1
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
2
|
Zhong S, Lian Y, Zhou B, Ren R, Duan L, Pan Y, Gong Y, Wu X, Cheng D, Zhang P, Lu B, Wang X, Ding J. Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease. Acta Neuropathol 2024; 148:21. [PMID: 39150562 DOI: 10.1007/s00401-024-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Binbin Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruiqing Ren
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lewei Duan
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyin Pan
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Boxun Lu
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
3
|
Wang C, Liu H, Li XY, Ma J, Gu Z, Feng X, Xie S, Tang BS, Chen S, Wang W, Wang J, Zhang J, Chan P. High-depth whole-genome sequencing identifies structure variants, copy number variants and short tandem repeats associated with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:134. [PMID: 39043730 PMCID: PMC11266557 DOI: 10.1038/s41531-024-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/10/2024] [Indexed: 07/25/2024] Open
Abstract
While numerous single nucleotide variants and small indels have been identified in Parkinson's disease (PD), the contribution of structural variants (SVs), copy number variants (CNVs), and short tandem repeats (STRs) remains poorly understood. Here we investigated the association using the high-depth whole-genome sequencing data from 466 Chinese PD patients and 513 controls. Totally, we identified 29,561 SVs, 32,153 CNVs, and 174,905 STRs, and found that CNV deletions were significantly enriched in the end-proportion of autosomal chromosomes in PD. After genome-wide association analysis and replication in an external cohort of 352 cases and 547 controls, we validated that the 1.6 kb-deletion neighboring MUC19, 12.4kb-deletion near RXFP1 and GGGAAA repeats in SLC2A13 were significantly associated with PD. Moreover, the MUC19 deletion and the SLC2A13 5-copy repeat reduced the penetrance of the LRRK2 G2385R variant. Moreover, genes with these variants were dosage-sensitive. These data provided novel insights into the genetic architecture of PD.
Collapse
Affiliation(s)
- Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Hankui Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Xu-Ying Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jinghong Ma
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Zhuqin Gu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xiuli Feng
- National Human Genome Center in Beijing, Beijing Economic-Technological Development Zone, Beijing, 100176, China
| | - Shu Xie
- National Human Genome Center in Beijing, Beijing Economic-Technological Development Zone, Beijing, 100176, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, State Key Laboratory of Medical Genetics, Changsha, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Jian Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Jianguo Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Shijiazhuang, 050000, China.
| | - Piu Chan
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Clinical Center for Parkinson's Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Beijing, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Zhang T, Bao L, Chen H. Review of Phenotypic Heterogeneity of Neuronal Intranuclear Inclusion Disease and NOTCH2NLC-Related GGC Repeat Expansion Disorders. Neurol Genet 2024; 10:e200132. [PMID: 38586597 PMCID: PMC10997217 DOI: 10.1212/nxg.0000000000200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 04/09/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is an underdiagnosed neurodegenerative disorder caused by pathogenic GGC expansions in NOTCH2NLC. However, an increasing number of reports of NOTCH2NLC GGC expansions in patients with Alzheimer disease, essential tremor, Parkinson disease, amyotrophic lateral sclerosis, and oculopharyngodistal myopathy have led to the proposal of a new concept known as NOTCH2NLC-related GGC repeat expansion disorders (NREDs). The majority of studies have mainly focused on screening for NOTCH2NLC GGC repeat variation in populations previously diagnosed with the associated disease, subsequently presenting it as a novel causative gene for the condition. These studies appear to be clinically relevant but do have their limitations because they may incorrectly regard the lack of MRI abnormalities as an exclusion criterion for NIID or overlook concomitant clinical presentations not typically observed in the associated diseases. Besides, in many instances within these reports, patients lack pathologic evidence or undergo long-term follow-up to conclusively rule out NIID. In this review, we will systematically review the research on NOTCH2NLC 5' untranslated region GGC repeat expansions and their association with related neurologic disorders, explaining the limitations of the relevant reports. Furthermore, we will integrate subsequent studies to further demonstrate that these patients actually experienced distinct clinical phenotypes of NIID.
Collapse
Affiliation(s)
- Tao Zhang
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| | - Lei Bao
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| | - Hao Chen
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| |
Collapse
|
6
|
Yu D, Li J, Tai H, Ma J, Zhang Z, Tang W. Neuronal intranuclear inclusion disease misdiagnosed as Parkinson's disease: a case report. J Int Med Res 2024; 52:3000605241233159. [PMID: 38436278 PMCID: PMC10913512 DOI: 10.1177/03000605241233159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disease that mainly manifests as dementia, muscle weakness, sensory disturbances, and autonomic nervous dysfunction. Herein, we report a 68-year-old Chinese woman who was hospitalized because of resting tremor and bradykinesia that had been present for 7 years. Five years prior, bradykinesia and hypermyotonia had become apparent. She had urinary incontinence and rapid eye movement sleep behavior disorder. She was diagnosed with Parkinson's disease (PD) and received levodopa and pramipexole, which relieved her motor symptoms. During hospitalization, diffusion-weighted imaging revealed a high-intensity signal along the cortical medullary junction. Moreover, a skin biopsy revealed the presence of intranuclear inclusions in adipocytes, fibroblasts, and sweat gland cells. NIID was diagnosed by testing the Notch 2 N-terminal-like C (NOTCH2NLC) gene. We report this case to remind doctors to consider NIID when diagnosing patients with symptoms indicative of Parkinson's disease. Moreover, we note that further research is needed on the mechanism by which levodopa is effective for NIID.
Collapse
Affiliation(s)
- Dandan Yu
- Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Jing Li
- Donggang Center Hospital, Donggang, China
| | - Hongfei Tai
- Beijing Tiantan Hospital Capital Medical University, Beijing, China
| | - Jing Ma
- Donggang Center Hospital, Donggang, China
| | - Zaiqiang Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Tang
- Dalian University Affiliated Xinhua Hospital, Dalian, China
| |
Collapse
|
7
|
Zeng T, Chen Y, Huang H, Li S, Huang J, Xie H, Lin S, Chen S, Chen G, Yang D. Neuronal Intranuclear Inclusion Disease with NOTCH2NLC GGC Repeat Expansion: A Systematic Review and Challenges of Phenotypic Characterization. Aging Dis 2024; 16:AD.2024.0131-1. [PMID: 38377026 PMCID: PMC11745434 DOI: 10.14336/ad.2024.0131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a highly clinically heterogeneous neurodegenerative disorder primarily attributed to abnormal GGC repeat expansions in the NOTCH2NLC gene. This study aims to comprehensively explore its phenotypic characteristics and genotype-phenotype correlation. A literature search was conducted in PubMed, Embase, and the Cochrane Library from September 1, 2019, to December 31, 2022, encompassing reported NIID cases confirmed by pathogenic NOTCH2NLC mutations. Linear regressions and trend analyses were performed. Analyzing 635 cases from 85 included studies revealed that familial cases exhibited significantly larger GGC repeat expansions than sporadic cases (p < 0.001), and this frequency significantly increased with expanding GGC repeats (p trend < 0.001). Age at onset (AAO) showed a negative correlation with GGC repeat expansions (p < 0.001). The predominant initial symptoms included tremor (31.70%), cognitive impairment (14.12%), and muscle weakness (10.66%). The decreased or absent tendon reflex (DTR/ATR) emerged as a notable clinical indicator of NIID due to its high prevalence. U-fiber was observed in 79.11% of patients, particularly prominent in paroxysmal disease-dominant (87.50%) and dementia-dominant cases (81.08%). Peripheral neuropathy-dominant cases exhibited larger GGC repeat expansions (median = 123.00) and an earlier AAO (median = 33.00) than other phenotypes. Moreover, a significant genetic anticipation of 3.5 years was observed (p = 0.039). This study provides a comprehensive and up-to-date compilation of genotypic and phenotypic information on NIID since the identification of the causative gene NOTCH2NLC. We contribute a novel diagnostic framework for NIID to support clinical practice.
