (CSF) proteomics were employed to uncover the novel biomarkers that differentiate NMOSD from MS into cohorts of 10 MS and 10 NMOSD patients. Subsequently, screening biomarkers were validated using an enzyme-linked immunosorbent assay method and CSF and serum samples from 20 MS patients, 20 NMOSD patients, 20 non-inflammatory neurological controls, and 20 healthy controls. RESULTS In study cohort, insulin-like growth factor-binding protein 7 (IGFBP7) and lysosome-associated membrane glycoprotein 2 (LAMP2) were screened. In validation cohort, serum and CSF IGFBP7 not only exhibited higher levels in MS and NMOSD patients than controls, but also had greatest area under the curve (AUC, above or equal to 0.8) in MS and NMOSD diagnoses. Serum IGFBP7 (0.945) and CSF IGFBP7 (0.890) also had the greatest AUCs for predicting MS progression, while serum LAMP2 had a moderate curve (0.720). CONCLUSIONS IGFBP7 was superior in diagnosing MS and NMOSD, and IGFBP7 and serum LAMP2 performed exceptionally well in predicting the MS progression. These results offered reasons for further investigations into the functions of IGFBP7 and LAMP2 in MS and NMOSD.
Collapse
Affiliation(s)
- Ting Xu
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Yijun Shi
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Guanghui Zheng
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Guojun Zhang
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| |
Collapse
|
3
|
Proteomics in Multiple Sclerosis: The Perspective of the Clinician. Int J Mol Sci 2022; 23:ijms23095162. [PMID: 35563559 PMCID: PMC9100097 DOI: 10.3390/ijms23095162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is the inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) that affects approximately 2.8 million people worldwide. In the last decade, a new era was heralded in by a new phenotypic classification, a new diagnostic protocol and the first ever therapeutic guideline, making personalized medicine the aim of MS management. However, despite this great evolution, there are still many aspects of the disease that are unknown and need to be further researched. A hallmark of these research are molecular biomarkers that could help in the diagnosis, differential diagnosis, therapy and prognosis of the disease. Proteomics, a rapidly evolving discipline of molecular biology may fulfill this dire need for the discovery of molecular biomarkers. In this review, we aimed to give a comprehensive summary on the utility of proteomics in the field of MS research. We reviewed the published results of the method in case of the pathogenesis of the disease and for biomarkers of diagnosis, differential diagnosis, conversion of disease courses, disease activity, progression and immunological therapy. We found proteomics to be a highly effective emerging tool that has been providing important findings in the research of MS.
Collapse
|
4
|
Salazar IL, Lourenço AST, Manadas B, Baldeiras I, Ferreira C, Teixeira AC, Mendes VM, Novo AM, Machado R, Batista S, Macário MDC, Grãos M, Sousa L, Saraiva MJ, Pais AACC, Duarte CB. Posttranslational modifications of proteins are key features in the identification of CSF biomarkers of multiple sclerosis. J Neuroinflammation 2022; 19:44. [PMID: 35135578 PMCID: PMC8822857 DOI: 10.1186/s12974-022-02404-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Background Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system (CNS) characterized by demyelination and concomitant axonal loss. The lack of a single specific test, and the similarity to other inflammatory diseases of the central nervous system, makes it difficult to have a clear diagnosis of multiple sclerosis. Therefore, laboratory tests that allows a clear and definite diagnosis, as well as to predict the different clinical courses of the disease are of utmost importance. Herein, we compared the cerebrospinal fluid (CSF) proteome of patients with multiple sclerosis (in the relapse–remitting phase of the disease) and other diseases of the CNS (inflammatory and non-inflammatory) aiming at identifying reliable biomarkers of multiple sclerosis. Methods CSF samples from the discovery group were resolved by 2D-gel electrophoresis followed by identification of the protein spots by mass spectrometry. The results were analyzed using univariate (Student’s t test) and multivariate (Hierarchical Cluster Analysis, Principal Component Analysis, Linear Discriminant Analysis) statistical and numerical techniques, to identify a set of protein spots that were differentially expressed in CSF samples from patients with multiple sclerosis when compared with other two groups. Validation of the results was performed in samples from a different set of patients using quantitative (e.g., ELISA) and semi-quantitative (e.g., Western Blot) experimental approaches. Results Analysis of the 2D-gels showed 13 protein spots that were differentially expressed in the three groups of patients: Alpha-1-antichymotrypsin, Prostaglandin-H2-isomerase, Retinol binding protein 4, Transthyretin (TTR), Apolipoprotein E, Gelsolin, Angiotensinogen, Agrin, Serum albumin, Myosin-15, Apolipoprotein B-100 and EF-hand calcium-binding domain—containing protein. ELISA experiments allowed validating part of the results obtained in the proteomics analysis and showed that some of the alterations in the CSF proteome are also mirrored in serum samples from multiple sclerosis patients. CSF of multiple sclerosis patients was characterized by TTR oligomerization, thus highlighting the importance of analyzing posttranslational modifications of the proteome in the identification of novel biomarkers of the disease. Conclusions The model built based on the results obtained upon analysis of the 2D-gels and in the validation phase attained an accuracy of about 80% in distinguishing multiple sclerosis patients and the other two groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02404-2.
