1
|
Ferrazzoli D, Ortelli P, Versace V, Stolz J, Dezi S, Vos P, Giladi N, Saltuari L, Sebastianelli L. Post-traumatic parkinsonism: The intricate twist between trauma, inflammation and neurodegeneration. A narrative review. J Neurol Sci 2024; 466:123242. [PMID: 39303348 DOI: 10.1016/j.jns.2024.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Post-traumatic Parkinsonism (PTP) is a complex neurological disorder that is often associated with the occurrence of a traumatic brain injury (TBI). PTP can occur either in the acute or chronic phase of TBI. There is still uncertainty about the mechanisms provoking PTP, which can be the result of the acute blast itself or secondary neurodegenerative process occurring months to years post the acute trauma. Currently there is an underestimation of the clinical importance of PTP and lack of specific and proven therapeutic interventions, both in the pharmacological and the neurorehabilitation field. This narrative review aims to summarize the actual knowledge about PTP in terms of its pathophysiology, clinical aspects, treatments and perspective of care in the neurorehabilitative setting.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy.
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy; Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Jakob Stolz
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Sabrina Dezi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, the Netherlands
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| |
Collapse
|
2
|
Mo F, Zhao H, Li Y, Cai H, Song Y, Wang R, Yu Y, Zhu J. Network Localization of State and Trait of Auditory Verbal Hallucinations in Schizophrenia. Schizophr Bull 2024; 50:1326-1336. [PMID: 38401526 PMCID: PMC11548935 DOI: 10.1093/schbul/sbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
BACKGROUND AND HYPOTHESIS Neuroimaging studies investigating the neural substrates of auditory verbal hallucinations (AVH) in schizophrenia have yielded mixed results, which may be reconciled by network localization. We sought to examine whether AVH-state and AVH-trait brain alterations in schizophrenia localize to common or distinct networks. STUDY DESIGN We initially identified AVH-state and AVH-trait brain alterations in schizophrenia reported in 48 previous studies. By integrating these affected brain locations with large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we then leveraged novel functional connectivity network mapping to construct AVH-state and AVH-trait dysfunctional networks. STUDY RESULTS The neuroanatomically heterogeneous AVH-state and AVH-trait brain alterations in schizophrenia localized to distinct and specific networks. The AVH-state dysfunctional network comprised a broadly distributed set of brain regions mainly involving the auditory, salience, basal ganglia, language, and sensorimotor networks. Contrastingly, the AVH-trait dysfunctional network manifested as a pattern of circumscribed brain regions principally implicating the caudate and inferior frontal gyrus. Additionally, the AVH-state dysfunctional network aligned with the neuromodulation targets for effective treatment of AVH, indicating possible clinical relevance. CONCLUSIONS Apart from unifying the seemingly irreproducible neuroimaging results across prior AVH studies, our findings suggest different neural mechanisms underlying AVH state and trait in schizophrenia from a network perspective and more broadly may inform future neuromodulation treatment for AVH.
Collapse
Affiliation(s)
- Fan Mo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yifan Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yang Song
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| |
Collapse
|
3
|
Burns J, Landes RD, Pillai L, Virmani T. Tandem gait step-width increases more rapidly in more severely affected people with Parkinson's disease. Parkinsonism Relat Disord 2024; 127:107078. [PMID: 39096549 PMCID: PMC11449637 DOI: 10.1016/j.parkreldis.2024.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Tandem gait performance reportedly predicts fall risk in people with Parkinson's disease (PwPD) and help distinguish PwPD from atypical parkinsonism. In a cross-sectional study, we previously showed that tandem gait step-width widens with increasing Hoehn and Yahr (H&Y) staging scores. In this longitudinal study, we aimed to determine if progression in tandem gait deficits is dependent on disease severity in PwPD. METHODS Participants underwent an instrumented tandem gait measurement every 6 months for at least 2 years. The mean and variability of 4 tandem gait parameters were calculated at each visit: step-width, step-length, step-time, and step-velocity. The change in these parameters over time for 3 H&Y groups (stage 1, 2 and 2.5+) compared to aging controls was determined using a random coefficients regression model. The annual percent change in tandem gait parameters was correlated with initial disease features using Kendall's τB. RESULTS 66 participants were analyzed (46 PD, 20 controls). Mean step-width increased over time in an H&Y stage-dependent manner, with H&Y 2 and H&Y 2.5+ experiencing increases of 6% and 10% per year (p = 0.001 and 0.024 respectively). Annual percent-change in step-width was correlated with initial motor Unified Parkinson's Disease Rating Scale (UPDRS) scores (Kendall's τB = 0.229), total UPDRS scores (τB = 0.249), H&Y scores (τB = 0.266) and inversely correlated with Montreal Cognitive Assessment (MoCA) scores (τB = -0.209; ps ≤ 0.019). CONCLUSION Tandem gait step-width widens over time more rapidly in more severely affected PD patients. These results suggest that tandem gait should be routinely clinically evaluated and considered in the management of imbalance in PwPD.
Collapse
Affiliation(s)
- Jennie Burns
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Lakshmi Pillai
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Tuhin Virmani
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
4
|
Berlot R, Pavlović A, Kojović M. Secondary parkinsonism associated with focal brain lesions. Front Neurol 2024; 15:1438885. [PMID: 39296961 PMCID: PMC11408197 DOI: 10.3389/fneur.2024.1438885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Focal imaging abnormalities in patients with parkinsonism suggest secondary etiology and require a distinctive clinical approach to diagnosis and treatment. We review different entities presenting as secondary parkinsonism associated with structural brain lesions, with emphasis on the clinical course and neuroimaging findings. Secondary parkinsonism may be due to vascular causes, hydrocephalus, space-occupying lesions, metabolic causes (including acquired hepatocerebral degeneration, diabetic uremic encephalopathy, basal ganglia calcifications, osmotic demyelination syndrome), hypoxic-ischaemic brain injury, intoxications (including methanol, carbon monoxide, cyanide, carbon disulfide, manganese poisoning and illicit drugs), infections and immune causes. The onset can vary from acute to chronic. Both uni-and bilateral presentations are possible. Rigidity, bradykinesia and gait abnormalities are more common than rest tremor. Coexisting other movement disorders and additional associated neurological signs may point to the underlying diagnosis. Neuroimaging studies are an essential part in the diagnostic work-up of secondary parkinsonism and may point directly to the underlying etiology. We focus primarily on magnetic resonance imaging to illustrate how structural imaging combined with neurological assessment can lead to diagnosis. It is crucial that typical imaging abnormalities are recognized within the relevant clinical context. Many forms of secondary parkinsonism are reversible with elimination of the specific cause, while some may benefit from symptomatic treatment. This heterogeneous group of acquired disorders has also helped shape our knowledge of Parkinson's disease and basal ganglia pathophysiology, while more recent findings in the field garner support for the network perspective on brain function and neurological disorders.
Collapse
Affiliation(s)
- Rok Berlot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Anđela Pavlović
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Zhang Y, Zhang C, Wang X, Liu Y, Jin Z, Haacke EM, He N, Li D, Yan F. Iron and neuromelanin imaging in basal ganglia circuitry in Parkinson's disease with freezing of gait. Magn Reson Imaging 2024; 111:229-236. [PMID: 38777243 DOI: 10.1016/j.mri.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE This study aimed to examine the structural alterations of the deep gray matter (DGM) in the basal ganglia circuitry of Parkinson's disease (PD) patients with freezing of gait (FOG) using quantitative susceptibility mapping (QSM) and neuromelanin-sensitive magnetic resonance imaging (NM-MRI). METHODS Twenty-five (25) PD patients with FOG (PD-FOG), 22 PD patients without FOG (PD-nFOG), and 30 age- and sex-matched healthy controls (HCs) underwent 3-dimensional multi-echo gradient recalled echo and NM-MRI scanning. The mean volume and susceptibility of the DGM on QSM data and the relative contrast (NMRC-SNpc) and volume (NMvolume-SNpc) of the substantia nigra pars compacta on NM-MRI were analyzed among groups. A multiple linear regression analysis was performed to explore the associations of FOG severity with MRI measurements and disease stage. RESULTS The PD-FOG group showed higher susceptibility in the bilateral caudal substantia nigra (SN) compared to the HC group. Both the PD-FOG and PD-nFOG groups showed lower volumes than the HC group in the bilateral caudate and putamen as determined from the QSM data. The NMvolume-SNpc on NM-MRI in the PD-FOG group was significantly lower than in the HC and PD-nFOG groups. Both the PD-FOG and PD-nFOG groups showed significantly decreased NMRC-SNpc. CONCLUSIONS The PD-FOG patients showed abnormal neostriatum atrophy, increases in iron deposition in the SN, and lower NMvolume-SNpc. The structural alterations of the DGM in the basal ganglia circuits could lead to the abnormal output of the basal ganglia circuit to trigger the FOG in PD patients.
Collapse
Affiliation(s)
- Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhui Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dianyou Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Ellis EG, Meyer GM, Kaasinen V, Corp DT, Pavese N, Reich MM, Joutsa J. Multimodal neuroimaging to characterize symptom-specific networks in movement disorders. NPJ Parkinsons Dis 2024; 10:154. [PMID: 39143114 PMCID: PMC11324766 DOI: 10.1038/s41531-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Nicola Pavese
- Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus University, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Upon Tyn, UK
| | - Martin M Reich
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Clinical Neurosciences, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
7
|
Wang Y, Yu L, Mao H, Chen X, Hu P, Ge Y, Liu Y, Zhang J, Cheng H. Deep Brain Stimulation Modulates the Visual Pathway to Improve Freezing of Gait in Parkinson's Disease Patients. World Neurosurg 2024; 187:e148-e155. [PMID: 38636635 DOI: 10.1016/j.wneu.2024.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE To investigate the involvement of the visual cortex in improving freezing of gait (FoG) after subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) patients using whole-brain seed-based functional connectivity. METHODS A total of 66 PD patients with FoG who underwent bilateral STN-DBS were included in our study. Patients were divided into a FoG responder group and an FoG nonresponder group according to whether FoG improved 1 year after DBS. We compared the differences in clinical characteristics, brain structural imaging, and seed-based functional connectivity between the 2 groups. The locations of active contacts were further analyzed. RESULTS All PD patients benefited from STN-DBS. No significant differences in the baseline characteristics or brain structures were found between the 2 groups. Seed-based functional connectivity analysis revealed that better connectivity in bilateral primary visual areas was associated with better clinical improvement in FoG (P < 0.05 familywise error corrected). Further analysis revealed that this disparity was associated with the location of the active contacts within the rostral region of the sensorimotor subregion in the FoG responder group, in contrast to the findings in the FoG nonresponder group. CONCLUSIONS This study suggested that DBS in the rostral region of the STN sensorimotor subregion may alleviate FoG by strengthening functional connectivity in primary visual areas, which has significant implications for guiding surgical strategies for FoG in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Liangchen Yu
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Hongliang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yue Ge
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yue Liu
- First Clinical Medical College, Anhui Medical University, Hefei, P.R. China
| | - Jiarui Zhang
- First Clinical Medical College, Anhui Medical University, Hefei, P.R. China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China.