Collapse
Affiliation(s)
- Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Jiaqi Huang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Shenyi Lin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Siyao Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Liu Q, Chen J, Xue J, Zhou X, Tian Y, Xiao Q, Huang W, Pan Y, Zhou X, Li J, Zhao Y, Pan H, Wang Y, He R, Xiang Y, Tu T, Xu Q, Sun Q, Tan J, Yan X, Li J, Guo J, Shen L, Duan R, Tang B, Liu Z. GGC expansions in NOTCH2NLC contribute to Parkinson disease and dopaminergic neuron degeneration. Eur J Neurol 2024; 31:e16145. [PMID: 37975799 PMCID: PMC11235938 DOI: 10.1111/ene.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/24/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Juan Chen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jin Xue
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Xun Zhou
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yun Tian
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiao Xiao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Wen Huang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Yongcheng Pan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jian Li
- Department of Nuclear Medicine, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuwen Zhao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hongxu Pan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yige Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Runcheng He
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yaqin Xiang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Tian Tu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qian Xu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiying Sun
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Xinxiang Yan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jinchen Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jifeng Guo
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Lu Shen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Beisha Tang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhenhua Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
9
|
Naaldijk Y, Fernández B, Fasiczka R, Fdez E, Leghay C, Croitoru I, Kwok JB, Boulesnane Y, Vizeneux A, Mutez E, Calvez C, Destée A, Taymans JM, Aragon AV, Yarza AB, Padmanabhan S, Delgado M, Alcalay RN, Chatterton Z, Dzamko N, Halliday G, Ruiz-Martínez J, Chartier-Harlin MC, Hilfiker S. A potential patient stratification biomarker for Parkinson´s disease based on LRRK2 kinase-mediated centrosomal alterations in peripheral blood-derived cells. NPJ Parkinsons Dis 2024; 10:12. [PMID: 38191886 PMCID: PMC10774440 DOI: 10.1038/s41531-023-00624-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Parkinson´s disease (PD) is a common neurodegenerative movement disorder and leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for disease intervention. However, the ability to stratify patients who will benefit from such treatment modalities based on shared etiology is critical for the success of disease-modifying therapies. Ciliary and centrosomal alterations are commonly associated with pathogenic LRRK2 kinase activity and can be detected in many cell types. We previously found centrosomal deficits in immortalized lymphocytes from G2019S-LRRK2 PD patients. Here, to investigate whether such deficits may serve as a potential blood biomarker for PD which is susceptible to LRKK2 inhibitor treatment, we characterized patient-derived cells from distinct PD cohorts. We report centrosomal alterations in peripheral cells from a subset of early-stage idiopathic PD patients which is mitigated by LRRK2 kinase inhibition, supporting a role for aberrant LRRK2 activity in idiopathic PD. Centrosomal defects are detected in R1441G-LRRK2 and G2019S-LRRK2 PD patients and in non-manifesting LRRK2 mutation carriers, indicating that they accumulate prior to a clinical PD diagnosis. They are present in immortalized cells as well as in primary lymphocytes from peripheral blood. These findings indicate that analysis of centrosomal defects as a blood-based patient stratification biomarker may help nominate idiopathic PD patients who will benefit from LRRK2-related therapeutics.
Collapse
Affiliation(s)
- Yahaira Naaldijk
- Department. of Anesthesiology and Department. of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Belén Fernández
- Institute of Parasitology and Biomedicine ´López-Neyra¨, Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Rachel Fasiczka
- Department. of Anesthesiology and Department. of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Elena Fdez
- Institute of Parasitology and Biomedicine ´López-Neyra¨, Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Coline Leghay
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Ioana Croitoru
- Biodonostia Health Research Institute (IIS Biodonostia), San Sebastain, Spain
| | - John B Kwok
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Yanisse Boulesnane
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Amelie Vizeneux
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Eugenie Mutez
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Camille Calvez
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Alain Destée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | | | - Alberto Bergareche Yarza
- Biodonostia Health Research Institute (IIS Biodonostia), San Sebastain, Spain
- Donostia University Hospital, San Sebastian, Spain
| | | | - Mario Delgado
- Institute of Parasitology and Biomedicine ´López-Neyra¨, Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Roy N Alcalay
- Department. of Neurology, Colsumbia University Medical Center, New York, NY, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zac Chatterton
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Glenda Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Javier Ruiz-Martínez
- Biodonostia Health Research Institute (IIS Biodonostia), San Sebastain, Spain
- Donostia University Hospital, San Sebastian, Spain
| | | | - Sabine Hilfiker
- Department. of Anesthesiology and Department. of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
10
|
Wang H, Zheng Y, Yu J, Meng L, Zhang W, Hong D, Wang Z, Yuan Y, Deng J. Pathologic changes in neuronal intranuclear inclusion disease are linked to aberrant FUS interaction under hyperosmotic stress. Neurobiol Dis 2024; 190:106391. [PMID: 38145851 DOI: 10.1016/j.nbd.2023.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
CGG repeat expansion in NOTCH2NLC is the genetic cause of neuronal intranuclear inclusion disease (NIID). Previous studies indicated that the CGG repeats can be translated into polyglycine protein (N2CpolyG) which was toxic to neurons by forming intranuclear inclusions (IIs). However, little is known about the factors governing polyG IIs formation as well as its molecular pathogenesis. Considering that neurogenetic disorders usually involve interactions between genetic and environmental stresses, we investigated the effect of stress on the formation of IIs. Our results revealed that under hyperosmotic stress, N2CpolyG translocated from the cytoplasm to the nucleus and formed IIs in SH-SY5Y cells, recapitulating the pathological hallmark of NIID patients. Furthermore, N2CpolyG interacted/ co-localized with an RNA-binding protein FUS in the IIs of cellular model and NIID patient tissues, thereby disrupting stress granule formation in cytoplasm under hyperosmotic stress. Consequently, dysregulated expression of microRNAs was found both in NIID patients and cellular model, which could be restored by FUS overexpression in cultured cells. Overall, our findings indicate a mechanism of stress-induced pathological changes as well as neuronal damage, and a potential strategy for the treatment of NIID.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yilei Zheng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China.
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China.
| |
Collapse
|
11
|
Wu Y, Song T, Xu Q. R-LOOPs on Short Tandem Repeat Expansion Disorders in Neurodegenerative Diseases. Mol Neurobiol 2023; 60:7185-7195. [PMID: 37540313 DOI: 10.1007/s12035-023-03531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Expansions of short tandem repeats (STRs) have been found to be present in more than 50 diseases and have a close connection with neurodegenerative diseases. Transcriptional silencing and R-LOOP formation, RNA-mediated sequestration of RNA-binding proteins (RBPs), gain-of-function (GOF) proteins containing expanded repeats, and repeat-associated non-AUG (RAN) translation of toxic repeat peptides are some potential molecular mechanisms underlying STR expansion disorders. R-LOOP, a byproduct of transcription, is a three-stranded nucleic acid structure with abnormal accumulation that participates in the pathogenesis of STR expansion disorders by inducing DNA damage and genome instability. R-LOOPs can engender a series of DNA damage, such as DNA double-strand breaks (DSBs), single-strand breaks (SSBs), DNA recombination, or mutations in the DNA replication, transcription, or repair processes. In this review, we provide an in-depth discussion of recent advancements in R-LOOP and systematically elaborate on its genetic destabilizing effects in several neurodegenerative diseases. These molecular mechanisms will provide novel targets for drug design and therapeutic upgrading of these devastating diseases.
Collapse
Affiliation(s)
- Yiting Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingwei Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
| |
Collapse
|
12
|
Liu M, Gao Y, Yuan Y, Liu X, Wang Y, Li L, Zhang X, Jiang C, Wang Q, Wang Y, Shi C, Xu Y, Yang J. A comprehensive study of clinicopathological and genetic features of neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:3545-3556. [PMID: 37184590 DOI: 10.1007/s10072-023-06845-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The discovery of skin intranuclear inclusions and GGC repeat expansion of NOTCH2NLC has greatly promoted the diagnosis of neuronal intranuclear inclusion disease (NIID). With highly heterogeneous clinical manifestations, NIID patients tend to be underdiagnosed at early stages. METHODS This study comprehensively studied clinical manifestations, magnetic resonance imaging (MRI), and peripheral nerve conduction in 24 NIID and 166 other neurodegenerative disease (ND) subjects. The nomogram was plotted using the "rms" package, and the t-distributed stochastic neighbor embedding algorithm was performed. Associations between skin intranuclear inclusions and NOTCH2NLC GGC repeats were further analyzed. RESULTS The clinical, MRI, and peripheral nerve conduction features seriously overlapped in NIID and ND patients; they were assigned variables according to their frequency and specificity in NIID patients. A nomogram that could distinguish NIID from ND was constructed according to the assigned variables and cutoff values of the above features. The occurrence of skin intranuclear inclusions and NOTCH2NLC GGC repeats ≥ 60 showed 100% consistency, and intranuclear inclusion frequency positively correlated with NOTCH2NLC GGC repeats. A hierarchical diagnostic flowchart for definite NIID was further established. CONCLUSION We provide a novel nomogram with the potential to realize early identification and update the diagnostic flowchart for definitive diagnosis. Moreover, this is the first study to define the association between skin pathology and NOTCH2NLC genetics in NIID.