Collapse
Affiliation(s)
- Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana S T Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cláudia Ferreira
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Anabela Claro Teixeira
- Molecular Neurobiology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Margarida Novo
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rita Machado
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sónia Batista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria do Carmo Macário
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Mário Grãos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,Biocant-Associação de Transferência de Tecnologia, Cantanhede, Portugal
| | - Lívia Sousa
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria João Saraiva
- Molecular Neurobiology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Alberto A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Thoman ME, McKarns SC. Metabolomic Profiling in Neuromyelitis Optica Spectrum Disorder Biomarker Discovery. Metabolites 2020; 10:metabo10090374. [PMID: 32961928 PMCID: PMC7570337 DOI: 10.3390/metabo10090374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
There is no specific test for diagnosing neuromyelitis optica spectrum disorder (NMOSD), a disabling autoimmune disease of the central nervous system. Instead, diagnosis relies on ruling out other related disorders with overlapping clinical symptoms. An urgency for NMOSD biomarker discovery is underscored by adverse responses to treatment following misdiagnosis and poor prognosis following the delayed onset of treatment. Pathogenic autoantibiotics that target the water channel aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) contribute to NMOSD pathology. The importance of early diagnosis between AQP4-Ab+ NMOSD, MOG-Ab+ NMOSD, AQP4-Ab− MOG-Ab− NMOSD, and related disorders cannot be overemphasized. Here, we provide a comprehensive data collection and analysis of the currently known metabolomic perturbations and related proteomic outcomes of NMOSD. We highlight short chain fatty acids, lipoproteins, amino acids, and lactate as candidate diagnostic biomarkers. Although the application of metabolomic profiling to individual NMOSD patient care shows promise, more research is needed.
Collapse
Affiliation(s)
- Maxton E. Thoman
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Susan C. McKarns
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Correspondence:
| |
Collapse
|
6
|
Valko PO, Roschitzki B, Faigle W, Grossmann J, Panse C, Biro P, Dambach M, Spahn DR, Weller M, Martin R, Baumann CR. In search of cerebrospinal fluid biomarkers of fatigue in multiple sclerosis: A proteomics study. J Sleep Res 2018; 28:e12721. [DOI: 10.1111/jsr.12721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Philipp O. Valko
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich University of Zurich/ETH Zurich Zurich Switzerland
| | - Wolfgang Faigle
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich University of Zurich/ETH Zurich Zurich Switzerland
| | - Christian Panse
- Functional Genomics Center Zurich University of Zurich/ETH Zurich Zurich Switzerland
| | - Peter Biro
- Department of AnesthesiologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Micha Dambach
- Department of AnesthesiologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Donat R. Spahn
- Department of AnesthesiologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Michael Weller
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Roland Martin
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Christian R. Baumann
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| |
Collapse
|
7
|