| |
Collapse
|
8
|
Zhang X, Xu R, Ma H, Qian Y, Zhu J. Brain Structural and Functional Damage Network Localization of Suicide. Biol Psychiatry 2024; 95:1091-1099. [PMID: 38215816 DOI: 10.1016/j.biopsych.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Extensive neuroimaging research on brain structural and functional correlates of suicide has produced inconsistent results. Despite increasing recognition that damage in multiple different brain locations that causes the same symptom can map to a common brain network, there is still a paucity of research investigating network localization of suicide. METHODS To clarify this issue, we initially identified brain structural and functional damage locations in relation to suicide from 63 published studies with 2135 suicidal and 2606 nonsuicidal individuals. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 suicide brain damage networks corresponding to different imaging modalities. RESULTS The suicide gray matter volume damage network comprised widely distributed brain areas primarily involving the dorsal default mode, basal ganglia, and anterior salience networks. The suicide task-induced activation damage network was similar to but less extensive than the gray matter volume damage network, predominantly implicating the same canonical networks. The suicide resting-state activity damage network manifested as a localized set of brain regions encompassing the orbitofrontal cortex and middle cingulate cortex. CONCLUSIONS Our findings not only may help reconcile prior heterogeneous neuroimaging results, but also may provide insights into the neurobiological mechanisms of suicide from a network perspective, which may ultimately inform more targeted and effective strategies to prevent suicide.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Haining Ma
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| |
Collapse
|
9
|
Theys C, Jaakkola E, Melzer TR, De Nil LF, Guenther FH, Cohen AL, Fox MD, Joutsa J. Localization of stuttering based on causal brain lesions. Brain 2024; 147:2203-2213. [PMID: 38797521 PMCID: PMC11146419 DOI: 10.1093/brain/awae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 05/29/2024] Open
Abstract
Stuttering affects approximately 1 in 100 adults and can result in significant communication problems and social anxiety. It most often occurs as a developmental disorder but can also be caused by focal brain damage. These latter cases may lend unique insight into the brain regions causing stuttering. Here, we investigated the neuroanatomical substrate of stuttering using three independent datasets: (i) case reports from the published literature of acquired neurogenic stuttering following stroke (n = 20, 14 males/six females, 16-77 years); (ii) a clinical single study cohort with acquired neurogenic stuttering following stroke (n = 20, 13 males/seven females, 45-87 years); and (iii) adults with persistent developmental stuttering (n = 20, 14 males/six females, 18-43 years). We used the first two datasets and lesion network mapping to test whether lesions causing acquired stuttering map to a common brain network. We then used the third dataset to test whether this lesion-based network was relevant to developmental stuttering. In our literature dataset, we found that lesions causing stuttering occurred in multiple heterogeneous brain regions, but these lesion locations were all functionally connected to a common network centred around the left putamen, including the claustrum, amygdalostriatal transition area and other adjacent areas. This finding was shown to be specific for stuttering (PFWE < 0.05) and reproducible in our independent clinical cohort of patients with stroke-induced stuttering (PFWE < 0.05), resulting in a common acquired stuttering network across both stroke datasets. Within the common acquired stuttering network, we found a significant association between grey matter volume and stuttering impact for adults with persistent developmental stuttering in the left posteroventral putamen, extending into the adjacent claustrum and amygdalostriatal transition area (PFWE < 0.05). We conclude that lesions causing acquired neurogenic stuttering map to a common brain network, centred to the left putamen, claustrum and amygdalostriatal transition area. The association of this lesion-based network with symptom severity in developmental stuttering suggests a shared neuroanatomy across aetiologies.
Collapse
Affiliation(s)
- Catherine Theys
- School of Psychology, Speech and Hearing, University of Canterbury, 8140 Christchurch, New Zealand
- New Zealand Institute of Language, Brain and Behaviour, University of Canterbury, 8140 Christchurch, New Zealand
- New Zealand Brain Research Institute, 8011 Christchurch, New Zealand
| | - Elina Jaakkola
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, 20014 Turku, Finland
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Tracy R Melzer
- School of Psychology, Speech and Hearing, University of Canterbury, 8140 Christchurch, New Zealand
- New Zealand Brain Research Institute, 8011 Christchurch, New Zealand
- Department of Medicine, University of Otago, 8011 Christchurch, New Zealand
- RHCNZ—Pacific Radiology Canterbury, 8031 Christchurch, New Zealand
| | - Luc F De Nil
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5G 1V7, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Frank H Guenther
- Departments of Speech, Language and Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander L Cohen
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, 20014 Turku, Finland
- Turku PET Centre, Neurocenter, Turku University Hospital, 20014 Turku, Finland
| |
Collapse
|
10
|
van Midden VM, Pirtošek Z, Kojović M. The Effect of taVNS on the Cerebello-Thalamo-Cortical Pathway: a TMS Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1013-1019. [PMID: 37639175 PMCID: PMC11102382 DOI: 10.1007/s12311-023-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
fMRI studies show activation of cerebellum during transcutaneous auricular vagal nerve stimulation (taVNS); however, there is no evidence whether taVNS induced activation of the cerebellum translates to the cerebellar closed loops involved in motor functions. We assessed the propensity of taVNS at 25 Hz (taVNS25) and 100 Hz (taVNS100) to modulate cerebello-thalamo-cortical pathways using transcranial magnetic stimulation. In our double blind within-subjects study thirty-two participants completed one visit during which cerebellar brain inhibition (CBI) was assessed at baseline (no stimulation) and in a randomized order during taVNS100, taVNS25, and sham taVNS (xVNS). Generalized linear mixed models with gamma distribution were built to assess the effect of taVNS on CBI. The estimated marginal means of linear trends during each taVNS condition were computed and compared in a pairwise fashion with Benjamini-Hochberg correction for multiple comparisons. CBI significantly increased during taVNS100 compared to taVNS25 and xVNS (p = 0.0003 and p = 0.0465, respectively). The taVNS current intensity and CBI conditioning stimulus intensity had no significant effect on CBI. taVNS has a frequency dependent propensity to modulate the cerebello-thalamo-cortical pathway. The cerebellum participates in closed-loop circuits involved in motor, cognitive, and affective operations and may serve as an entry for modulating effects of taVNS.
Collapse
Affiliation(s)
- Vesna M van Midden
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Zheng Y, Shen Y, Feng R, Hu W, Huang P. Research progress on the application of anti-gravity treadmill in the rehabilitation of Parkinson's disease patients: a mini review. Front Neurol 2024; 15:1401256. [PMID: 38882698 PMCID: PMC11176542 DOI: 10.3389/fneur.2024.1401256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. It is the second most common chronic progressive neurodegenerative disease. PD still lacks a known cure or prophylactic medication. Current treatments primarily address symptoms without halting the progression of PD, and the side effects of dopaminergic therapy become more apparent over time. In contrast, physical therapy, with its lower risk of side effects and potential cardiovascular benefits, may provide greater benefits to patients. The Anti-Gravity Treadmill is an emerging rehabilitation therapy device with high safety, which minimizes patients' fear and allows them to focus more on a normal, correct gait, and has a promising clinical application. Based on this premise, this study aims to summarize and analyze the relevant studies on the application of the anti-gravity treadmill in PD patients, providing a reference for PD rehabilitation practice and establishing a theoretical basis for future research in this area.
Collapse
Affiliation(s)
- Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yu Shen
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Renzhi Feng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Weiyin Hu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Peng Huang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
12
|
Xu J, Zhang X, Cheng Q, Zhang H, Zhong L, Luo Y, Zhang Y, Ou Z, Yan Z, Peng K, Liu G. Abnormal supplementary motor areas are associated with idiopathic and acquired blepharospasm. Parkinsonism Relat Disord 2024; 121:106029. [PMID: 38394948 DOI: 10.1016/j.parkreldis.2024.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Blepharospasm is a common form of focal dystonia characterized by excessive and involuntary spasms of the orbicularis oculi. In addition to idiopathic blepharospasm, lesions in various brain regions can also cause acquired blepharospasm. Whether these two types of blepharospasm share a common brain network remains largely unknown. Herein, we performed lesion coactivation network mapping, based on meta-analytic connectivity modeling, to test whether lesions causing blepharospasm could be mapped to a common coactivation brain network. We then tested the abnormality of the network in patients with idiopathic blepharospasm (n = 42) compared with healthy controls (n = 44). We identified 21 cases of lesion-induced blepharospasms through a systematic literature search. Although these lesions were heterogeneous, they were part of a co-activated brain network that mainly included the bilateral supplementary motor areas. Coactivation of these regions defines a single brain network that encompasses or is adjacent to most heterogeneous lesions causing blepharospasm. Moreover, the bilateral supplementary motor area is primarily associated with action execution, visual motion, and imagination, and participates in finger tapping and saccades. They also reported decreased functional connectivity with the left posterior cingulate cortex in patients with idiopathic blepharospasm. These results demonstrate a common convergent abnormality of the supplementary motor area across idiopathic and acquired blepharospasms, providing additional evidence that the supplementary motor area is an important brain region that is pathologically impaired in patients with blepharospasm.
Collapse
Affiliation(s)
- Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Qinxiu Cheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haoran Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Yue Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Zilin Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Zhicong Yan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Aitken CS, Samotus O, Naidu AS, Jog M, Patel RV. Force Control Issues in Upper and Lower Limbs in Parkinson's Disease and Freezing of Gait. IEEE Trans Neural Syst Rehabil Eng 2024; 32:577-586. [PMID: 38236671 DOI: 10.1109/tnsre.2024.3355429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Parkinson's Disease (PD) has been found to cause force control deficits in upper and lower limbs. About 50% of patients with advanced PD develop a debilitating symptom called freezing of gait (FOG), which has been linked to force control problems in the lower limbs, and some may only have a limited response to the gold standard pharmaceutical therapy, levodopa, resulting in partially levodopa-responsive FOG (PLR-FOG). There has been limited research on investigating upper-limb force control in people with PD with PLR-FOG, and without FOG. In this pilot study, force control was explored using an upper-and-lower-limb haptics-enabled robot in a reaching task while people with PD with and without PLR-FOG were on their levodopa medication. A healthy control group was used for reference, and each cohort completed the task at three different levels of assistance provided by the robot. Similar significant proportional force control deficits were found in the upper and lower limbs in patients with PLR-FOG versus those without FOG. Some aspects of force control were found to be retained, including an ability to increase or decrease force in response to changes in resistance while completing a reaching task. Overall, these results suggest there are force control deficits in both the upper and lower limbs in people with PLR-FOG.