Collapse
Affiliation(s)
- Minglei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Chenyang Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Wang M, Yang H, Lin Z, Li X, Liu L, Huang S, Zhao H, Zhu X, Xiao Q, Duan R, Wang J, Zuchner S, Tang B, Zhang R. The genetic and clinical spectrum in a cohort of 39 families with complex inherited peripheral neuropathies. J Neurol 2023; 270:4959-4967. [PMID: 37365282 DOI: 10.1007/s00415-023-11821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
With complicated conditions and a large number of potentially causative genes, the diagnosis of a patient with complex inherited peripheral neuropathies (IPNs) is challenging. To provide an overview of the genetic and clinical features of 39 families with complex IPNs from central south China and to optimize the molecular diagnosis approach to this group of heterogeneous diseases, a total of 39 index patients from unrelated families were enrolled, and detailed clinical data were collected. TTR Sanger sequencing, hereditary spastic paraplegia (HSP) gene panel, and dynamic mutation detection in spinocerebellar ataxia (SCAs) were performed according to the respective additional clinical features. Whole-exome sequencing (WES) was used in patients with negative or unclear results. Dynamic mutation detection in NOTCH2NLC and RCF1 was applied as a supplement to WES. As a result, an overall molecular diagnosis rate of 89.7% was achieved. All 21 patients with predominant autonomic dysfunction and multiple organ system involvement carried pathogenic variants in TTR, among which nine had c.349G > T (p.A97S) hotspot variants. Five out of 7 patients (71.4%) with muscle involvement harbored biallelic pathogenic variants in GNE. Five out of 6 patients (83.3%) with spasticity reached definite genetic causes in SACS, KIF5A, BSCL2, and KIAA0196, respectively. NOTCH2NLC GGC repeat expansions were identified in all three cases accompanied by chronic coughing and in one patient accompanied by cognitive impairment. The pathogenic variants, p.F284S and p.G111R in GNE, and p.K4326E in SACS, were first reported. In conclusion, transthyretin amyloidosis with polyneuropathy (ATTR-PN), GNE myopathy, and neuronal intranuclear inclusion disease (NIID) were the most common genotypes in this cohort of complex IPNs. NOTCH2NLC dynamic mutation testing should be added to the molecular diagnostic workflow. We expanded the genetic and related clinical spectrum of GNE myopathy and ARSACS by reporting novel variants.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Honglan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiying Zhu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Xiao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Stephan Zuchner
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Ando M, Higuchi Y, Yuan JH, Yoshimura A, Dozono M, Hobara T, Kojima F, Noguchi Y, Takeuchi M, Takei J, Hiramatsu Y, Nozuma S, Nakamura T, Sakiyama Y, Hashiguchi A, Matsuura E, Okamoto Y, Sone J, Takashima H. Clinical phenotypic diversity of NOTCH2NLC-related disease in the largest case series of inherited peripheral neuropathy in Japan. J Neurol Neurosurg Psychiatry 2023; 94:622-630. [PMID: 36948577 DOI: 10.1136/jnnp-2022-330769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND NOTCH2NLC GGC repeat expansions have been associated with various neurogenerative disorders, including neuronal intranuclear inclusion disease and inherited peripheral neuropathies (IPNs). However, only a few NOTCH2NLC-related disease studies in IPN have been reported, and the clinical and genetic spectra remain unclear. Thus, this study aimed to describe the clinical and genetic manifestations of NOTCH2NLC-related IPNs. METHOD Among 2692 Japanese patients clinically diagnosed with IPN/Charcot-Marie-Tooth disease (CMT), we analysed NOTCH2NLC repeat expansion in 1783 unrelated patients without a genetic diagnosis. Screening and repeat size determination of NOTCH2NLC repeat expansion were performed using repeat-primed PCR and fluorescence amplicon length analysis-PCR. RESULTS NOTCH2NLC repeat expansions were identified in 26 cases of IPN/CMT from 22 unrelated families. The mean median motor nerve conduction velocity was 41 m/s (range, 30.8-59.4), and 18 cases (69%) were classified as intermediate CMT. The mean age of onset was 32.7 (range, 7-61) years. In addition to motor sensory neuropathy symptoms, dysautonomia and involuntary movements were common (44% and 29%). Furthermore, the correlation between the age of onset or clinical symptoms and the repeat size remains unclear. CONCLUSIONS These findings of this study help us understand the clinical heterogeneity of NOTCH2NLC-related disease, such as non-length-dependent motor dominant phenotype and prominent autonomic involvement. This study also emphasise the importance of genetic screening, regardless of the age of onset and type of CMT, particularly in patients of Asian origin, presenting with intermediate conduction velocities and dysautonomia.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mika Dozono
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takahiro Hobara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yutaka Noguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mika Takeuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Physical Therapy, Kagoshima University of School of Health Sciences, Kagoshima, Japan
| | - Jun Sone
- Department of Neuropathology, Aichi Medical University, Aichi, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
15
|
Morita K, Shinzato T, Endo Y, Suzuki M, Yoshida H, Sone J, Nagai K. A case of unusual renal manifestation in a patient with neuronal intranuclear inclusion disease treated with steroids. Clin Case Rep 2023; 11:e7730. [PMID: 37564608 PMCID: PMC10410123 DOI: 10.1002/ccr3.7730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative disorder characterized by intranuclear inclusions. Kidney injury involvement and successful treatment for NIID have rarely been reported. A NIID patient developed crescentic IgA nephropathy. Steroid therapy resolved digestive symptoms and recovered renal function. Steroids are considered for concomitant symptoms of NIID.
Collapse
Affiliation(s)
- Keisuke Morita
- Department of Nephrology Shizuoka General Hospital Shizuoka Japan
| | | | - Yuzo Endo
- Department of Diagnostic Pathology Shizuoka General Hospital Shizuoka Japan
| | - Makoto Suzuki
- Department of Diagnostic Pathology Shizuoka General Hospital Shizuoka Japan
| | - Hidefumi Yoshida
- Department of Neurology Shizuoka General Hospital Shizuoka Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging Aichi Medical University Aichi Japan
| | - Kojiro Nagai
- Department of Nephrology Shizuoka General Hospital Shizuoka Japan
| |
Collapse
|
16
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
17
|
Tai H, Wang A, Zhang Y, Liu S, Pan Y, Li K, Zhao G, Wang M, Wu G, Niu S, Pan H, Chen B, Li W, Wang X, Dong G, Li W, Zhang Y, Guo S, Liu X, Li M, Liang H, Huang M, Chen W, Zhang Z. Clinical Features and Classification of Neuronal Intranuclear Inclusion Disease. NEUROLOGY GENETICS 2023; 9:e200057. [PMID: 37090934 PMCID: PMC10117695 DOI: 10.1212/nxg.0000000000200057] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 03/04/2023]
Abstract
Background and ObjectivesNeuronal intranuclear inclusion body disease (NIID) is a neurodegenerative disease with highly heterogeneous clinical manifestations. The present study aimed to characterize clinical features and propose a classification system based on a large cohort of NIID in China.MethodsThe Chinese NIID registry was launched from 2017, and participants' demographics and clinical features were recorded. Brain MRI, skin pathologies, and the number of GGC repeat expansions in the 5′ untranslated region of theNOTCH2NLCgene were evaluated in all patients.ResultsIn total, 223 patients (64.6% female) were recruited; the mean (SD) onset age was 56.7 (10.3) years. The most common manifestations were cognitive impairment (78.5%) and autonomic dysfunction (70.9%), followed by episodic symptoms (51.1%), movement disorders (50.7%), and muscle weakness (25.6%). Imaging markers included hyperintensity signals along the corticomedullary junction on diffusion-weighted imaging (96.6%), white matter lesions (98.1%), paravermis (55.0%), and focal cortical lesions (10.1%). The median size of the expanded GGC repeats in these patients was 115 (range, 70–525), with 2 patients carrying >300 GGC repeats. A larger number of GGC repeats was associated with younger age at onset (r= −0.329,p< 0.0001). According to the proposed clinical classification based on the most prominent manifestations, the patients were designated into 5 distinct types: cognitive impairment-dominant type (34.1%, n = 76), episodic neurogenic event-dominant type (32.3%, n = 72), movement disorder-dominant type (17.5%, n = 39), autonomic dysfunction-dominant type (8.5%, n = 19), and neuromuscular disease-dominant type (7.6%, n = 17). Notably, 32.3% of the episodic neurogenic event-dominant type of NIID has characteristic focal cortical lesions on brain MRI presenting localized cortical edema or atrophy. The mean onset age of the neuromuscular disease-dominant type was 47.2 (17.6) years, younger than the other types (p< 0.001). There was no significant difference in the sizes of GGC repeats among the patients in the 5 types (p= 0.547, Kruskal-Wallis test).DiscussionThis observational study of NIID establishes an overall picture of the disease regarding clinical, imaging, and genetic characteristics. The proposed clinical classification of NIID based on the most prominent manifestation divides patients into 5 types.