van Luijn MM, van Meurs M, Stoop MP, Verbraak E, Wierenga-Wolf AF, Melief MJ, Kreft KL, Verdijk RM, 't Hart BA, Luider TM, Laman JD, Hintzen RQ. Elevated Expression of the Cerebrospinal Fluid Disease Markers Chromogranin A and Clusterin in Astrocytes of Multiple Sclerosis White Matter Lesions. J Neuropathol Exp Neurol 2016; 75:86-98. [PMID: 26683597 DOI: 10.1093/jnen/nlv004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Using proteomics, we previously identified chromogranin A (CgA) and clusterin (CLU) as disease-related proteins in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS). CgA and CLU are involved in cell survival and are implicated in neurodegenerative disorders and may also have roles in MS pathophysiology. We investigated CgA and CLU expression in lesions and nonlesional regions in postmortem brains of MS patients and controls and in the brains of marmosets with experimental autoimmune encephalomyelitis. By quantitative PCR, mRNA levels of CgA and CLU were elevated in white matter but not in grey matter of MS patients. In situ analyses showed greater expression of CgA and CLU in white matter lesions than in normal-appearing regions in MS patients and in the marmosets, primarily in or adjacent to perivascular spaces and inflammatory infiltrates. Both proteins were expressed by glial fibrillary acidic protein-positive astrocytes. CgA was more localized in astrocytic processes and endfeet surrounding blood vessels and was abundant in the superficial glia limitans and ependyma, 2 CSF-brain borders. Increased expression of CgA and CLU in reactive astrocytes in MS white matter lesions supports a role for these molecules as neuro-inflammatory mediators and their potential as CSF markers of active pathological processes in MS patients.
Collapse
|
8
|
van de Leemput J, Glatt SJ, Tsuang MT. The potential of genetic and gene expression analysis in the diagnosis of neuropsychiatric disorders. Expert Rev Mol Diagn 2016; 16:677-95. [DOI: 10.1586/14737159.2016.1171714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
The Urine Proteome Profile Is Different in Neuromyelitis Optica Compared to Multiple Sclerosis: A Clinical Proteome Study. PLoS One 2015; 10:e0139659. [PMID: 26460890 PMCID: PMC4604198 DOI: 10.1371/journal.pone.0139659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Objectives Inflammatory demyelinating diseases of the CNS comprise a broad spectrum of diseases like neuromyelitis optica (NMO), NMO spectrum disorders (NMO-SD) and multiple sclerosis (MS). Despite clear classification criteria, differentiation can be difficult. We hypothesized that the urine proteome may differentiate NMO from MS. Methods The proteins in urine samples from anti-aquaporin 4 (AQP4) seropositive NMO/NMO-SD patients (n = 32), patients with MS (n = 46) and healthy subjects (HS, n = 31) were examined by quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) after trypsin digestion and iTRAQ labelling. Immunoglobulins (Ig) in the urine were validated by nephelometry in an independent cohort (n = 9–10 pr. groups). Results The analysis identified a total of 1112 different proteins of which 333 were shared by all 109 subjects. Cluster analysis revealed differences in the urine proteome of NMO/NMO-SD compared to HS and MS. Principal component analysis also suggested that the NMO/NMO-SD proteome profile was useful for classification. Multivariate regression analysis revealed a 3-protein profile for the NMO/NMO-SD versus HS discrimination, a 6-protein profile for NMO/NMO-SD versus MS discrimination and an 11-protein profile for MS versus HS discrimination. All protein panels yielded highly significant ROC curves (AUC in all cases >0.85, p≤0.0002). Nephelometry confirmed the presence of increased Ig-light chains in the urine of patients with NMO/NMO-SD. Conclusion The urine proteome profile of patients with NMO/NMO-SD is different from MS and HS. This may reflect differences in the pathogenesis of NMO/NMO-SD versus MS and suggests that urine may be a potential source of biomarkers differentiating NMO/NMO-SD from MS.
Collapse
|
10
|
Collins MA, An J, Hood BL, Conrads TP, Bowser RP. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis. J Proteome Res 2015; 14:4486-501. [PMID: 26401960 DOI: 10.1021/acs.jproteome.5b00804] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.