Collapse
|
14
|
Roseman M, Elias U, Kletenik I, Ferguson MA, Fox MD, Horowitz Z, Marshall GA, Spiers HJ, Arzy S. A neural circuit for spatial orientation derived from brain lesions. Cereb Cortex 2024; 34:bhad486. [PMID: 38100330 PMCID: PMC10793567 DOI: 10.1093/cercor/bhad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
There is disagreement regarding the major components of the brain network supporting spatial cognition. To address this issue, we applied a lesion mapping approach to the clinical phenomenon of topographical disorientation. Topographical disorientation is the inability to maintain accurate knowledge about the physical environment and use it for navigation. A review of published topographical disorientation cases identified 65 different lesion sites. Our lesion mapping analysis yielded a topographical disorientation brain map encompassing the classic regions of the navigation network: medial parietal, medial temporal, and temporo-parietal cortices. We also identified a ventromedial region of the prefrontal cortex, which has been absent from prior descriptions of this network. Moreover, we revealed that the regions mapped are correlated with the Default Mode Network sub-network C. Taken together, this study provides causal evidence for the distribution of the spatial cognitive system, demarking the major components and identifying novel regions.
Collapse
Affiliation(s)
- Moshe Roseman
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Uri Elias
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Isaiah Kletenik
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Zalman Horowitz
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gad A Marshall
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom
| | - Shahar Arzy
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
- Department of Brain and Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
15
|
Lench DH, Doolittle JD, Ramakrishnan V, Rowland N, Revuelta GJ. Subthalamic functional connectivity associated with freezing of gait dopa-response. Parkinsonism Relat Disord 2024; 118:105952. [PMID: 38101024 PMCID: PMC10872230 DOI: 10.1016/j.parkreldis.2023.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Freezing of gait (FOG) is a prevalent and debilitating feature of Parkinson's Disease (PD). The subthalamic nucleus (STN) is a center for controlled locomotion and a common DBS target. The objective of this study was to identify STN circuitry associated with FOG response to dopaminergic medication. In this study, we compare BOLD functional connectivity of the subthalamic nucleus (STN) in participants with and without dopa-responsive FOG. METHODS 55 PD participants either with FOG (n = 38) or without FOG (n = 17) were recruited. Among FOG participants 22 were dopa-responsive and 16 were dopa-unresponsive. STN whole-brain connectivity was performed using CONN toolbox. The relationship between the degree of self-reported FOG dopa-response and STN connectivity was evaluated using partial correlations corrected for age, disease duration, and levodopa equivalent daily dose. RESULTS Right STN connectivity with the cerebellar locomotor region and the temporal/occipital cortex was greater in the dopa-responsive FOG group (voxel threshold p < 0.01, FWE corrected p < 0.05). Left STN connectivity with the occipital cortex was greater in the dopa-responsive FOG group and connectivity with the postcentral gyrus was greater in the dopa-unresponsive FOG group. Strength of connectivity to these regions correlated with l-dopa induced improvement in UPDRS Item-14 (FOG), but not UPDRS Part-III (overall motor score). DISCUSSION We demonstrate that dopa-unresponsive FOG is associated with changes in BOLD functional connectivity between the STN and locomotor as well as sensory processing regions. This finding supports the conceptual framework that effective treatment for freezing of gait likely requires the engagement of both locomotor and sensory brain regions.
Collapse
Affiliation(s)
- Daniel H. Lench
- Department of Neurology, Medical University of South Carlina, Charleston, SC, USA
| | - Jade D. Doolittle
- Department of Neurology, Medical University of South Carlina, Charleston, SC, USA
| | | | - Nathan Rowland
- Department of Neurosurgery, Medical University of South Carlina, Charleston, SC, USA
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gonzalo J. Revuelta
- Department of Neurology, Medical University of South Carlina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
16
|
Li T, Le W, Jankovic J. Linking the cerebellum to Parkinson disease: an update. Nat Rev Neurol 2023; 19:645-654. [PMID: 37752351 DOI: 10.1038/s41582-023-00874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
Parkinson disease (PD) is characterized by heterogeneous motor and non-motor symptoms, resulting from neurodegeneration involving various parts of the central nervous system. Although PD pathology predominantly involves the nigral-striatal system, growing evidence suggests that pathological changes extend beyond the basal ganglia into other parts of the brain, including the cerebellum. In addition to a primary involvement in motor control, the cerebellum is now known to also have an important role in cognitive, sleep and affective processes. Over the past decade, an accumulating body of research has provided clinical, pathological, neurophysiological, structural and functional neuroimaging findings that clearly establish a link between the cerebellum and PD. This Review presents an overview and update on the involvement of the cerebellum in the clinical features and pathogenesis of PD, which could provide a novel framework for a better understanding the heterogeneity of the disease.
Collapse
Affiliation(s)
- Tianbai Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, China.
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Xu C, Qi L, Wang X, Schaper FLWVJ, Wu D, Yu T, Yan X, Jin G, Wang Q, Wang X, Huang X, Wang Y, Chen Y, Liu J, Wang Y, Horn A, Fisher RS, Ren L. Functional connectomic profile correlates with effective anterior thalamic stimulation for refractory epilepsy. Brain Stimul 2023; 16:1302-1309. [PMID: 37633491 DOI: 10.1016/j.brs.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) is an effective treatment for refractory epilepsy; however, seizure outcome varies among individuals. Identifying a reliable noninvasive biomarker to predict good responders would be helpful. OBJECTIVES To test whether the functional connectivity between the ANT-DBS sites and the seizure foci correlates with effective seizure control in refractory epilepsy. METHODS We performed a proof-of-concept pilot study of patients with focal refractory epilepsy receiving ANT-DBS. Using normative human connectome data derived from 1000 healthy participants, we investigated whether intrinsic functional connectivity between the seizure foci and the DBS site was associated with seizure outcome. We repeated this analysis controlling for the extent of seizure foci, distance between the seizure foci and DBS site, and using functional connectivity of the ANT instead of the DBS site to test the contribution of variance in DBS sites. RESULTS Eighteen patients with two or more seizure foci were included. Greater functional connectivity between the seizure foci and the DBS site correlated with more favorable outcome. The degree of functional connectivity accounted for significant variance in clinical outcomes (DBS site: |r| = 0.773, p < 0.001 vs ANT-atlas: |r| = 0.715, p = 0.001), which remained significant when controlling for the extent of the seizure foci (|r| = 0.773, p < 0.001) and the distance between the seizure foci and DBS site (|r| = 0.777, p < 0.001). Significant correlations were independent of variance in the DBS sites (|r| = 0.148, p = 0.57). CONCLUSION These findings suggest that functional connectomic profile is a potential reliable non-invasive biomarker to predict ANT-DBS outcomes. Accordingly, the identification of ANT responders could decrease the surgical risk for patients who may not benefit and optimize the cost-effective allocation of health care resources.
Collapse
Affiliation(s)
- Cuiping Xu
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Lei Qi
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Frédéric L W V J Schaper
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Di Wu
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Tao Yu
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Guangyuan Jin
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Qiao Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xiaopeng Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xinqi Huang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuke Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuanhong Chen
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Jinghui Liu
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuping Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States; Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, United States
| | - Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liankun Ren
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
18
|
Nabizadeh F, Aarabi MH. Functional and structural lesion network mapping in neurological and psychiatric disorders: a systematic review. Front Neurol 2023; 14:1100067. [PMID: 37456650 PMCID: PMC10349201 DOI: 10.3389/fneur.2023.1100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Background The traditional approach to studying the neurobiological mechanisms of brain disorders and localizing brain function involves identifying brain abnormalities and comparing them to matched controls. This method has been instrumental in clinical neurology, providing insight into the functional roles of different brain regions. However, it becomes challenging when lesions in diverse regions produce similar symptoms. To address this, researchers have begun mapping brain lesions to functional or structural networks, a process known as lesion network mapping (LNM). This approach seeks to identify common brain circuits associated with lesions in various areas. In this review, we focus on recent studies that have utilized LNM to map neurological and psychiatric symptoms, shedding light on how this method enhances our understanding of brain network functions. Methods We conducted a systematic search of four databases: PubMed, Scopus, and Web of Science, using the term "Lesion network mapping." Our focus was on observational studies that applied lesion network mapping in the context of neurological and psychiatric disorders. Results Following our screening process, we included 52 studies, comprising a total of 6,814 subjects, in our systematic review. These studies, which utilized functional connectivity, revealed several regions and network overlaps across various movement and psychiatric disorders. For instance, the cerebellum was found to be part of a common network for conditions such as essential tremor relief, parkinsonism, Holmes tremor, freezing of gait, cervical dystonia, infantile spasms, and tics. Additionally, the thalamus was identified as part of a common network for essential tremor relief, Holmes tremor, and executive function deficits. The dorsal attention network was significantly associated with fall risk in elderly individuals and parkinsonism. Conclusion LNM has proven to be a powerful tool in localizing a broad range of neuropsychiatric, behavioral, and movement disorders. It holds promise in identifying new treatment targets through symptom mapping. Nonetheless, the validity of these approaches should be confirmed by more comprehensive prospective studies.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| |
Collapse
|
19
|
Koltermann K, Jung W, Blackwell G, Pinney A, Chen M, Cloud L, Pretzer-Aboff I, Zhou G. FoG-Finder: Real-time Freezing of Gait Detection and Treatment. ...IEEE...INTERNATIONAL CONFERENCE ON CONNECTED HEALTH: APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES. IEEE INTERNATIONAL CONFERENCE ON CONNECTED HEALTH: APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES 2023; 2023:22-33. [PMID: 37736618 PMCID: PMC10513482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Freezing of gait is a serious symptom of Parkinson's disease that increases the risk of injury through falling, and reduces quality of life. Current clinical freezing of gait treatments fail to adequately address the fall risk posed by freezing of gait symptoms, and current real-time treatment systems have high false positive rates. To address this problem, we designed a closed-loop, non-intrusive, and real-time freezing of gait detection and treatment system, FoG-Finder, that automatically detects and treats freezing of gait. To evaluate FoG-Finder, we first collected 716 freezing of gait events from 11 patients. We then compared FoG-Finder against other real-time systems with our dataset. Our system was able to achieve a 13.4% higher F1 score and a 10.7% higher overall accuracy while achieving a reduction of 85.8% in the false positive treatment rate compared with other validated real-time freezing of gait detection and treatment systems. Additionally, FoG-Finder achieved an average treatment latency of 427ms and 615ms for subject-dependent and leave-one-subject-out settings, respectively, making it a viable system to treat freezing of gait in the real-world.