Collapse
Affiliation(s)
- Hongfei Tai
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - An Wang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Yumei Zhang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Shaocheng Liu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Yunzhu Pan
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Kai Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Guixian Zhao
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Mengwen Wang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Guode Wu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Songtao Niu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Hua Pan
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Bin Chen
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Xingao Wang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Gehong Dong
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Ying Zhang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Sheng Guo
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaoyun Liu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Mingxia Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Hui Liang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Ming Huang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei'an Chen
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Zaiqiang Zhang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
18
|
NOTCH2NLC GGC repeats are not expanded in Italian amyotrophic lateral sclerosis patients. Sci Rep 2023; 13:3187. [PMID: 36823368 PMCID: PMC9950471 DOI: 10.1038/s41598-023-30393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Repeat expansions in genes other than C9orf72 and ATXN2 have been recently associated with Amyotrophic Lateral Sclerosis (ALS). Indeed, an abnormal number of GGC repeats in NOTCH2NLC has been recently reported in 0.7% of sporadic ALS patients from mainland China. This finding was not confirmed in an ALS cohort of subjects from Taiwan. As the involvement of expanded NOTCH2NLC alleles in ALS is debated, we addressed this point by evaluating NOTCH2NLC repeat expansions in an Italian cohort of ALS patients. A screening analysis of NOTCH2NLC GGC repeats was performed by repeat-primed polymerase chain reaction (RP-PCR) in a cohort of 385 probable/definite ALS Italian patients. Mean age at onset was 60.5 years (SD 13.7), and 60.9% were males. Sporadic cases were 357 (92.7%), and most patients had a spinal onset (71.8%). None of our patients showed the typical sawtooth tail pattern on RP-PCR, thus excluding abnormal repeat expansion in NOTCH2NLC. Overall, we suggest that NOTCH2NLC expanded alleles might be absent or at least extremely rare in ALS Italian patients. Further investigations in larger cohorts with different ethnic backgrounds are required to support the involvement of NOTCH2NLC in ALS.
Collapse
|
19
|
Current advances in neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:1881-1889. [PMID: 36795299 DOI: 10.1007/s10072-023-06677-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare but probably underdiagnosed neurodegenerative disorder due to pathogenic GGC expansions in the NOTCH2NLC gene. In this review, we summarize recent developments in the inheritance features, pathogenesis, and histopathologic and radiologic features of NIID that subvert the previous perceptions of NIID. GGC repeat sizes determine the age of onset and clinical phenotypes of NIID patients. Anticipation may be absent in NIID but paternal bias is observed in NIID pedigrees. Eosinophilic intranuclear inclusions in skin tissues once considered pathological hallmarks of NIID can also present in other GGC repeat diseases. Diffusion-weighted imaging (DWI) hyperintensity along the corticomedullary junction once considered the imaging hallmark of NIID can frequently be absent in muscle weakness and parkinsonism phenotype of NIID. Besides, DWI abnormalities can appear years after the onset of predominant symptoms and may even disappear completely with disease progression. Moreover, continuous reports of NOTCH2NLC GGC expansions in patients with other neurodegenerative diseases lead to the proposal of a new concept of NOTCH2NLC-related GGC repeat expansion disorders (NRED). However, by reviewing the previous literature, we point out the limitations of these studies and provide evidence that these patients are actually suffering from neurodegenerative phenotypes of NIID.
Collapse
|
20
|
Hong D, Wang H, Zhu M, Peng Y, Huang P, Zheng Y, Yu M, Meng L, Li F, Yu J, Zhou M, Deng J, Wang Z, Yuan Y. Subclinical peripheral neuropathy is common in neuronal intranuclear inclusion disease with dominant encephalopathy. Eur J Neurol 2023; 30:527-537. [PMID: 36263606 DOI: 10.1111/ene.15606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Neuronal intranuclear inclusion disease (NIID) is associated with CGG repeat expansion in the NOTCH2NLC gene. Although pure or dominant peripheral neuropathy has been described as a subtype of NIID in a few patients, most NIID patients predominantly show involvements of the central nervous system (CNS). It is necessary to further explore whether these patients have subclinical peripheral neuropathy. METHODS Twenty-eight NIID patients, clinically characterized by CNS-dominant involvements, were recruited from two tertiary hospitals. Standard nerve conduction studies were performed in all patients. Skin and sural nerve biopsies were performed in 28 and 15 patients, respectively. Repeat-primed polymerase chain reaction and amplicon length polymerase chain reaction were used to screen the CGG repeat expansion in NOTCH2NLC. RESULTS All 28 patients can be diagnosed with NIID based on skin pathological and genetic changes. All patients predominantly showed CNS symptoms mainly characterized by episodic encephalopathy and cognitive impairments, but no clinical symptoms of peripheral neuropathy could be observed initially. Electrophysiological abnormalities were found in 96.4% (27/28) of these patients, indicating that subclinical peripheral neuropathy is common in NIID patients with CNS-dominant type. Electrophysiological and neuropathological studies revealed that demyelinating degeneration was the main pathological pattern in these patients, although mild axonal degeneration was also observed in some patients. No significant association between CGG repeat size and the change of nerve conduction velocity was found in these patients. CONCLUSIONS This study demonstrated that most patients with CNS-dominant NIID had subclinical peripheral neuropathy. Electrophysiological examination should be the routinely diagnostic workflow for every NIID patient.
Collapse
Affiliation(s)
- Daojun Hong
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Min Zhu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Peng
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yilei Zheng
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Meihong Zhou
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
21
|
Abstract
Parkinson's disease (PD) is clinically, pathologically, and genetically heterogeneous, resisting distillation to a single, cohesive disorder. Instead, each affected individual develops a virtually unique form of Parkinson's syndrome. Clinical manifestations consist of variable motor and nonmotor features, and myriad overlaps are recognized with other neurodegenerative conditions. Although most commonly characterized by alpha-synuclein protein pathology throughout the central and peripheral nervous systems, the distribution varies and other pathologies commonly modify PD or trigger similar manifestations. Nearly all PD is genetically influenced. More than 100 genes or genetic loci have been identified, and most cases likely arise from interactions among many common and rare genetic variants. Despite its complex architecture, insights from experimental genetic dissection coalesce to reveal unifying biological themes, including synaptic, lysosomal, mitochondrial, andimmune-mediated mechanisms of pathogenesis. This emerging understanding of Parkinson's syndrome, coupled with advances in biomarkers and targeted therapies, presages successful precision medicine strategies.
Collapse
Affiliation(s)
- Hui Ye
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Laurie A Robak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
| | - Meigen Yu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
| | - Matthew Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA;
- Department of Neurology, Houston Methodist Hospital, Houston, Texas, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Wan M, He J, Huo J, Sun C, Fu Y, Fan D. Intermediate-Length GGC Repeat Expansion in NOTCH2NLC Was Identified in Chinese Patients with Amyotrophic Lateral Sclerosis. Brain Sci 2023; 13:brainsci13010085. [PMID: 36672065 PMCID: PMC9856391 DOI: 10.3390/brainsci13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
GGC repeat expansions in the 5' untranslated region (5'UTR) of the Notch Homolog 2 N-terminal-like C gene (NOTCH2NLC) have been reported to be the genetic cause of neuronal intranuclear inclusion disease (NIID). However, whether they exist in other neurodegenerative disorders remains unclear. To determine whether there is a medium-length amplification of NOTCH2NLC in patients with amyotrophic lateral sclerosis (ALS), we screened 476 ALS patients and 210 healthy controls for the presence of a GGC repeat expansion in NOTCH2NLC by using repeat-primed polymerase chain reaction (RP-PCR) and fragment analysis. The repeat number in ALS patients was 16.11 ± 5.7 (range 7-46), whereas the repeat number in control subjects was 16.19 ± 3.79 (range 10-29). An intermediate-length GGC repeat expansion was observed in two ALS patients (numbers of repeats: 45, 46; normal repeat number ≤ 40) but not in the control group. The results suggested that the intermediate NOTCH2NLC GGC repeat expansion was associated with Chinese ALS patients, and further functional studies for intermediate-length variation are required to identify the mechanism.
Collapse
Affiliation(s)
- Mengxia Wan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Junyan Huo
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Can Sun
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
- Correspondence: (Y.F.); (D.F.)
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
- Correspondence: (Y.F.); (D.F.)
| |
Collapse
|
23
|
Gao X, Shao ZD, Zhu L. Typical imaging manifestation of neuronal intranuclear inclusion disease in a man with unsteady gait: A case report. World J Clin Cases 2022; 10:12388-12394. [PMID: 36483830 PMCID: PMC9724510 DOI: 10.12998/wjcc.v10.i33.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Neuronal intranuclear inclusion disease (NIID) is a rare neurological degenerative disorder with diverse manifestations and inadequate awareness. Only a few cases of NIID have been reported, and typical imaging findings can provide certain clues for the diagnosis of the disease. Furthermore, skin biopsy and genetic testing are important to confirm the diagnosis.
CASE SUMMARY An 84-year-old man presented to the Neurology Department of our hospital complaining of a progressive course of cognitive impairment and unsteady gait for 2 years. The symptoms gradually progressed and affected his daily life. The patient was initially diagnosed with Parkinson’s disease and vascular dementia. The patient did not respond to conventional treatment, such as dopasehydrazine. Therefore, magnetic resonance imaging (MRI) was performed. Based on the imaging findings, we suspected an NIID diagnosis. During the 3-year follow-up in our hospital, his clinical symptoms gradually progressed, and imaging findings became more significant. A high signal intensity along the corticomedullary junction persisted on MRI. Gene testing and skin biopsy were recommended in our hospital; however, the patient refused these procedures. NIID was also considered when he went to a superior hospital in Shanghai. The patient eventually agreed to undergo gene testing. This revealed abnormal GGC repeat expansions in the NOTCH2NLC gene.
CONCLUSION The clinical manifestations of NIID are diverse. Patients with clinical manifestations similar to Parkinson’s disease and dementia may have NIID.