Collapse
Affiliation(s)
- Mahlon A Collins
- Department of Neurobiology, University of Pittsburgh , E1448 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, United States.,Departments of Neurology and Neurobiology, Barrow Neurological Institute , NRC427, 350 West Thomas Road, Phoenix, Arizona 85013, United States
| | - Jiyan An
- Departments of Neurology and Neurobiology, Barrow Neurological Institute , NRC427, 350 West Thomas Road, Phoenix, Arizona 85013, United States
| | - Brian L Hood
- Women's Health Integrated Research Center , 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Thomas P Conrads
- Women's Health Integrated Research Center , 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Robert P Bowser
- Departments of Neurology and Neurobiology, Barrow Neurological Institute , NRC427, 350 West Thomas Road, Phoenix, Arizona 85013, United States
| |
Collapse
|
11
|
Haines JD, Vidaurre OG, Zhang F, Riffo-Campos ÁL, Castillo J, Casanova B, Casaccia P, Lopez-Rodas G. Multiple sclerosis patient-derived CSF induces transcriptional changes in proliferating oligodendrocyte progenitors. Mult Scler 2015; 21:1655-69. [PMID: 25948622 DOI: 10.1177/1352458515573094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/25/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) is in contact with brain parenchyma and ventricles, and its composition might influence the cellular physiology of oligodendrocyte progenitor cells (OPCs) thereby contributing to multiple sclerosis (MS) disease pathogenesis. OBJECTIVE To identify the transcriptional changes that distinguish the transcriptional response induced in proliferating rat OPCs upon exposure to CSF from primary progressive multiple sclerosis (PPMS) or relapsing remitting multiple sclerosis (RRMS) patients and other neurological controls. METHODS We performed gene microarray analysis of OPCs exposed to CSF from neurological controls, or definitive RRMS or PPMS disease course. Results were confirmed by quantitative reverse transcriptase polymerase chain reaction, immunocytochemistry and western blot of cultured cells, and validated in human brain specimens. RESULTS We identified common and unique oligodendrocyte genes for each treatment group. Exposure to CSF from PPMS uniquely induced branching of cultured progenitors and related transcriptional changes, including upregulation (P<0.05) of the adhesion molecule GALECTIN-3/Lgals3, which was also detected at the protein level in brain specimens from PPMS patients. This pattern of gene expression was distinct from the transcriptional programme of oligodendrocyte differentiation during development. CONCLUSIONS Despite evidence of morphological differentiation induced by exposure to CSF of PPMS patients, the overall transcriptional response elicited in cultured OPCs was consistent with the activation of an aberrant transcriptional programme.
Collapse
Affiliation(s)
- Jeffery D Haines
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Oscar G Vidaurre
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fan Zhang
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ángela L Riffo-Campos
- Department of Biochemistry and Molecular Biology, University of Valencia, and Institute of Health Research INCLIVA, Valencia, Spain
| | - Josefa Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, and Institute of Health Research INCLIVA, Valencia, Spain
| | | | - Patrizia Casaccia
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gerardo Lopez-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
12
|
Liguori M, Qualtieri A, Tortorella C, Direnzo V, Bagalà A, Mastrapasqua M, Spadafora P, Trojano M. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration. PLoS One 2014; 9:e103984. [PMID: 25098164 PMCID: PMC4123901 DOI: 10.1371/journal.pone.0103984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/04/2014] [Indexed: 12/21/2022] Open
Abstract
The aim of our project was to perform an exploratory analysis of the cerebrospinal fluid (CSF) proteomic profiles of Multiple Sclerosis (MS) patients, collected in different phases of their clinical course, in order to investigate the existence of peculiar profiles characterizing the different MS phenotypes. The study was carried out on 24 Clinically Isolated Syndrome (CIS), 16 Relapsing Remitting (RR) MS, 11 Progressive (Pr) MS patients. The CSF samples were analysed using the Matrix Assisted Laser Desorption Ionisation Time Of Flight (MALDI-TOF) mass spectrometer in linear mode geometry and in delayed extraction mode (m/z range: 1000–25000 Da). Peak lists were imported for normalization and statistical analysis. CSF data were correlated with demographic, clinical and MRI parameters. The evaluation of MALDI-TOF spectra revealed 348 peak signals with relative intensity ≥1% in the study range. The peak intensity of the signals corresponding to Secretogranin II and Protein 7B2 were significantly upregulated in RRMS patients compared to PrMS (p<0.05), whereas the signals of Fibrinogen and Fibrinopeptide A were significantly downregulated in CIS compared to PrMS patients (p<0.04). Additionally, the intensity of the Tymosin β4 peak was the only signal to be significantly discriminated between the CIS and RRMS patients (p = 0.013). Although with caution due to the relatively small size of the study populations, and considering that not all the findings remained significant after adjustment for multiple comparisons, in our opinion this mass spectrometry evaluation confirms that this technique may provide useful and important information to improve our understanding of the complex pathogenesis of MS.