Collapse
Affiliation(s)
| | - Woosub Jung
- Department of Computer Science, William & Mary
| | | | | | | | - Leslie Cloud
- Department of Neurology, Virginia Commonwealth University
| | | | - Gang Zhou
- Department of Computer Science, William & Mary
| |
Collapse
|
20
|
Matar E, Bhatia K. Dystonia and Parkinson's disease: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:347-411. [PMID: 37482398 DOI: 10.1016/bs.irn.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Parkinsonism and dystonia co-occur across many movement disorders and are most encountered in the setting of Parkinson's disease. Here we aim to explore the shared neurobiological underpinnings of dystonia and parkinsonism through the clinical lens of the conditions in which these movement disorders can be seen together. Foregrounding the discussion, we briefly review the circuits of the motor system and the neuroanatomical and neurophysiological aspects of motor control and highlight their relevance to the proposed pathophysiology of parkinsonism and dystonia. Insight into shared biology is then sought from dystonia occurring in PD and other forms of parkinsonism including those disorders in which both can be co-expressed simultaneously. We organize these within a biological schema along with important questions to be addressed in this space.
Collapse
Affiliation(s)
- Elie Matar
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Kailash Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom
| |
Collapse
|
21
|
Dijkstra BW, Gilat M, D'Cruz N, Zoetewei D, Nieuwboer A. Neural underpinnings of freezing-related dynamic balance control in people with Parkinson's disease. Parkinsonism Relat Disord 2023; 112:105444. [PMID: 37257264 DOI: 10.1016/j.parkreldis.2023.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/08/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION People with Parkinson's disease (PD) with freezing of gait (FOG; freezers) show impaired dynamic balance and experience falls more frequently compared to those without (non-freezers). Here, we explore the neural underpinnings of these freezing-related balance problems. METHODS 12 freezers, 16 non-freezers and 14 controls performed a dynamic balance task in the lab. The next day, the same task was investigated in the MRI-scanner through motor imagery (MI). A visual imagery (VI) control task was also performed. Imagery engagement was determined by comparing the performance times between the dynamic balance task, and its MI- and VI-variants. Balance-related brain activations in regions of interest were contrasted between groups based on an MI > rest versus VI > rest contrast. RESULTS Freezers and non-freezers were matched for age, cognition and disease severity. Similar performance times between the balance control task and the MI-conditions revealed excellent imagery engagement. Compared to non-freezers, freezers showed decreased activation in regions of interest located in the left mesencephalic locomotor region (MLR; p = 0.006), right anterior cerebellum (p = 0.017) and cerebellar vermis (p < 0.001). Intriguingly, non-freezers showed higher activations in the cerebellar vermis than controls (p = 0.010). CONCLUSION Overall, we showed that decreased activation in the left MLR, and cerebellar regions in freezers relative to non-freezers could explain why dynamic balance is more affected in freezers. As non-freezers displayed increased cerebellar vermis activation compared to controls, it is possible that freezers show an inability to recruit sufficient compensatory cerebellar activity for effective dynamic balance control.
Collapse
Affiliation(s)
- Bauke W Dijkstra
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Moran Gilat
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium.
| | - Nicholas D'Cruz
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Demi Zoetewei
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| |
Collapse
|
22
|
Bologna M, Espay AJ, Fasano A, Paparella G, Hallett M, Berardelli A. Redefining Bradykinesia. Mov Disord 2023; 38:551-557. [PMID: 36847357 PMCID: PMC10387192 DOI: 10.1002/mds.29362] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alberto J. Espay
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
| | | | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
23
|
Bosch TJ, Espinoza AI, Singh A. Cerebellar oscillatory dysfunction during lower-limb movement in Parkinson's disease with freezing of gait. Brain Res 2023; 1808:148334. [PMID: 36931582 DOI: 10.1016/j.brainres.2023.148334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Studies have demonstrated dysfunctional connectivity between the cortico-basal ganglia and cerebellar networks in Parkinson's disease (PD). These networks are critical for appropriate motor and cognitive functions, specifically to control gait and postural tasks in PD. Our recent reports have shown abnormal cerebellar oscillations during rest, motor, and cognitive tasks in people with PD compared to healthy individuals, however, the role of cerebellar oscillations in people with PD and freezing of gait (PDFOG+) during lower-limb movements has not been examined. Here, we evaluated cerebellar oscillations using electroencephalography (EEG) electrodes during cue-triggered lower-limb pedaling movement in 13 PDFOG+, 13 PDFOG-, and 13 age-matched healthy subjects. We focused analyses on the mid-cerebellar Cbz as well as lateral cerebellar Cb1 and Cb2 electrodes. PDFOG+ performed the pedaling movement with reduced linear speed and higher variation compared to healthy subjects. PDFOG+ exhibited attenuated theta power during pedaling motor tasks in the mid-cerebellar location compared to PDFOG- or healthy subjects. Cbz theta power was also associated with FOG severity. No significant differences between groups were seen in Cbz beta power. In the lateral cerebellar electrodes, lower theta power was seen between PDFOG+ and healthy subjects. Our cerebellar EEG data demonstrate the occurrence of reduced theta oscillations in PDFOG+ during lower-limb movement and suggest a potential cerebellar biosignature for neurostimulation therapy to improve gait dysfunctions.
Collapse
Affiliation(s)
- Taylor J Bosch
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA.
| |
Collapse
|
24
|
Onder H, Oguz KK, Has AC, Elibol B. Comparative analysis of freezing of gait in distinct Parkinsonism types by diffusion tensor imaging method and cognitive profiles. J Neural Transm (Vienna) 2023; 130:521-535. [PMID: 36881182 DOI: 10.1007/s00702-023-02608-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Freezing of gait (FOG) is an episodic gait pattern that is common in advanced Parkinson's disease (PD) and other atypical parkinsonism syndromes. Recently, disturbances in the pedunculopontine nucleus (PPN) and its connections have been suggested to play a critical role in the development of FOG. In this study, we aimed to demonstrate possible disturbances in PPN and its connections by performing the diffusion tensor imaging (DTI) technique. We included 18 patients of PD with FOG [PD-FOG], 13 patients of PD without FOG [PD-nFOG] and 12 healthy subjects as well as a group of patients with progressive supranuclear palsy (PSP), an atypical parkinsonism syndrome which is very often complicated with FOG [6 PSP-FOG, 5 PSP-nFOG]. To determine the specific cognitive parameters that can be related to FOG, deliberate neurophysiological evaluations of all the individuals were performed. The comparative analyses and correlation analyses were performed to reveal the neurophysiological and DTI correlates of FOG in either group. We have found disturbances in values reflecting microstructural integrity of the bilateral superior frontal gyrus (SFG), bilateral fastigial nucleus (FN), left pre-supplementary motor area (SMA) in the PD-FOG group relative to the PD-nFOG group. The analysis of the PSP group also demonstrated disturbance in left pre-SMA values in the PSP-FOG group likewise, while negative correlations were determined between right STN, left PPN values and FOG scores. In neurophysiological assessments, lower performances for visuospatial functions were demonstrated in FOG ( +) individuals for either patient group. The disturbances in the visuospatial abilities may be a critical step for the occurrence of FOG. Together with the results of DTI analyses, it might be suggested that impairment in the connectivity of disturbed frontal areas with disordered basal ganglia, maybe the key factor for the occurrence of FOG in the PD group, whereas left PPN which is a nondopaminergic nucleus may play a more prominent role in the process of FOG in PSP. Moreover, our results support the relationship between right STN, and FOG as mentioned before, as well as introduce the importance of FN as a new structure that may be involved in FOG pathogenesis.
Collapse
Affiliation(s)
- Halil Onder
- Neurology Clinic, Diskapi Yildirim Beyazit Training and Research Hospital, Şehit Ömer Halisdemir Street. No: 20 Altındag, 06110, Ankara, Turkey.
| | - Kader Karli Oguz
- Department of Radiology, Hacettepe University Medical School, Ankara, Turkey
| | - Arzu Ceylan Has
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bulent Elibol
- Department of Neurology, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
25
|
Huang P, Zhang M. Magnetic Resonance Imaging Studies of Neurodegenerative Disease: From Methods to Translational Research. Neurosci Bull 2023; 39:99-112. [PMID: 35771383 PMCID: PMC9849544 DOI: 10.1007/s12264-022-00905-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/07/2022] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative diseases (NDs) have become a significant threat to an aging human society. Numerous studies have been conducted in the past decades to clarify their pathologic mechanisms and search for reliable biomarkers. Magnetic resonance imaging (MRI) is a powerful tool for investigating structural and functional brain alterations in NDs. With the advantages of being non-invasive and non-radioactive, it has been frequently used in both animal research and large-scale clinical investigations. MRI may serve as a bridge connecting micro- and macro-level analysis and promoting bench-to-bed translational research. Nevertheless, due to the abundance and complexity of MRI techniques, exploiting their potential is not always straightforward. This review aims to briefly introduce research progress in clinical imaging studies and discuss possible strategies for applying MRI in translational ND research.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| |
Collapse
|
26
|
Potvin-Desrochers A, Atri A, Moreno AM, Paquette C. Levodopa alters resting-state functional connectivity more selectively in Parkinson's disease with freezing of gait. Eur J Neurosci 2023; 57:163-177. [PMID: 36251568 DOI: 10.1111/ejn.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 02/02/2023]
Abstract
Freezing of gait (FOG) is a debilitating motor symptom of Parkinson's disease (PD). Although PD dopaminergic medication (L-DOPA) seems to generally reduce FOG severity, its effect on neural mechanisms of FOG remains to be determined. The purpose of this study was to quantify the effect of L-DOPA on brain resting-state functional connectivity in individuals with FOG. Functional magnetic resonance imaging was acquired at rest in 30 individuals living with PD (15 freezers) in the ON- and OFF- medication state. A seed-to-voxel analysis was performed with seeds in the bilateral basal ganglia nuclei, the thalamus and the mesencephalic locomotor region. In freezers, medication-state contrasts revealed numerous changes in resting-state functional connectivity, not modulated by L-DOPA in non-freezers. In freezers, L-DOPA increased the functional connectivity between the seeds and regions including the posterior parietal, the posterior cingulate, the motor and the medial prefrontal cortices. Comparisons with non-freezers revealed that L-DOPA generally normalizes brain functional connectivity to non-freezers levels but can also increase functional connectivity, possibly compensating for dysfunctional networks in freezers. Our findings suggest that L-DOPA could contribute to a better sensorimotor, attentional, response inhibition and limbic processing to prevent FOG when triggers are encountered but could also contribute to FOG by interfering with the processing capacity of the striatum. This study shows that levodopa taken to control PD symptoms induces changes in functional connectivity at rest, in freezers only. Increases (green) in functional connectivity of GPe, GPi, putamen and thalamus with cognitive, sensorimotor and limbic cortical regions of the Interference model (blue) was observed. Our results suggest that levodopa can normalize connections similar to non-freezers or increases connectivity to compensate for dysfunctional networks.