Collapse
Affiliation(s)
- Xue Gao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui Province, China
| | - Zhi-Ding Shao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui Province, China
| | - Lei Zhu
- Department of Neurology, Huainan First People’s Hospital Affiliated to Auhui University of Science and Technology, Huainan 232000, Anhui Province, China
| |
Collapse
|
24
|
Liu Q, Zhang K, Kang Y, Li Y, Deng P, Li Y, Tian Y, Sun Q, Tang Y, Xu K, Zhou Y, Wang JL, Guo J, Li JD, Xia K, Meng Q, Allen EG, Wen Z, Li Z, Jiang H, Shen L, Duan R, Yao B, Tang B, Jin P, Pan Y. Expression of expanded GGC repeats within NOTCH2NLC causes behavioral deficits and neurodegeneration in a mouse model of neuronal intranuclear inclusion disease. SCIENCE ADVANCES 2022; 8:eadd6391. [PMID: 36417528 PMCID: PMC9683706 DOI: 10.1126/sciadv.add6391] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
GGC repeat expansions within NOTCH2NLC have been identified as the genetic cause of neuronal intranuclear inclusion disease (NIID). To understand the molecular pathogenesis of NIID, here, we established both a transgenic mouse model and a human neural progenitor cells (hNPCs) model. Expression of the NOTCH2NLC with expanded GGC repeats produced widespread intranuclear and perinuclear polyglycine (polyG), polyalanine (polyA), and polyarginine (polyR) inclusions, leading to behavioral deficits and severe neurodegeneration, which faithfully mimicked the clinical and pathological features associated with NIID. Furthermore, conserved alternative splicing events were identified between the NIID mouse and hNPC models, among which was the enrichment of the binding motifs of hnRNPM, an RNA binding protein known as alternative splicing regulator. Expanded NOTCH2NLC-polyG and NOTCH2NLC-polyA could interact with and sequester hnRNPM, while overexpression of hnRNPM could ameliorate the cellular toxicity. These results together suggested that dysfunction of hnRNPM could play an important role in the molecular pathogenesis of NIID.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Penghui Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yun Tian
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiying Sun
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Keqin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia-Da Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, Hunan 410008, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qingtuan Meng
- Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Emily G. Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Corresponding author. (Y.P.); (P.J.); (B.T.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Corresponding author. (Y.P.); (P.J.); (B.T.)
| | - Yongcheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Corresponding author. (Y.P.); (P.J.); (B.T.)
| |
Collapse
|
25
|
CGG repeat expansion in NOTCH2NLC causes mitochondrial dysfunction and progressive neurodegeneration in Drosophila model. Proc Natl Acad Sci U S A 2022; 119:e2208649119. [PMID: 36191230 PMCID: PMC9565157 DOI: 10.1073/pnas.2208649119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neuromuscular/neurodegenerative disease caused by the expansion of CGG repeats in the 5' untranslated region (UTR) of the NOTCH2NLC gene. These repeats can be translated into a polyglycine-containing protein, uN2CpolyG, which forms protein inclusions and is toxic in cell models, albeit through an unknown mechanism. Here, we established a transgenic Drosophila model expressing uN2CpolyG in multiple systems, which resulted in progressive neuronal cell loss, locomotor deficiency, and shortened lifespan. Interestingly, electron microscopy revealed mitochondrial swelling both in transgenic flies and in muscle biopsies of individuals with NIID. Immunofluorescence and immunoelectron microscopy showed colocalization of uN2CpolyG with mitochondria in cell and patient samples, while biochemical analysis revealed that uN2CpolyG interacted with a mitochondrial RNA binding protein, LRPPRC (leucine-rich pentatricopeptide repeat motif-containing protein). Furthermore, RNA sequencing (RNA-seq) analysis and functional assays showed down-regulated mitochondrial oxidative phosphorylation in uN2CpolyG-expressing flies and NIID muscle biopsies. Finally, idebenone treatment restored mitochondrial function and alleviated neurodegenerative phenotypes in transgenic flies. Overall, these results indicate that transgenic flies expressing uN2CpolyG recapitulate key features of NIID and that reversing mitochondrial dysfunction might provide a potential therapeutic approach for this disorder.
Collapse
|
26
|
Wang YC, Fan Y, Yu WK, Shen S, Li JD, Gao Y, Ji Y, Li YS, Yu LL, Zhao ZC, Li SS, Ding Y, Shi CH, Xu YM. NOTCH2NLC expanded GGC repeats in patients with cerebral small vessel disease. Stroke Vasc Neurol 2022; 8:161-168. [PMID: 36207023 PMCID: PMC10176980 DOI: 10.1136/svn-2022-001631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE GGC repeat expansions in the human-specific NOTCH2NLC gene have been reported as the cause of neuronal intranuclear inclusion disease (NIID). Given the clinical overlap of cognitive impairment in NIID and cerebral small vessel disease (CSVD), both diseases have white matter hyperintensity on T2-fluid-attenuated inversion recovery sequences of brain MRI, and white matter hyperintensity is a primary neuroimaging marker of CSVD on MRI. Therefore, we hypothesised that the GGC repeat expansions might also contribute to CSVD. To further investigate the relationship between NOTCH2NLC GGC repeat expansions and CSVD, we performed a genetic analysis of 814 patients with the disease. METHODS We performed a comprehensive GGC repeat expansion screening in NOTCH2NLC from 814 patients with sporadic CSVD. Their Fazekas score was greater than or equal to 3 points. Repeat-primed PCR and fluorescence amplicon length analyses were performed to identify GGC repeat expansions, and whole-exome sequencing was used to detect any pathogenic mutation in previously reported genes associated with CSVD. RESULTS We identified nine (1.11%) patients with pathogenic GGC repeat expansions ranging from 41 to 98 repeats. The minor allele frequency of expanded GGC repeats in NOTCH2NLC was 0.55%. CONCLUSION Our findings suggest that intermediate-length and longer-length GGC repeat expansions in NOTCH2NLC are associated with sporadic CSVD. This provides new thinking for studying the pathogenesis of CSVD.
Collapse
Affiliation(s)
- Yun-Chao Wang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yu Fan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Wen-Kai Yu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Si Shen
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Jia-Di Li
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yuan Gao
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yan Ji
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yu-Sheng Li
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Lu-Lu Yu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zi-Chen Zhao
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shan-Shan Li
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Ding
- Department of Neurology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chang-He Shi
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yu-Ming Xu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Oculopharyngodistal myopathy (OPDM) is a rare adolescent or adult-onset neuromuscular disease that is characterized by progressive ocular, facial, pharyngeal and distal limb muscle weakness. The rimmed vacuoles and intranuclear inclusions in myofibers constitute the pathological hallmark of OPDM. In this review, the latest findings related to the genetic, molecular and clinical features of OPDM, as well as the diagnosis and management are summarized. RECENT FINDINGS Four gene mutations, CGG repeats in the 5'-untranslated region of LRP12 , GIPC1 , NOTCH2NLC and RILPL1 have been reported to be disease-causing genes in OPDM, namely OPDM1, OPDM2, OPDM3 and OPDM4, accordingly. So far, limited studies have suggested that CGG repeat expansion within the pathogenic range may play a key role in the pathogenesis of OPDM with the gain-of-function mechanism at the RNA and/or protein level, while repeat expansion over a threshold limit may cause hypermethylation, leading to the transcriptional silencing of the CGG repeats in the expanded allele, which results in the existence of mild phenotype or asymptomatic carriers. SUMMARY Novel gene mutations, possible molecular mechanisms and the clinical features related to different causative genes are discussed in this review. More studies on the exact pathogenic mechanism are needed.
Collapse
Affiliation(s)
- Jiaxi Yu
- Department of Neurology, Peking University First Hospital
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
28
|
Liu Y, Li H, Liu X, Wang B, Yang H, Wan B, Sun M, Xu X. Clinical and mechanism advances of neuronal intranuclear inclusion disease. Front Aging Neurosci 2022; 14:934725. [PMID: 36177481 PMCID: PMC9513122 DOI: 10.3389/fnagi.2022.934725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the high clinical heterogeneity of neuronal intranuclear inclusion disease (NIID), it is easy to misdiagnose this condition and is considered to be a rare progressive neurodegenerative disease. More evidence demonstrates that NIID involves not only the central nervous system but also multiple systems of the body and shows a variety of symptoms, which makes a clinical diagnosis of NIID more difficult. This review summarizes the clinical symptoms in different systems and demonstrates that NIID is a multiple-system intranuclear inclusion disease. In addition, the core triad symptoms in the central nervous system, such as dementia, parkinsonism, and psychiatric symptoms, are proposed as an important clue for the clinical diagnosis of NIID. Recent studies have demonstrated that expanded GGC repeats in the 5′-untranslated region of the NOTCH2NLC gene are the cause of NIID. The genetic advances and possible underlying mechanisms of NIID (expanded GGC repeat-induced DNA damage, RNA toxicity, and polyglycine-NOTCH2NLC protein toxicity) are briefly summarized in this review. Interestingly, inflammatory cell infiltration and inflammation were observed in the affected tissues of patients with NIID. As a downstream pathological process of NIID, inflammation could be a therapeutic target for NIID.