Collapse
Affiliation(s)
- Maria Liguori
- National Research Council of Italy, Institute for Biomedical Technologies, Bari, Italy
- * E-mail:
| | - Antonio Qualtieri
- National Research Council of Italy, Institute of Neurological Sciences, Mangone (CS), Italy
| | - Carla Tortorella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Vita Direnzo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Angelo Bagalà
- National Research Council of Italy, Institute of Neurological Sciences, Mangone (CS), Italy
| | - Mariangela Mastrapasqua
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Patrizia Spadafora
- National Research Council of Italy, Institute of Neurological Sciences, Mangone (CS), Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| |
Collapse
|
13
|
Zhang X, Liu F, Li Q, Jia H, Pan L, Xing A, Xu S, Zhang Z. A proteomics approach to the identification of plasma biomarkers for latent tuberculosis infection. Diagn Microbiol Infect Dis 2014; 79:432-7. [PMID: 24865408 PMCID: PMC7127109 DOI: 10.1016/j.diagmicrobio.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/17/2022]
Abstract
A proteomic analysis was performed to screen the potential latent tuberculosis infection (LTBI) biomarkers. A training set of spectra was used to generate diagnostic models, and a blind testing set was used to determine the accuracy of the models. Candidate peptides were identified using nano-liquid chromatography-electrospray ionization–tandem mass spectrometry. Based on the training set results, 3 diagnostic models recognized LTBI subjects with good cross-validation accuracy. In the blind testing set, LTBI subjects could be identified with sensitivities and specificities of 85.20% to 88.90% and 85.7% to 100%, respectively. Additionally, 14 potential LTBI biomarkers were identified, and all proteins were identified for the first time through proteomics in the plasma of healthy, latently infected individuals. In all, proteomic pattern analyses can increase the accuracy of LTBI diagnosis, and the data presented here provide novel insights into potential mechanisms involved in LTBI.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Fei Liu
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qi Li
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongyan Jia
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Liping Pan
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Aiying Xing
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shaofa Xu
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Zongde Zhang
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
14
|
Jha MK, Suk K. Glia-based biomarkers and their functional role in the CNS. Expert Rev Proteomics 2014; 10:43-63. [DOI: 10.1586/epr.12.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Messina S, Vargas-Lowy D, Musallam A, Healy BC, Kivisakk P, Gandhi R, Bove R, Gholipour T, Khoury S, Weiner HL, Chitnis T. Increased leptin and A-FABP levels in relapsing and progressive forms of MS. BMC Neurol 2013; 13:172. [PMID: 24215402 PMCID: PMC3829106 DOI: 10.1186/1471-2377-13-172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Leptin and adipocyte-fatty acid binding protein (A-FABP) are produced by white adipose tissue and may play a role in chronic inflammation in Multiple Sclerosis (MS). To assess leptin and A-FABP in relapsing and progressive forms of MS. METHODS Adipokine levels were measured in untreated adult relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), primary progressive MS (PPMS) and Healthy control (HC). Pediatric-onset MS (POMS) and pediatric healthy controls (PHC) were also assessed. Leptin and A-FABP levels were measured in serum by ELISA. Groups were compared using linear mixed-effects model. RESULTS Excluding two patients with Body Mass Index (BMI) > 50, a significant difference in leptin level was found between RRMS and HC controlling for age (p = 0.007), SPMS and HC controlling for age alone (p = 0.002), or age and BMI (p = 0.007). A-FABP levels were higher in SPMS than HC (p = 0.007), controlling for age and BMI. Differences in A-FABP levels between POMS and PHC was observed after controlling for age (p = 0.019), but not when BMI was added to the model (p = 0.081). CONCLUSION Leptin and A-FABP levels are highest in SPMS compared to HC, suggesting a role in pathogenesis of this disease subtype. A-FABP levels are increased in POMS patients and may play a role in the early stages of disease.