Collapse
Affiliation(s)
- Alexandra Potvin-Desrochers
- Department of Kinesiology and Physical Education Montréal, McGill University, Montreal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Jewish Rehabilitation Hospital-CISSS de Laval, Laval, Québec, Canada
| | - Alisha Atri
- Department of Kinesiology and Physical Education Montréal, McGill University, Montreal, Québec, Canada
| | - Alejandra Martinez Moreno
- Department of Kinesiology and Physical Education Montréal, McGill University, Montreal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Jewish Rehabilitation Hospital-CISSS de Laval, Laval, Québec, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education Montréal, McGill University, Montreal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Jewish Rehabilitation Hospital-CISSS de Laval, Laval, Québec, Canada
| |
Collapse
|
27
|
Togo H, Nakamura T, Wakasugi N, Takahashi Y, Hanakawa T. Interactions across emotional, cognitive and subcortical motor networks underlying freezing of gait. Neuroimage Clin 2023; 37:103342. [PMID: 36739790 PMCID: PMC9932566 DOI: 10.1016/j.nicl.2023.103342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Freezing of gait (FOG) is a gait disorder affecting patients with Parkinson's disease (PD) and related disorders. The pathophysiology of FOG is unclear because of its phenomenological complexity involving motor, cognitive, and emotional aspects of behavior. Here we used resting-state functional MRI to retrieve functional connectivity (FC) correlated with the New FOG questionnaire (NFOGQ) reflecting severity of FOG in 67 patients with PD. NFOGQ scores were correlated with FCs in the extended basal ganglia network (BGN) involving the striatum and amygdala, and in the extra-cerebellum network (CBLN) involving the frontoparietal network (FPN). These FCs represented interactions across the emotional (amygdala), subcortical motor (BGN and CBLN), and cognitive networks (FPN). Using these FCs as features, we constructed statistical models that explained 40% of the inter-individual variances of FOG severity and that discriminated between PD patients with and without FOG. The amygdala, which connects to the subcortical motor (BGN and CBLN) and cognitive (FPN) networks, may have a pivotal role in interactions across the emotional, cognitive, and subcortical motor networks. Future refinement of the machine learning-based classifier using FCs may clarify the complex pathophysiology of FOG further and help diagnose and evaluate FOG in clinical settings.
Collapse
Affiliation(s)
- Hiroki Togo
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Tatsuhiro Nakamura
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Noritaka Wakasugi
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Takashi Hanakawa
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.
| |
Collapse
|
28
|
Jimenez-Marin A, De Bruyn N, Gooijers J, Llera A, Meyer S, Alaerts K, Verheyden G, Swinnen SP, Cortes JM. Multimodal and multidomain lesion network mapping enhances prediction of sensorimotor behavior in stroke patients. Sci Rep 2022; 12:22400. [PMID: 36575263 PMCID: PMC9794717 DOI: 10.1038/s41598-022-26945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Beyond the characteristics of a brain lesion, such as its etiology, size or location, lesion network mapping (LNM) has shown that similar symptoms after a lesion reflects similar dis-connectivity patterns, thereby linking symptoms to brain networks. Here, we extend LNM by using a multimodal strategy, combining functional and structural networks from 1000 healthy participants in the Human Connectome Project. We apply multimodal LNM to a cohort of 54 stroke patients with the aim of predicting sensorimotor behavior, as assessed through a combination of motor and sensory tests. Results are two-fold. First, multimodal LNM reveals that the functional modality contributes more than the structural one in the prediction of sensorimotor behavior. Second, when looking at each modality individually, the performance of the structural networks strongly depended on whether sensorimotor performance was corrected for lesion size, thereby eliminating the effect that larger lesions generally produce more severe sensorimotor impairment. In contrast, functional networks provided similar performance regardless of whether or not the effect of lesion size was removed. Overall, these results support the extension of LNM to its multimodal form, highlighting the synergistic and additive nature of different types of network modalities, and their corresponding influence on behavioral performance after brain injury.
Collapse
Affiliation(s)
- Antonio Jimenez-Marin
- Computational Neuroimaging Group, Biocruces-Bizkaia Health Research Institute, Biocruces Bizkaia, Plaza de Cruces S/N, 48903, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nele De Bruyn
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
- LIS Data Solutions, Machine Learning Group, Santander, Spain
| | - Sarah Meyer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Jesus M Cortes
- Computational Neuroimaging Group, Biocruces-Bizkaia Health Research Institute, Biocruces Bizkaia, Plaza de Cruces S/N, 48903, Barakaldo, Spain.
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
29
|
Cerebellar deep brain stimulation for movement disorders. Neurobiol Dis 2022; 175:105899. [DOI: 10.1016/j.nbd.2022.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
30
|
Corp DT, Greenwood CJ, Morrison-Ham J, Pullinen J, McDowall GM, Younger EFP, Jinnah HA, Fox MD, Joutsa J. Clinical and Structural Findings in Patients With Lesion-Induced Dystonia: Descriptive and Quantitative Analysis of Published Cases. Neurology 2022; 99:e1957-e1967. [PMID: 35977840 PMCID: PMC9651464 DOI: 10.1212/wnl.0000000000201042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/15/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Brain lesions are a well-recognized etiology of dystonia. These cases are especially valuable because they offer causal insight into the neuroanatomical substrates of dystonia. To date, knowledge of lesion-induced dystonia comes mainly from isolated case reports or small case series, restricting broader description and analysis. METHODS Cases of lesion-induced dystonia were first identified from a systematic review of published literature. Latent class analysis then investigated whether patients could be classified into subgroups based on lesion location and body regions affected by dystonia. Regression analyses subsequently investigated whether subgroup membership predicted clinical characteristics of dystonia. RESULTS Three hundred fifty-nine published cases were included. Lesions causing dystonia occurred in heterogeneous locations, most commonly in the basal ganglia (46.2%), followed by the thalamus (28.1%), brainstem (22.6%), and white matter (21.2%). The most common form of lesion-induced dystonia was focal dystonia (53.2%), with the hand (49.9%) and arm (44.3%) most commonly affected. Of all cases, 86.6% reported co-occurring neurologic manifestations and 26.1% reported other movement disorders. Latent class analysis identified 3 distinct subgroups of patients: those with predominantly limb dystonias, which were associated with basal ganglia lesions; those with hand dystonia, associated with thalamic lesions; and those with predominantly cervical dystonia, associated with brainstem and cerebellar lesions. Regression demonstrated significant differences between these subgroups on a range of dystonia symptoms, including dystonic tremor, symptom latency, other movement disorders, and dystonia variability. DISCUSSION Although dystonia can be induced by lesions to numerous brain regions, there are distinct relationships between lesion locations and dystonic body parts. This suggests that the affected brain networks are different between types of dystonia.
Collapse
Affiliation(s)
- Daniel T Corp
- From the Cognitive Neuroscience Unit (D.T.C., J.M.-H., G.M., E.Y.), School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics (D.T.C., M.D.F., J.J.), Brigham and Women's Hospital, Boston, MA; Deakin University (C.G.), Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute (C.G.), Centre for Adolescent Health, Melbourne, Australia; Turku Brain and Mind Center (J.P., J.J.), Clinical Neurosciences, University of Turku, Finland; Departments of Neurology and Human Genetics (H.J.), Emory University, School of Medicine, Atlanta, GA; Department of Neurology (M.D.F.), Harvard Medical School, Boston, MA; and Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland.
| | - Christopher J Greenwood
- From the Cognitive Neuroscience Unit (D.T.C., J.M.-H., G.M., E.Y.), School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics (D.T.C., M.D.F., J.J.), Brigham and Women's Hospital, Boston, MA; Deakin University (C.G.), Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute (C.G.), Centre for Adolescent Health, Melbourne, Australia; Turku Brain and Mind Center (J.P., J.J.), Clinical Neurosciences, University of Turku, Finland; Departments of Neurology and Human Genetics (H.J.), Emory University, School of Medicine, Atlanta, GA; Department of Neurology (M.D.F.), Harvard Medical School, Boston, MA; and Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland
| | - Jordan Morrison-Ham
- From the Cognitive Neuroscience Unit (D.T.C., J.M.-H., G.M., E.Y.), School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics (D.T.C., M.D.F., J.J.), Brigham and Women's Hospital, Boston, MA; Deakin University (C.G.), Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute (C.G.), Centre for Adolescent Health, Melbourne, Australia; Turku Brain and Mind Center (J.P., J.J.), Clinical Neurosciences, University of Turku, Finland; Departments of Neurology and Human Genetics (H.J.), Emory University, School of Medicine, Atlanta, GA; Department of Neurology (M.D.F.), Harvard Medical School, Boston, MA; and Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland
| | - Jaakko Pullinen
- From the Cognitive Neuroscience Unit (D.T.C., J.M.-H., G.M., E.Y.), School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics (D.T.C., M.D.F., J.J.), Brigham and Women's Hospital, Boston, MA; Deakin University (C.G.), Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute (C.G.), Centre for Adolescent Health, Melbourne, Australia; Turku Brain and Mind Center (J.P., J.J.), Clinical Neurosciences, University of Turku, Finland; Departments of Neurology and Human Genetics (H.J.), Emory University, School of Medicine, Atlanta, GA; Department of Neurology (M.D.F.), Harvard Medical School, Boston, MA; and Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland
| | - Georgia M McDowall
- From the Cognitive Neuroscience Unit (D.T.C., J.M.-H., G.M., E.Y.), School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics (D.T.C., M.D.F., J.J.), Brigham and Women's Hospital, Boston, MA; Deakin University (C.G.), Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute (C.G.), Centre for Adolescent Health, Melbourne, Australia; Turku Brain and Mind Center (J.P., J.J.), Clinical Neurosciences, University of Turku, Finland; Departments of Neurology and Human Genetics (H.J.), Emory University, School of Medicine, Atlanta, GA; Department of Neurology (M.D.F.), Harvard Medical School, Boston, MA; and Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland
| | - Ellen F P Younger
- From the Cognitive Neuroscience Unit (D.T.C., J.M.-H., G.M., E.Y.), School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics (D.T.C., M.D.F., J.J.), Brigham and Women's Hospital, Boston, MA; Deakin University (C.G.), Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute (C.G.), Centre for Adolescent Health, Melbourne, Australia; Turku Brain and Mind Center (J.P., J.J.), Clinical Neurosciences, University of Turku, Finland; Departments of Neurology and Human Genetics (H.J.), Emory University, School of Medicine, Atlanta, GA; Department of Neurology (M.D.F.), Harvard Medical School, Boston, MA; and Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland
| | - Hyder A Jinnah
- From the Cognitive Neuroscience Unit (D.T.C., J.M.-H., G.M., E.Y.), School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics (D.T.C., M.D.F., J.J.), Brigham and Women's Hospital, Boston, MA; Deakin University (C.G.), Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute (C.G.), Centre for Adolescent Health, Melbourne, Australia; Turku Brain and Mind Center (J.P., J.J.), Clinical Neurosciences, University of Turku, Finland; Departments of Neurology and Human Genetics (H.J.), Emory University, School of Medicine, Atlanta, GA; Department of Neurology (M.D.F.), Harvard Medical School, Boston, MA; and Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland
| | - Michael D Fox
- From the Cognitive Neuroscience Unit (D.T.C., J.M.-H., G.M., E.Y.), School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics (D.T.C., M.D.F., J.J.), Brigham and Women's Hospital, Boston, MA; Deakin University (C.G.), Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute (C.G.), Centre for Adolescent Health, Melbourne, Australia; Turku Brain and Mind Center (J.P., J.J.), Clinical Neurosciences, University of Turku, Finland; Departments of Neurology and Human Genetics (H.J.), Emory University, School of Medicine, Atlanta, GA; Department of Neurology (M.D.F.), Harvard Medical School, Boston, MA; and Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland
| | - Juho Joutsa
- From the Cognitive Neuroscience Unit (D.T.C., J.M.-H., G.M., E.Y.), School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics (D.T.C., M.D.F., J.J.), Brigham and Women's Hospital, Boston, MA; Deakin University (C.G.), Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute (C.G.), Centre for Adolescent Health, Melbourne, Australia; Turku Brain and Mind Center (J.P., J.J.), Clinical Neurosciences, University of Turku, Finland; Departments of Neurology and Human Genetics (H.J.), Emory University, School of Medicine, Atlanta, GA; Department of Neurology (M.D.F.), Harvard Medical School, Boston, MA; and Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland
| |
Collapse
|
31
|
Qin Y, Qiu S, Liu X, Xu S, Wang X, Guo X, Tang Y, Li H. Lesions causing post-stroke spasticity localize to a common brain network. Front Aging Neurosci 2022; 14:1011812. [PMID: 36389077 PMCID: PMC9642815 DOI: 10.3389/fnagi.2022.1011812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The efficacy of clinical interventions for post-stroke spasticity (PSS) has been consistently unsatisfactory, probably because lesions causing PSS may occur at different locations in the brain, leaving the neuroanatomical substrates of spasticity unclear. Here, we investigated whether heterogeneous lesions causing PSS were localized to a common brain network and then identified the key nodes in this network. Methods We used 32 cases of PSS and the Human Connectome dataset (n = 1,000), using a lesion network mapping method to identify the brain regions that were associated with each lesion in patients with PSS. Functional connectivity maps of all lesions were overlaid to identify common connectivity. Furthermore, a split-half replication method was used to evaluate reproducibility. Then, the lesion network mapping results were compared with those of patients with post-stroke non-spastic motor dysfunction (n = 29) to assess the specificity. Next, both sensitive and specific regions associated with PSS were identified using conjunction analyses, and the correlation between these regions and PSS was further explored by correlation analysis. Results The lesions in all patients with PSS were located in different cortical and subcortical locations. However, at least 93% of these lesions (29/32) had functional connectivity with the bilateral putamen and globus pallidus. These connections were highly repeatable and specific, as compared to those in non-spastic patients. In addition, the functional connectivity between lesions and bilateral putamen and globus pallidus in patients with PSS was positively correlated with the degree of spasticity. Conclusion We identified that lesions causing PSS were localized to a common functional connectivity network defined by connectivity to the bilateral putamen and globus pallidus. This network may best cover the locations of lesions causing PSS. The putamen and globus pallidus may be potential key regions in PSS. Our findings complement previous neuroimaging studies on PSS, contributing to identifying patients with stroke at high risk for spasticity at an early stage, and may point to PSS-specific brain stimulation targets.
Collapse
Affiliation(s)
- Yin Qin
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- Department of Rehabilitation Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Yin Qin,
| | - Shuting Qiu
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoying Liu
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- Department of Rehabilitation Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shangwen Xu
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
| | - Xiaoyang Wang
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
| | - Xiaoping Guo
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- Department of Rehabilitation Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yuting Tang
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Li
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
| |
Collapse
|
32
|
Peng S, Xu P, Jiang Y, Gong G. Activation network mapping for integration of heterogeneous fMRI findings. Nat Hum Behav 2022; 6:1417-1429. [PMID: 35654963 DOI: 10.1038/s41562-022-01371-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
Functional neuroimaging techniques have been widely used to probe the neural substrates of facial emotion processing in healthy people. However, findings are largely inconsistent across studies. Here, we introduce a new technique termed activation network mapping to examine whether heterogeneous functional magnetic resonance imaging findings localize to a common network for emotion processing. First, using the existing method of activation likelihood estimation meta-analysis, we showed that individual-brain-based reproducibility was low across studies. Second, using activation network mapping, we found that network-based reproducibility across these same studies was higher. Validation analysis indicated that the activation network mapping-localized network aligned with stimulation sites, structural abnormalities and brain lesions that disrupt facial emotion processing. Finally, we verified the generality of the activation network mapping technique by applying it to another cognitive process, that is, rumination. Activation network mapping may potentially be broadly applicable to localize brain networks of cognitive functions.
Collapse
Affiliation(s)
- Shaoling Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
- Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
33
|
Ren W, Jia C, Zhou Y, Zhao J, Wang B, Yu W, Li S, Hu Y, Zhang H. A precise language network revealed by the independent component-based lesion mapping in post-stroke aphasia. Front Neurol 2022; 13:981653. [PMID: 36247758 PMCID: PMC9561861 DOI: 10.3389/fneur.2022.981653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Brain lesion mapping studies have provided the strongest evidence regarding the neural basis of cognition. However, it remained a problem to identify symptom-specific brain networks accounting for observed clinical and neuroanatomical heterogeneity. Independent component analysis (ICA) is a statistical method that decomposes mixed signals into multiple independent components. We aimed to solve this issue by proposing an independent component-based lesion mapping (ICLM) method to identify the language network in patients with moderate to severe post-stroke aphasia. Lesions were first extracted from 49 patients with post-stroke aphasia as masks applied to fMRI data in a cohort of healthy participants to calculate the functional connectivity (FC) within the masks and non-mask brain voxels. ICA was further performed on a reformatted FC matrix to extract multiple independent networks. Specifically, we found that one of the lesion-related independent components (ICs) highly resembled classical language networks. Moreover, the damaged level within the language-related lesioned network is strongly associated with language deficits, including aphasia quotient, naming, and auditory comprehension scores. In comparison, none of the other two traditional lesion mapping methods found any regions responsible for language dysfunction. The language-related lesioned network extracted with the ICLM method showed high specificity in detecting aphasia symptoms compared with the performance of resting ICs and classical language networks. In total, we detected a precise language network in patients with aphasia and proved its efficiency in the relationship with language symptoms. In general, our ICLM could successfully identify multiple lesion-related networks from complicated brain diseases, and be used as an effective tool to study brain-behavior relationships and provide potential biomarkers of particular clinical behavioral deficits.
Collapse
Affiliation(s)
- Weijing Ren
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Chunying Jia
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ying Zhou
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jingdu Zhao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Bo Wang
- Department of Hearing and Language Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Weiyong Yu
- Department of Radiology, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Shiyi Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yiru Hu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- *Correspondence: Hao Zhang
| |
Collapse
|
34
|
Pandey S, Joutsa J, Mehanna R, Shukla AW, Rodriguez‐Porcel F, Espay AJ. Gaps, Controversies, and Proposed Roadmap for Research in Poststroke Movement Disorders. Mov Disord 2022; 37:1996-2007. [DOI: 10.1002/mds.29218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sanjay Pandey
- Department of Neurology Govind Ballabh Pant Institute of Postgraduate Medical Education and Research New Delhi India
- Department of Neurology, Amrita Hospital, Mata Amritanandamayi Marg Sector 88, Faridabad Delhi National Capital Region India
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Neurocenter Turku University Hospital Turku Finland
| | - Raja Mehanna
- UT Move, Department of Neurology University of Texas Health Science Center at Houston‐McGovern Medical School Houston Texas USA
| | - Aparna Wagle Shukla
- Fixel Institute for Neurological Diseases University of Florida Gainesville Florida USA
| | | | - Alberto J. Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders University of Cincinnati Academic Health Center Cincinnati Ohio USA
| |
Collapse
|
35
|
Cheng Y, Yang H, Liu WV, Wen Z, Chen J. Alterations of brain activity in multiple system atrophy patients with freezing of gait: A resting-state fMRI study. Front Neurosci 2022; 16:954332. [PMID: 36051644 PMCID: PMC9425908 DOI: 10.3389/fnins.2022.954332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background Freezing of gait (FOG) in multiple system atrophy (MSA) is characterized by a higher risk of falls and a reduced quality of life; however, the mechanisms underlying these effects have yet to be identified by neuroimaging. The aim of this study was to investigate the differences in functional network when compared between MSA patients with and without freezing. Methods Degree centrality (DC) based on the resting-state functional magnetic resonance imaging was computed in 65 patients with MSA and 36 healthy controls. Brain regions with statistically different DC values between groups were selected as seed points for a second seed-based functional connectivity (FC) analysis. The relationships between brain activity (DC and FC alterations) and the severity of freezing symptoms were then investigated in the two groups of patients with MSA. Results Compared to MSA patients without FOG symptoms (MSA-nFOG), patients with MSA-FOG showed an increased DC in the left middle temporal gyrus but a reduced DC in the right superior pole temporal gyrus, left anterior cingulum cortex, left thalamus, and right middle frontal gyrus. Furthermore, in patients with MSA-FOG, the DC in the left thalamus was negatively correlated with FOG scores. Using the left thalamus as a seed, secondary seed-based functional connectivity analysis revealed that patients with MSA-FOG commonly showed the left thalamus-based FC abnormalities in regions related to cognition and emotion. In contrast to the patients with MSA-nFOG, patients with MSA-FOG showed an increased FC between the left thalamus and the left middle temporal gyrus (MTG), right inferior parietal lobule (IPL), bilateral cerebellum_8, and left precuneus. Conclusion Freezing of gait is associated with centrality of the impaired thalamus network. Abnormal FC between the thalamus and left MTG, right IPL, bilateral cerebellum_8, and left precuneus was involved in FOG. These results provide new insight into the pathophysiological mechanism of FOG in MSA.