Collapse
Affiliation(s)
- Yueqi Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xuan Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, China
- Bo Wan,
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Miao Sun,
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Xingshun Xu,
| |
Collapse
|
29
|
Zhou Y, Huang P, Huang Z, Peng Y, Zheng Y, Yu Y, Zhu M, Deng J, Wang Z, Hong D. Urine cytological study in patients with clinicopathologically confirmed neuronal intranuclear inclusion disease. Front Aging Neurosci 2022; 14:977604. [PMID: 36172483 PMCID: PMC9510843 DOI: 10.3389/fnagi.2022.977604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe diagnosis of neuronal intranuclear inclusion disease (NIID) is currently based on CGG repeat expansion in the 5′UTR of the NOTCH2NLC gene, or p62-positive intranuclear inclusions in skin biopsy. The purpose of this study is to explore the value of non-invasive pathological findings in urine sediment cells from NIID patients.Materials and methodsTen patients with clinically suspected NIID were enrolled for skin biopsy and gene screening. Morning urine (500 ml) was collected from each patient, and cell sediment was obtained by centrifugation. Urine cytology, including Giemsa staining, p62 immunostaining, and electron microscopic examination, were conducted on cell sediment.ResultsThe main clinical symptoms of 10 patients included episodic disturbance of consciousness, cognitive impairment, tremor, limb weakness, and so on. Cerebral MRI showed that 9 patients had linear DWI high signal in the corticomedullary junction. Genetic testing found that the number of CGG repeat ranged from 96 to 158 in the NOTCH2NLC gene. Skin biopsy revealed that all patients showed p62-positive intranuclear inclusions in 18.5 ± 6.3% of the duct epithelial cells of sweat gland. In contrast, urine sediment smears revealed that only 3 patients had p62 positive intranuclear inclusions in 3.5 ± 1.2% of the sedimentary cells. Ultrastructural examinations showed that intranuclear inclusions were also identified in the cell sediment of the 3 patients.ConclusionUrine cytology may be a new and non-invasive pathological diagnosis technique for some NIID patients, although the positive rate is not as high as that of skin biopsy, which is a sensitive and reliable pathological method for NIID.
Collapse
Affiliation(s)
- Yiyi Zhou
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaojun Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Peng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaqing Yu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- *Correspondence: Daojun Hong,
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Zhaoxia Wang,
| |
Collapse
|
30
|
Wu W, Yu J, Qian X, Wang X, Xu Y, Wang Z, Deng J. Intermediate-length CGG repeat expansion in NOTCH2NLC is associated with pathologically confirmed Alzheimer's disease. Neurobiol Aging 2022; 120:189-195. [DOI: 10.1016/j.neurobiolaging.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
|
31
|
Fujita M, Ueno T, Miki Y, Arai A, Kurotaki H, Wakabayashi K, Tomiyama M. Case report: Adult-onset neuronal intranuclear inclusion disease with an amyotrophic lateral sclerosis phenotype. Front Neurosci 2022; 16:960680. [PMID: 36033605 PMCID: PMC9399610 DOI: 10.3389/fnins.2022.960680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the differential diagnoses of diseases that occur in adulthood and lead to progressive generalized muscle weakness. Neuronal intranuclear inclusion disease (NIID) is a disease in which histopathologically eosinophilic nuclear inclusion bodies are found in various systems. Both familial and sporadic forms of the disease have been reported. Most cases of sporadic NIID are of the dementia type, in which the main symptom is dementia at the first onset. Familial NIID is more diverse, with the main dominant symptoms being muscle weakness (NIID-M), dementia (NIID-D), and parkinsonism (NIID-P). Furthermore, recently, a GGC-repeat expansion in the Notch 2 N-terminal like C (NOTCH2NLC) gene, which produces a toxic polyglycine-containing protein (uN2CpolyG) in patients with NIID, has been associated with the pathogenesis of ALS. These results suggest that sporadic NIIDs may have more diverse forms. To date, no autopsy cases of NIID patients with an ALS phenotype have been reported. Here, we describe the first autopsy case report of a patient with sporadic NIID who had been clinically diagnosed with ALS. A 65-year-old Japanese man with no family history of neuromuscular disease developed progressive muscle atrophy and weakness in all limbs. The patient was diagnosed with ALS (El Escoriral diagnostic criteria: probable ALS, laboratory-supported ALS). He had no cognitive dysfunction or neuropathies suggestive of NIID. He required respiratory assistance 48 months after onset. He died of pneumonia at the age of 79 years. Postmortem examinations revealed neuronal loss in the spinal anterior horns and motor cortex. In these affected regions, eosinophilic, round neuronal intranuclear inclusions were evident, which were immunopositive for ubiquitin, p62, and uN2CpolyG. No Bunina bodies or TDP-43-positive inclusions were observed in the brain or spinal cord. Our findings suggest that a small proportion of patients with NIID can manifest a clinical phenotype of ALS. Although skin biopsy is commonly used for the clinical diagnosis of NIID, it may also be useful to identify cases of NIID masquerading as ALS.
Collapse
Affiliation(s)
- Masako Fujita
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
- *Correspondence: Masako Fujita
| | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akira Arai
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Hidekachi Kurotaki
- Department of Pathology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
32
|
Generation of an induced pluripotent stem cell line (ZZUi036-A) derived from skin fibroblasts of a Neuronal intranuclear inclusion disease patient with GGC repeat expansion in the NOTCH2NLC gene. Stem Cell Res 2022; 63:102844. [PMID: 35772299 DOI: 10.1016/j.scr.2022.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by cognitive impairment, extrapyramidal symptoms, white matter lesions and muscle weakness. The cause of NIID is a repeat amplification of a GGC mutation in the 5 ' untranslated region (UTR) of the NOTCH2NLC gene. Using the non-integrating Sendai virus to deliver the Klf4, OCT3/4, SOX2 and C-MYC factors, fibroblasts obtained from a NIID patient were reprogrammed to generate an induced pluripotent stem cell (iPSC) line (ZZUi036-A). Our approach provided a resource for the investigation of the mechanism of the disease, drug research, cell transplantation and gene therapy.
Collapse
|
33
|
Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J, Hong D. The polyG diseases: a new disease entity. Acta Neuropathol Commun 2022; 10:79. [PMID: 35642014 PMCID: PMC9153130 DOI: 10.1186/s40478-022-01383-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Recently, inspired by the similar clinical and pathological features shared with fragile X-associated tremor/ataxia syndrome (FXTAS), abnormal expansion of CGG repeats in the 5' untranslated region has been found in neuronal intranuclear inclusion disease (NIID), oculopharyngeal myopathy with leukoencephalopathy (OPML), and oculopharyngodistal myopathy (OPDMs). Although the upstream open reading frame has not been elucidated in OPML and OPDMs, polyglycine (polyG) translated by expanded CGG repeats is reported to be as a primary pathogenesis in FXTAS and NIID. Collectively, these findings indicate a new disease entity, the polyG diseases. In this review, we state the common clinical manifestations, pathological features, mechanisms, and potential therapies in these diseases, and provide preliminary opinions about future research in polyG diseases.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China. .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China. .,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
34
|
Liu YH, Chou YT, Chang FP, Lee WJ, Guo YC, Chou CT, Huang HC, Mizuguchi T, Chou CC, Yu HY, Yu KW, Wu HM, Tsai PC, Matsumoto N, Lee YC, Liao YC. Neuronal intranuclear inclusion disease in patients with adult-onset non-vascular leukoencephalopathy. Brain 2022; 145:3010-3021. [PMID: 35411397 DOI: 10.1093/brain/awac135] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/12/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID), caused by an expansion of GGC repeats in the 5'-untranslated region of NOTCH2NLC, is an important but underdiagnosed cause of adult-onset leukoencephalopathies. The present study aimed to investigate the prevalence, clinical spectrum, and brain MRI characteristics of NIID in adult-onset nonvascular leukoencephalopathies and assess the diagnostic performance of neuroimaging features. One hundred and sixty-one unrelated Taiwanese patients with genetically undetermined nonvascular leukoencephalopathies were screened for the NOTCH2NLC GGC repeat expansions using fragment analysis, repeat-primed PCR, southern blot analysis and/or nanopore sequencing with Cas9-mediated enrichment. Among them, 32 (19.9%) patients had an expanded NOTCH2NLC allele and diagnosed with NIID. We enrolled another two affected family members from one patient for further analysis. The size of the expanded NOTCH2NLC GGC repeats in the 34 patients ranged from 73 to 323 repeats. Skin biopsy from five patients all showed eosinophilic, p62-positive intranuclear inclusions in the sweat gland cells and dermal adipocytes. Among the 34 NIID patents presenting with nonvascular leukoencephalopathies, the median age at symptom onset was 61 years (range, 41-78 years) and the initial presentations included cognitive decline (44.1%; 15/34), acute encephalitis-like episodes (32.4%; 11/34), limb weakness (11.8%, 4/34), and parkinsonism (11.8%; 4/34). Cognitive decline (64.7%; 22/34) and acute encephalitis-like episodes (55.9%; 19/34) were also the most common overall manifestations. Two-thirds of the patients had either bladder dysfunction or visual disturbance. Comparing the brain MRI features between the NIID patients and individuals with other undetermined leukoencephalopathies, corticomedullary junction curvilinear lesion on diffusion weighted imaging (DWI) was the best biomarker to diagnose NIID with high specificity (98.4%) and sensitivity (88.2%). However, such DWI abnormality was absent in 11.8% of the NIID patients. When only fluid-attenuated inversion recovery images were available, presence of white matter hyperintensity lesions (WMH) either in paravermis or middle cerebellar peduncles also favored the diagnosis of NIID with a specificity of 85.3% and a sensitivity of 76.5%. Among the ten patients' MRI performed within 5 days of the onset of acute encephalitis-like episodes, five showed cortical DWI hyperintense lesions and two revealed focal brain edema. In conclusion, NIID accounts for 19.9% (32/161) of patients with adult-onset genetically undiagnosed nonvascular leukoencephalopathies in Taiwan. Half of the NIID patients ever developed encephalitis-like episodes with restricted diffusion in the cortical regions at the acute stage DWI. Corticomedullary junction hyperintense lesions, WMH in paravermis or middle cerebellar peduncles, bladder dysfunction and visual disturbance are useful hints to diagnose NIID.