Collapse
|
16
|
Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J Neuroimmunol 2013; 262:1-10. [PMID: 23890808 DOI: 10.1016/j.jneuroim.2013.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/02/2013] [Accepted: 06/30/2013] [Indexed: 12/20/2022]
Abstract
The diagnosis of multiple sclerosis is based on dissemination in time and space. Before 2010 lack of evidence for dissemination in space could be substituted by a paraclinical test, cerebrospinal fluid (CSF) oligoclonal bands (OCBs). The present meta-analysis (13,467 patients) shows that the diagnostic specificity of OCB drops from 94% to 61% if inflammatory etiologies are considered. Importantly, this was not caused by poor laboratory practice. This review on CSF OCB further illustrates the conceptional problem of substituting dissemination in space with a biomarker. The potential prognostic value of intrathecal OCB will need to be tested prospectively.
Collapse
|
17
|
Häggmark A, Byström S, Ayoglu B, Qundos U, Uhlén M, Khademi M, Olsson T, Schwenk JM, Nilsson P. Antibody-based profiling of cerebrospinal fluid within multiple sclerosis. Proteomics 2013; 13:2256-67. [PMID: 23696371 DOI: 10.1002/pmic.201200580] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/19/2013] [Accepted: 04/09/2013] [Indexed: 12/11/2022]
Abstract
Antibody suspension bead arrays have proven to enable multiplexed and high-throughput protein profiling in unfractionated plasma and serum samples through a direct labeling approach. We here describe the development and application of an assay for protein profiling of cerebrospinal fluid (CSF). While setting up the assay, systematic intensity differences between sample groups were observed that reflected inherent sample specific total protein amounts. Supplementing the labeling reaction with BSA and IgG diminished these differences without impairing the apparent sensitivity of the assay. We also assessed the effects of heat treatment on the analysis of CSF proteins and applied the assay to profile 43 selected proteins by 101 antibodies in 339 CSF samples from a multiple sclerosis (MS) cohort. Two proteins, GAP43 and SERPINA3 were found to have a discriminating potential with altered intensity levels between sample groups. GAP43 was detected at significantly lower levels in secondary progressive MS compared to early stages of MS and the control group of other neurological diseases. SERPINA3 instead was detected at higher levels in all MS patients compared to controls. The developed assay procedure now offers new possibilities for broad-scale protein profiling of CSF within neurological disorders.
Collapse
Affiliation(s)
- Anna Häggmark
- SciLifeLab Stockholm, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Amess B, Kluge W, Schwarz E, Haenisch F, Alsaif M, Yolken RH, Leweke FM, Guest PC, Bahn S. Application of meta-analysis methods for identifying proteomic expression level differences. Proteomics 2013; 13:2072-6. [DOI: 10.1002/pmic.201300034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Bob Amess
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge UK
| | - Wolfgang Kluge
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge UK
| | - Emanuel Schwarz
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge UK
| | - Frieder Haenisch
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge UK
| | - Murtada Alsaif
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge UK
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics; Johns Hopkins University; Baltimore MD USA
| | - F. Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health; University of Heidelberg; Mannheim Germany
| | - Paul C. Guest
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge UK
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge UK
- Department of Neuroscience; Erasmus MC; Rotterdam The Netherlands
| |
Collapse
|
19
|
Millichap JG. Proteomic Techniques as Biomarkers for Multiple Sclerosis. Pediatr Neurol Briefs 2012. [DOI: 10.15844/pedneurbriefs-26-6-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
20
|
Bennett JL, Owens GP. Cerebrospinal fluid proteomics: A new window for understanding human demyelinating disorders? Ann Neurol 2012; 71:587-8. [DOI: 10.1002/ana.23595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|