Collapse
Affiliation(s)
- Yilin Cheng
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huaguang Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jun Chen,
| |
Collapse
|
36
|
Feng C, Huang W, Xu K, Stewart JL, Camilleri JA, Yang X, Wei P, Gu R, Luo W, Eickhoff SB. Neural substrates of motivational dysfunction across neuropsychiatric conditions: Evidence from meta-analysis and lesion network mapping. Clin Psychol Rev 2022; 96:102189. [PMID: 35908312 PMCID: PMC9720091 DOI: 10.1016/j.cpr.2022.102189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023]
Abstract
Motivational dysfunction constitutes one of the fundamental dimensions of psychopathology cutting across traditional diagnostic boundaries. However, it is unclear whether there is a common neural circuit responsible for motivational dysfunction across neuropsychiatric conditions. To address this issue, the current study combined a meta-analysis on psychiatric neuroimaging studies of reward/loss anticipation and consumption (4308 foci, 438 contrasts, 129 publications) with a lesion network mapping approach (105 lesion cases). Our meta-analysis identified transdiagnostic hypoactivation in the ventral striatum (VS) for clinical/at-risk conditions compared to controls during the anticipation of both reward and loss. Moreover, the VS subserves a key node in a distributed brain network which encompasses heterogeneous lesion locations causing motivation-related symptoms. These findings do not only provide the first meta-analytic evidence of shared neural alternations linked to anticipatory motivation-related deficits, but also shed novel light on the role of VS dysfunction in motivational impairments in terms of both network integration and psychological functions. Particularly, the current findings suggest that motivational dysfunction across neuropsychiatric conditions is rooted in disruptions of a common brain network anchored in the VS, which contributes to motivational salience processing rather than encoding positive incentive values.
Collapse
Affiliation(s)
- Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenhao Huang
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Kangli Xu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Julia A. Camilleri
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Xiaofeng Yang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
37
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
38
|
Lewis S, Factor S, Giladi N, Nieuwboer A, Nutt J, Hallett M. Stepping up to meet the challenge of freezing of gait in Parkinson's disease. Transl Neurodegener 2022; 11:23. [PMID: 35490252 PMCID: PMC9057060 DOI: 10.1186/s40035-022-00298-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
There has been a growing appreciation for freezing of gait as a disabling symptom that causes a significant burden in Parkinson’s disease. Previous research has highlighted some of the key components that underlie the phenomenon, but these reductionist approaches have yet to lead to a paradigm shift resulting in the development of novel treatment strategies. Addressing this issue will require greater integration of multi-modal data with complex computational modeling, but there are a number of critical aspects that need to be considered before embarking on such an approach. This paper highlights where the field needs to address current gaps and shortcomings including the standardization of definitions and measurement, phenomenology and pathophysiology, as well as considering what available data exist and how future studies should be constructed to achieve the greatest potential to better understand and treat this devastating symptom.
Collapse
Affiliation(s)
- Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Stewart Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Program, Emory University School of Medicine, Atlanta, GA, USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - John Nutt
- Movement Disorder Section, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Yang H, Liu WV, Wang S, Yang W, Liu C, Wen Z, Hu L, Guo J, Fan G, Luo X, Zha Y. Freezing of Gait in Multiple System Atrophy. Front Aging Neurosci 2022; 14:833287. [PMID: 35462702 PMCID: PMC9024348 DOI: 10.3389/fnagi.2022.833287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeFreezing of gait (FOG) is a common gait disturbance phenomenon in multiple system atrophy (MSA) patients. The current investigation assessed the incidence FOG in a cross-sectional clinical study, and clinical correlations associated with it.MethodsNinety-nine MSA patients from three hospitals in China were consecutively enrolled in the study. Eight patients were subsequently excluded from the analysis due to incomplete information. The prevalence of FOG symptoms in the MSA cohort was determined, and clinical manifestations in MSA patients with and without FOG were assessed.ResultsOf 91 MSA patients, 60 (65.93%) exhibited FOG. The incidence of FOG increased with disease duration and motor severity and was correlated with modified Hoehn and Yahr (H-Y) stages [odds ratio (OR), 0.54; 95% confidence interval (CI), 0.33–3.92], longer disease duration (OR, 0.54, 95% CI, 0.37–0.78), higher Unified Multiple System Atrophy Rating Scale (UMSARS) score (OR, 0.96, 95% CI, 0.93–0.99), MSA-cerebellum subtype (OR, 2.99, 95% CI, 1.22–7.33), levodopa-equivalent dose (LDED) (OR, 0.998, 95% CI, 0.997–1.00), and higher Scale for the Assessment and Rating of Ataxia (SARA) score (OR, 0.80, 95% CI, 0.72–0.89) (logistic regression). Motor dysfunction was significantly positively associated with lower quality of life scores (p < 0.01).ConclusionFOG is a common symptom in MSA patients and it is correlated with poor quality of life, disease progression and severity, levodopa-equivalent dose, and cerebellum impairment.
Collapse
Affiliation(s)
- Huaguang Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Shanshan Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenbin Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changsheng Liu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanhua Hu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinxia Guo
- MR Research, GE Healthcare, Beijing, China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoguang Luo
- Department of Neurology, The First Affiliated Hospital of South University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Xiaoguang Luo,
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- Yunfei Zha,
| |
Collapse
|
40
|
Palmisano C, Kullmann P, Hanafi I, Verrecchia M, Latoschik ME, Canessa A, Fischbach M, Isaias IU. A Fully-Immersive Virtual Reality Setup to Study Gait Modulation. Front Hum Neurosci 2022; 16:783452. [PMID: 35399359 PMCID: PMC8983870 DOI: 10.3389/fnhum.2022.783452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Objective: Gait adaptation to environmental challenges is fundamental for independent and safe community ambulation. The possibility of precisely studying gait modulation using standardized protocols of gait analysis closely resembling everyday life scenarios is still an unmet need. Methods: We have developed a fully-immersive virtual reality (VR) environment where subjects have to adjust their walking pattern to avoid collision with a virtual agent (VA) crossing their gait trajectory. We collected kinematic data of 12 healthy young subjects walking in real world (RW) and in the VR environment, both with (VR/A+) and without (VR/A-) the VA perturbation. The VR environment closely resembled the RW scenario of the gait laboratory. To ensure standardization of the obstacle presentation the starting time speed and trajectory of the VA were defined using the kinematics of the participant as detected online during each walking trial. Results: We did not observe kinematic differences between walking in RW and VR/A-, suggesting that our VR environment per se might not induce significant changes in the locomotor pattern. When facing the VA all subjects consistently reduced stride length and velocity while increasing stride duration. Trunk inclination and mediolateral trajectory deviation also facilitated avoidance of the obstacle. Conclusions: This proof-of-concept study shows that our VR/A+ paradigm effectively induced a timely gait modulation in a standardized immersive and realistic scenario. This protocol could be a powerful research tool to study gait modulation and its derangements in relation to aging and clinical conditions.
Collapse
Affiliation(s)
- Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- *Correspondence: Chiara Palmisano
| | - Peter Kullmann
- Human-Computer Interaction, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Marta Verrecchia
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Marc Erich Latoschik
- Human-Computer Interaction, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Andrea Canessa
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genova, Italy
| | - Martin Fischbach
- Human-Computer Interaction, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis Ugo Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Pini-CTO, Milano, Italy
| |
Collapse
|
41
|
Cohen AL. Using causal methods to map symptoms to brain circuits in neurodevelopment disorders: moving from identifying correlates to developing treatments. J Neurodev Disord 2022; 14:19. [PMID: 35279095 PMCID: PMC8918299 DOI: 10.1186/s11689-022-09433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
A wide variety of model systems and experimental techniques can provide insight into the structure and function of the human brain in typical development and in neurodevelopmental disorders. Unfortunately, this work, whether based on manipulation of animal models or observational and correlational methods in humans, has a high attrition rate in translating scientific discovery into practicable treatments and therapies for neurodevelopmental disorders.With new computational and neuromodulatory approaches to interrogating brain networks, opportunities exist for "bedside-to bedside-translation" with a potentially shorter path to therapeutic options. Specifically, methods like lesion network mapping can identify brain networks involved in the generation of complex symptomatology, both from acute onset lesion-related symptoms and from focal developmental anomalies. Traditional neuroimaging can examine the generalizability of these findings to idiopathic populations, while non-invasive neuromodulation techniques such as transcranial magnetic stimulation provide the ability to do targeted activation or inhibition of these specific brain regions and networks. In parallel, real-time functional MRI neurofeedback also allow for endogenous neuromodulation of specific targets that may be out of reach for transcranial exogenous methods.Discovery of novel neuroanatomical circuits for transdiagnostic symptoms and neuroimaging-based endophenotypes may now be feasible for neurodevelopmental disorders using data from cohorts with focal brain anomalies. These novel circuits, after validation in large-scale highly characterized research cohorts and tested prospectively using noninvasive neuromodulation and neurofeedback techniques, may represent a new pathway for symptom-based targeted therapy.
Collapse
Affiliation(s)
- Alexander Li Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Laboratory for Brain Network Imaging and Modulation, Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Freezing of gait: overview on etiology, treatment, and future directions. Neurol Sci 2022; 43:1627-1639. [DOI: 10.1007/s10072-021-05796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
|
43
|
Ferguson MA, Schaper FL, Cohen A, Siddiqi S, Merrill SM, Nielsen JA, Grafman J, Urgesi C, Fabbro F, Fox MD. A Neural Circuit for Spirituality and Religiosity Derived From Patients With Brain Lesions. Biol Psychiatry 2022; 91:380-388. [PMID: 34454698 PMCID: PMC8714871 DOI: 10.1016/j.biopsych.2021.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Over 80% of the global population consider themselves religious, with even more identifying as spiritual, but the neural substrates of spirituality and religiosity remain unresolved. METHODS In two independent brain lesion datasets (N1 = 88; N2 = 105), we applied lesion network mapping to test whether lesion locations associated with spiritual and religious belief map to a specific human brain circuit. RESULTS We found that brain lesions associated with self-reported spirituality map to a brain circuit centered on the periaqueductal gray. Intersection of lesion locations with this same circuit aligned with self-reported religiosity in an independent dataset and previous reports of lesions associated with hyper-religiosity. Lesion locations causing delusions and alien limb syndrome also intersected this circuit. CONCLUSIONS These findings suggest that spirituality and religiosity map to a common brain circuit centered on the periaqueductal gray, a brainstem region previously implicated in fear conditioning, pain modulation, and altruistic behavior.