Collapse
Affiliation(s)
- Yi-Hong Liu
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ying-Tsen Chou
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Fu-Pang Chang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ju Lee
- Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.,College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yuh-Cherng Guo
- Department of Neurology, China Medical University Hospital, Taichung 404332, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Cheng-Ta Chou
- Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hui-Chun Huang
- Department of Neurology, China Medical University Hospital, Taichung 404332, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Takeshi Mizuguchi
- Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Chien-Chen Chou
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsiang-Yu Yu
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Kai-Wei Yu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.,Department of Radiology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsiu-Mei Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.,Department of Radiology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Naomichi Matsumoto
- Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
35
|
Zhang W, Ma J, Shi J, Huang S, Zhao R, Pang X, Wang J, Guo J, Chang X. GGC repeat expansions in NOTCH2NLC causing a phenotype of lower motor neuron syndrome. J Neurol 2022; 269:4469-4477. [DOI: 10.1007/s00415-022-11092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
|
36
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
37
|
Fan Y, Shen S, Yang J, Yao D, Li M, Mao C, Wang Y, Hao X, Ma D, Li J, Shi J, Guo M, Li S, Yuan Y, Liu F, Yang Z, Zhang S, Hu Z, Fan L, Liu H, Zhang C, Wang Y, Wang Q, Zheng H, He Y, Song B, Xu Y, Shi C. GIPC1
CGG
repeat expansion is associated with movement disorders. Ann Neurol 2022; 91:704-715. [PMID: 35152460 DOI: 10.1002/ana.26325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Fan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Si Shen
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Jing Yang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Dabao Yao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Mengjie Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Chengyuan Mao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Yunchao Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Xiaoyan Hao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Dongrui Ma
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Jiadi Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Jingjing Shi
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Mengnan Guo
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Shuangjie Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Yanpeng Yuan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Fen Liu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Zhihua Yang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Shuo Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Zhengwei Hu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Liyuan Fan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Han Liu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Chan Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Yanlin Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Qingzhi Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Hong Zheng
- Department of Cell Biology and Medical Genetics Basic Medical College of Zhengzhou University Zhengzhou 450052 Henan China
| | - Ying He
- Department of Cell Biology and Medical Genetics Basic Medical College of Zhengzhou University Zhengzhou 450052 Henan China
| | - Bo Song
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Yuming Xu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Changhe Shi
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| |
Collapse
|
38
|
Liu P, Yang D, Zhang F, Chen S, Xie F, Luo Y, Wang H, Chen Y, Lin Z, Wang L, Chen X, Wang B, Wu S, Ouyang Z, Cen Z, Luo W. The Role of NOTCH2NLC in Parkinson's Disease: A Clinical, Neuroimaging, and Pathological Study. Eur J Neurol 2022; 29:1610-1618. [PMID: 35147270 DOI: 10.1111/ene.15283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Recently, the pathogenic and intermediate GGC repeat expansion in NOTCH2NLC was detected in Parkinson's disease (PD). However, detailed clinical, neuroimaging, and pathological information of clinically diagnosed PD patients with pathogenic GGC repeat expansion in NOTCH2NLC remain scarce. Thus, we aimed to elucidate the clinical, neuroimaging, and pathological characteristics of PD patients carrying the pathogenic GGC repeat expansion in NOTCH2NLC. METHODS The NOTCH2NLC GGC repeat expansion was screened in 941 sporadic PD patients and 244 unrelated probands. Comprehensive assessments were performed in three PD patients with pathogenic GGC repeat expansion in NOTCH2NLC. The repeat expansion length was estimated using CRISPR/Cas9-based targeted long-read sequencing. RESULTS The three patients (two PD patients from Family 1 and one sporadic PD) carrying the pathogenic NOTCH2NLC expansion were reconfirmed with a diagnosis of clinically established PD. Although they lacked the typical neuronal intranuclear inclusion disease (NIID) MRI feature, the typical PD pattern of striatal dopamine transporter loss was detected. Notably, all three patients presented with systemic areflexia, and other secondary causes of polyneuropathy were excluded. Skin biopsy showed intranuclear inclusions and an absence of phosphor-alpha-synuclein deposition in the skin nerve fibers of all three patients. CONCLUSIONS Although these clinically diagnosed PD patients with pathogenic GGC repeat expansion in NOTCH2NLC were hardly distinguishable from idiopathic PD based on clinical course and neuroimaging features, the pathological findings indicated that their phenotype was a PD phenocopy of NIID. Systemic areflexia may be an important and unique clinical clue suggesting further genetic testing and skin biopsy examination to confirm the diagnosis of NIID in patients presenting with a PD phenocopy.
Collapse
Affiliation(s)
- Peng Liu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dehao Yang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fan Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuqi Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yong Luo
- Department of Neurology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Haotian Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueting Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiru Lin
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiyuan Ouyang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Luo
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Fukuda H, Yamaguchi D, Nyquist K, Yabuki Y, Miyatake S, Uchiyama Y, Hamanaka K, Saida K, Koshimizu E, Tsuchida N, Fujita A, Mitsuhashi S, Ohbo K, Satake Y, Sone J, Doi H, Morihara K, Okamoto T, Takahashi Y, Wenger AM, Shioda N, Tanaka F, Matsumoto N, Mizuguchi T. Father-to-offspring transmission of extremely long NOTCH2NLC repeat expansions with contractions: genetic and epigenetic profiling with long-read sequencing. Clin Epigenetics 2021; 13:204. [PMID: 34774111 PMCID: PMC8590777 DOI: 10.1186/s13148-021-01192-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background GGC repeat expansions in NOTCH2NLC are associated with neuronal intranuclear inclusion disease. Very recently, asymptomatic carriers with NOTCH2NLC repeat expansions were reported. In these asymptomatic individuals, the CpG island in NOTCH2NLC is hypermethylated, suggesting that two factors repeat length and DNA methylation status should be considered to evaluate pathogenicity. Long-read sequencing can be used to simultaneously profile genomic and epigenomic alterations. We analyzed four sporadic cases with NOTCH2NLC repeat expansion and their phenotypically normal parents. The native genomic DNA that retains base modification was sequenced on a per-trio basis using both PacBio and Oxford Nanopore long-read sequencing technologies. A custom workflow was developed to evaluate DNA modifications. With these two technologies combined, long-range DNA methylation information was integrated with complete repeat DNA sequences to investigate the genetic origins of expanded GGC repeats in these sporadic cases. Results In all four families, asymptomatic fathers had longer expansions (median: 522, 390, 528 and 650 repeats) compared with their affected offspring (median: 93, 117, 162 and 140 repeats, respectively). These expansions are much longer than the disease-causing range previously reported (in general, 41–300 repeats). Repeat lengths were extremely variable in the father, suggesting somatic mosaicism. Instability is more frequent in alleles with uninterrupted pure GGCs. Single molecule epigenetic analysis revealed complex DNA methylation patterns and epigenetic heterogeneity. We identified an aberrant gain-of-methylation region (2.2 kb in size beyond the CpG island and GGC repeats) in asymptomatic fathers. This methylated region was unmethylated in the normal allele with bilateral transitional zones with both methylated and unmethylated CpG dinucleotides, which may be protected from methylation to ensure NOTCH2NLC expression. Conclusions We clearly demonstrate that the four sporadic NOTCH2NLC-related cases are derived from the paternal GGC repeat contraction associated with demethylation. The entire genetic and epigenetic landscape of the NOTCH2NLC region was uncovered using the custom workflow of long-read sequence data, demonstrating the utility of this method for revealing epigenetic/mutational changes in repetitive elements, which are difficult to characterize by conventional short-read/bisulfite sequencing methods. Our approach should be useful for biomedical research, aiding the discovery of DNA methylation abnormalities through the entire genome. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01192-5.