Collapse
Affiliation(s)
- Michael A. Ferguson
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, MA, 02115, USA
| | - Frederic L.W.V.J. Schaper
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, MA, 02115, USA,Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Alexander Cohen
- Harvard Medical School, Boston, MA, 02115, USA,Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Shan Siddiqi
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, MA, 02115, USA,Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah M. Merrill
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jared A. Nielsen
- Department of Psychology, Brigham Young University, Provo, Utah, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Think + Speak Lab, Shirley Ryan Ability Lab, Chicago, Illinois, USA,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cosimo Urgesi
- Cognitive Neuroscience Laboratory, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Franco Fabbro
- Cognitive Neuroscience Laboratory, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, MA, 02115, USA,Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA,Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Kletenik I, Ferguson MA, Bateman JR, Cohen AL, Lin C, Tetreault A, Pelak VS, Anderson CA, Prasad S, Darby RR, Fox MD. Network Localization of Unconscious Visual Perception in Blindsight. Ann Neurol 2022; 91:217-224. [PMID: 34961965 PMCID: PMC10013845 DOI: 10.1002/ana.26292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Blindsight is a disorder where brain injury causes loss of conscious but not unconscious visual perception. Prior studies have produced conflicting results regarding the neuroanatomical pathways involved in this unconscious perception. METHODS We performed a systematic literature search to identify lesion locations causing visual field loss in patients with blindsight (n = 34) and patients without blindsight (n = 35). Resting state functional connectivity between each lesion location and all other brain voxels was computed using a large connectome database (n = 1,000). Connections significantly associated with blindsight (vs no blindsight) were identified. RESULTS Functional connectivity between lesion locations and the ipsilesional medial pulvinar was significantly associated with blindsight (family wise error p = 0.029). No significant connectivity differences were found to other brain regions previously implicated in blindsight. This finding was independent of methods (eg, flipping lesions to the left or right) and stimulus type (moving vs static). INTERPRETATION Connectivity to the ipsilesional medial pulvinar best differentiates lesion locations associated with blindsight versus those without blindsight. Our results align with recent data from animal models and provide insight into the neuroanatomical substrate of unconscious visual abilities in patients. ANN NEUROL 2022;91:217-224.
Collapse
Affiliation(s)
- Isaiah Kletenik
- Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Michael A Ferguson
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - James R Bateman
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Alexander L Cohen
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Neurology, and Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Christopher Lin
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
| | - Aaron Tetreault
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Victoria S Pelak
- Behavioral Neurology Section, Department of Neurology, University of Colorado School of Medicine, Aurora, CO
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO
| | - Clark Alan Anderson
- Behavioral Neurology Section, Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - Sashank Prasad
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Neuro-Ophthalmology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Richard Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael D Fox
- Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and Department of Neurology, Massachusetts General Hospital, Charlestown, MA
- Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
45
|
Dugré JR, Potvin S. The origins of evil: From lesions to the functional architecture of the antisocial brain. Front Psychiatry 2022; 13:969206. [PMID: 36386969 PMCID: PMC9640636 DOI: 10.3389/fpsyt.2022.969206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decades, a growing body of evidence has suggested that some individuals may exhibit antisocial behaviors following brain lesions. Recently, some authors have shown that lesions underpinning antisocial behaviors may disrupt a particular brain network during resting-state. However, it remains unknown whether these brain lesions may alter specific mental processes during tasks. Therefore, we conducted meta-analytic co-activation analyses on lesion masks of 17 individuals who acquired antisocial behaviors following their brain lesions. Each lesion mask was used as a seed of interest to examine their aberrant co-activation network using a database of 143 whole-brain neuroimaging studies on antisocial behaviors (n = 5,913 subjects). We aimed to map the lesion brain network that shows deficient activity in antisocial population against a null distribution derived from 655 control lesions. We further characterized the lesion-based meta-analytic network using term-based decoding (Neurosynth) as well as receptor/transporter density maps (JuSpace). We found that the lesion meta-analytic network included the amygdala, orbitofrontal cortex, ventro- and dorso-medial prefrontal cortex, fusiform face area, and supplementary motor area (SMA), which correlated mainly with emotional face processing and serotoninergic system (5-HT1A and 5-HTT). We also investigated the heterogeneity in co-activation networks through data-driven methods and found that lesions could be grouped in four main networks, encompassing emotional face processing, general emotion processing, and reward processing. Our study shows that the heterogeneous brain lesions underpinning antisocial behaviors may disrupt specific mental processes, which further increases the risk for distinct antisocial symptoms. It also highlights the importance and complexity of studying brain lesions in relationship with antisocial behaviors.
Collapse
Affiliation(s)
- Jules R Dugré
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
46
|
Pernía-Andrade AJ, Wenger N, Esposito MS, Tovote P. Circuits for State-Dependent Modulation of Locomotion. Front Hum Neurosci 2021; 15:745689. [PMID: 34858153 PMCID: PMC8631332 DOI: 10.3389/fnhum.2021.745689] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023] Open
Abstract
Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.
Collapse
Affiliation(s)
| | - Nikolaus Wenger
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Maria S Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Carlos de Bariloche, Argentina
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.,Center for Mental Health, University of Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
Piervincenzi C, Petsas N, Giannì C, Di Piero V, Pantano P. Alice in Wonderland syndrome: a lesion mapping study. Neurol Sci 2021; 43:3321-3332. [PMID: 34859331 DOI: 10.1007/s10072-021-05792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Alice in Wonderland syndrome (AIWS) is a rare neurological disorder, characterized by an erroneous perception of the body schema or surrounding space. It may be caused by a variety of neurological disorders, but to date, there is no agreement on which brain areas are affected. The aim of this study was to identify brain areas involved in AIWS. METHODS We conducted a literature search for AIWS cases following brain lesions. Patients were classified according to their symptoms as type A (somesthetic), type B (visual), or type C (somesthetic and visual). Using a lesion mapping approach, lesions were mapped onto a standard brain template and sites of overlap were identified. RESULTS Of 30 lesions, maximum spatial overlap was present in six cases. Local maxima were identified in the right occipital lobe, specifically in the extrastriate visual cortices and white matter tracts, including the ventral occipital fasciculus, optic tract, and inferior fronto-occipital fasciculus. Overlap was primarily due to type B patients (the most prevalent type, n = 22), who shared an occipital site of brain damage. Type A (n = 5) and C patients (n = 3) were rarer, with lesions disparately located in the right hemisphere (thalamus, insula, frontal lobe, hippocampal/parahippocampal cortex). CONCLUSIONS Lesion-associated AIWS in type B patients could be related to brain damage in visual pathways located preferentially, but not exclusively, in the right hemisphere. Conversely, the lesion location disparity in cases with somesthetic symptoms suggests underlying structural/functional disconnections requiring further evaluation.
Collapse
Affiliation(s)
| | | | | | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS NEUROMED, Pozzilli, IS, Italy
| |
Collapse
|
48
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
49
|
Wang S, Cai H, Cao Z, Li C, Wu T, Xu F, Qian Y, Chen X, Yu Y. More Than Just Static: Dynamic Functional Connectivity Changes of the Thalamic Nuclei to Cortex in Parkinson's Disease With Freezing of Gait. Front Neurol 2021; 12:735999. [PMID: 34721266 PMCID: PMC8553931 DOI: 10.3389/fneur.2021.735999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The thalamus is not only a key relay node of the thalamocortical circuit but also a hub in the regulation of gait. Previous studies of resting-state functional magnetic resonance imaging (fMRI) have shown static functional connectivity (FC) between the thalamus and the cortex are disrupted in Parkinson's disease (PD) patients with freezing of gait (FOG). However, temporal dynamic FC between the thalamus and the cortex has not yet been characterized in these patients. Methods: Fifty PD patients, including 25 PD patients with FOG (PD-FOG) and 25 PD patients without FOG (PD-NFOG), and 25 healthy controls (HC) underwent resting-state fMRI. Seed-voxel-wise static and dynamic FC were calculated between each thalamic nuclei and other voxels across the brain using the 14 thalamic nuclei in both hemispheres as regions of interest. Associations between altered thalamic FC based on significant inter-group differences and severity of FOG symptoms were also examined in PD-FOG. Results: Both PD-FOG and PD-NFOG showed lower static FC between the right lateral posterior thalamic nuclei and right inferior parietal lobule (IPL) compared with HC. Altered FC dynamics between the thalamic nuclei and several cortical areas were identified in PD-FOG, as shown by temporal dynamic FC analyses. Specifically, relative to PD-NFOG or HC, PD-FOG showed greater fluctuations in FC between the left intralaminar (IL) nuclei and right IPL and between the left medial geniculate and left postcentral gyrus. Furthermore, the dynamics of FC between the left pulvinar anterior nuclei and left inferior frontal gyrus were upregulated in both PD-FOG and PD-NFOG. The dynamics of FC between the right ventral lateral nuclei and left paracentral lobule were elevated in PD-NFOG but were maintained in PD-FOG and HC. The quantitative variability of FC between the left IL nuclei and right IPL was positively correlated with the clinical scales scores in PD-FOG. Conclusions: Dynamic FC between the thalamic nuclei and relevant associative cortical areas involved in sensorimotor integration or cognitive function was disrupted in PD-FOG, which was reflected by greater temporal fluctuations. Abnormal dynamic FC between the left IL nuclei of the thalamus and right IPL was related to the severity of FOG.
Collapse
Affiliation(s)
- Shangpei Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zong Cao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Chuan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tong Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangcheng Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
50
|
Bdaiwi AS, Greiner HM, Leach J, Mangano FT, DiFrancesco MW. Categorizing cortical dysplasia lesions for surgical outcome using network functional connectivity. J Neurosurg Pediatr 2021; 28:600-608. [PMID: 34450591 DOI: 10.3171/2021.5.peds20990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) is often associated with drug-resistant epilepsy, leading to a recommendation to surgically remove the seizure focus. Predicting outcome for resection of FCD is challenging, requiring a new approach. Lesion-symptom mapping is a powerful and broadly applicable method for linking neurological symptoms or outcomes to damage to particular brain regions. In this work, the authors applied lesion network mapping, an expansion of the traditional approach, to search for the association of lesion network connectivity with surgical outcomes. They hypothesized that connectivity of lesion volumes, preoperatively identified by MRI, would associate with seizure outcomes after surgery in a pediatric cohort with FCD. METHODS This retrospective study included 21 patients spanning the ages of 3 months to 17.7 years with FCD lesions who underwent surgery for drug-resistant epilepsy. The mean brain-wide functional connectivity map of each lesion volume was assessed across a database of resting-state functional MRI data from healthy children (spanning approximately 2.9 to 18.9 years old) compiled at the authors' institution. Lesion connectivity maps were averaged across age and sex groupings from the database and matched to each patient. The authors sought to associate voxel-wise differences in these maps with subject-specific surgical outcome (seizure free vs persistent seizures). RESULTS Lesion volumes with persistent seizures after surgery tended to have stronger connectivity to attention and motor networks and weaker connectivity to the default mode network compared with lesion volumes with seizure-free surgical outcome. CONCLUSIONS Network connectivity-based lesion-outcome mapping may offer new insight for determining the impact of lesion volumes discerned according to both size and specific location. The results of this pilot study could be validated with a larger set of data, with the ultimate goal of allowing examination of lesions in patients with FCD and predicting their surgical outcomes.
Collapse
Affiliation(s)
- Abdullah S Bdaiwi
- 1Department of Physics, University of Cincinnati, Cincinnati
- 5Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati; and
| | - Hansel M Greiner
- 2Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - James Leach
- 3Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Francesco T Mangano
- 4Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Mark W DiFrancesco
- 5Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati; and
- 6Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|