Collapse
Affiliation(s)
- Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Genomic Function and Diversity, Medical Research Institute Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Satake
- Department of Neurology, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Morihara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoko Okamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
40
|
Huang XR, Tang BS, Jin P, Guo JF. The Phenotypes and Mechanisms of NOTCH2NLC-Related GGC Repeat Expansion Disorders: a Comprehensive Review. Mol Neurobiol 2021; 59:523-534. [PMID: 34718964 DOI: 10.1007/s12035-021-02616-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/24/2021] [Indexed: 01/11/2023]
Abstract
The human-specific gene NOTCH2NLC is primarily expressed in radial glial cells and plays an important role in neuronal differentiation and cortical neurogenesis. Increasing studies were conducted to verify the relationship between NOTCH2NLC gene and many neurological diseases, such as neuronal intranuclear inclusion disease, essential tremor, multiple system atrophy, Parkinson's disease, Alzheimer's disease, and even oculopharyngodistal myopathy. Thus, we support the concept, NOTCH2NLC-related GGC repeat expansion disorders (NRED), to summarize all diseases with the GGC repeat expansion in the 5'UTR of NOTCH2NLC gene, regardless of their various clinical phenotypes. Here, we discuss the reported cases to analyze the clinical features of NOTCH2NLC-related GGC repeat expansion disorders, including dementia, parkinsonism, peripheral neuropathy and myopathy, leukoencephalopathy, and essential tremor. In addition, we outline radiological and pathological manifestations of NOTCH2NLC-related GGC repeat expansion disorders, and then present possible mechanisms, such as toxic polyG protein, toxic repeat RNA, the GGC repeat size, and the size and types of trinucleotide interruption. Therefore, this review provides a systematic description of NOTCH2NLC-related GGC repeat expansion disorders and emphasizes the significance for understanding this type of repeat expansion disease.
Collapse
Affiliation(s)
- Xiu-Rong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
| |
Collapse
|
41
|
Fan Y, Xu Y, Shi C. NOTCH2NLC-related disorders: the widening spectrum and genotype-phenotype correlation. J Med Genet 2021; 59:1-9. [PMID: 34675123 DOI: 10.1136/jmedgenet-2021-107883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/06/2021] [Indexed: 11/04/2022]
Abstract
GGC repeat expansion in the 5' untranslated region of NOTCH2NLC is the most common causative factor in neuronal intranuclear inclusion disease (NIID) in Asians. Such expanded GGC repeats have been identified in patients with leukoencephalopathy, essential tremor (ET), multiple system atrophy, Parkinson's disease (PD), amyotrophic lateral sclerosis and oculopharyngodistal myopathy (OPDM). Herein, we review the recently reported NOTCH2NLC-related disorders and potential disease-causing mechanisms. We found that visual abnormalities may be NOTCH2NLC-specific and should be investigated in other patients with NOTCH2NLC mutations. NOTCH2NLC GGC repeat expansion was rarely identified in patients of European ancestry, whereas the actual prevalence of the expansion in European patients may be potentially higher than reported, and the CGG repeats in LRP12/GIPC1 are suggested to be screened in European patients with NIID. The repeat size and interruptions in NOTCH2NLC GGC expansion confer pleiotropic effects on clinical phenotype, a pure and stable ET phenotype may be an early symptom of NIID, and GGC repeats in NOTCH2NLC possibly give rise to ET. An association may also exist between intermediate-length NOTCH2NLC GGC repeat expansion and patients affected by PD and ET. NOTCH2NLC-OPDM highly resembles NOTCH2NLC-NIID, the two disorders may be the variations of a single neurodegenerative disease, and there may be a disease-causing upper limit in size of GGC repeats in NOTCH2NLC, repeats over which may be non-pathogenic. The haploinsufficiency of NOTCH2NLC may not be primarily involved in NOTCH2NLC-related disorders and a toxic gain-of-function mechanism possibly drives the pathogenesis of neurodegeneration in patients with NOTCH2NLC-associated disorders.
Collapse
Affiliation(s)
- Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China .,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
42
|
Jellinger KA. Pallidal degenerations and related disorders: an update. J Neural Transm (Vienna) 2021; 129:521-543. [PMID: 34363531 DOI: 10.1007/s00702-021-02392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Neurodegenerative disorders involving preferentially the globus pallidus, its efferet and afferent circuits and/or related neuronal systems are rare. They include a variety of both familial and sporadic progressive movement disorders, clinically manifesting as choreoathetosis, dystonia, Parkinsonism, akinesia or myoclonus, often associated with seizures, mental impairment and motor or cerebellar symptoms. Based on the involved neuronal systems, this heterogenous group has been classified into several subgroups: "pure" pallidal atrophy (PPA) and extended forms, pallidonigral and pallidonigrospinal degeneration (PND, PNSD), pallidopyramidal syndrome (PPS), a highly debatable group, pallidopontonigral (PPND), nigrostriatal-pallidal-pyramidal degeneration (NSPPD) (Kufor-Rakeb syndrome /KRS), pallidoluysian degeneration (PLD), pallidoluysionigral degeneration (PLND), pallidoluysiodentate atrophy (PLDA), the more frequent dentatorubral-pallidoluysian atrophy (DRPLA), and other hereditary multisystem disorders affecting these systems, e.g., neuroferritinopathy (NF). Some of these syndromes are sporadic, others show autosomal recessive or dominant heredity, and for some specific gene mutations have been detected, e.g., ATP13A2/PARK9 (KRS), FTL1 or ATP13A2 (neuroferritinopathy), CAG triple expansions in gene ATN1 (DRPLA) or pA152T variant in MAPT gene (PNLD). One of the latter, and both PPND and DRPLA are particular subcortical 4-R tauopathies, related to progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and frontotemporal lobe degeneration-17 (FTLD-17), while others show additional 3-R and 4-R tauopathies or TDP-43 pathologies. The differential diagnosis includes a large variety of neurodegenerations ranging from Huntington and Joseph-Machado disease, tauopathies (PSP), torsion dystonia, multiple system atrophy, neurodegeneration with brain iron accumulation (NBIA), and other extrapyramidal disorders. Neuroimaging data and biological markers have been published for only few syndromes. In the presence of positive family histories, an early genetic counseling may be effective. The etiology of most phenotypes is unknown, and only for some pathogenic mechanisms, like polyglutamine-induced oxidative stress and autophagy in DRPLA, mitochondrial dysfunction induced by oxidative stress in KRS or ferrostasis/toxicity and protein aggregation in NF, have been discussed. Currently no disease-modifying therapy is available, and symptomatic treatment of hypo-, hyperkinetic, spastic or other symptoms may be helpful.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
43
|
Cao L, Yan Y, Zhao G. NOTCH2NLC-related repeat expansion disorders: an expanding group of neurodegenerative disorders. Neurol Sci 2021; 42:4055-4062. [PMID: 34333668 DOI: 10.1007/s10072-021-05498-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
The NOTCH2NLC gene 5' untranslated region (UTR) GGC repeat expansion mutations were identified as a genetic contributor of neuronal intranuclear inclusion disease (NIID) in 2019. Since then, the number of reported cases with NOTCH2NLC GGC repeat expansion in Asian and European populations has increased rapidly, indicating that the expanded mutation not only leads to the onset or progression of the NIID, but also may play an important role in multiple progressive neurological disorders, including Parkinson's disease, essential tremor, multiple system atrophy, Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, leukoencephalopathy, and oculopharyngodistal myopathy type 3. Nevertheless, the underlying pathogenic mechanism of the NOTCH2NLC 5' UTR region GGC repeat expansion in these disorders remains largely unknown. This review aims to present recent breakthroughs on this mutation and improve our knowledge of a newly defined spectrum of disease: NOTCH2NLC-related repeat expansion disorder.
Collapse
Affiliation(s)
- Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Avenue, Yiwu, 322000, Zhejiang Province, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Avenue, Yiwu, 322000, Zhejiang Province, China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
44
|
Wang H, Yu J, Yu M, Deng J, Zhang W, Lv H, Liu J, Shi X, Liang W, Jia Z, Hong D, Meng L, Wang Z, Yuan Y. GGC Repeat Expansion in the NOTCH2NLC Gene Is Associated With a Phenotype of Predominant Motor-Sensory and Autonomic Neuropathy. Front Genet 2021; 12:694790. [PMID: 34306035 PMCID: PMC8293674 DOI: 10.3389/fgene.2021.694790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
There is still a considerable proportion of patients with inherited peripheral neuropathy (IPN) whose pathogenic genes are unknown. This study was intended to investigate whether the GGC repeat expansion in the NOTCH2NLC is presented in some patients with IPN. A total of 142 unrelated mainland Chinese patients with highly suspected diagnosis of IPN without any known causative gene were recruited. Repeat-primed polymerase chain reaction (RP-PCR) was performed to screen GGC repeat expansion in NOTCH2NLC, followed by fluorescence amplicon length analysis-PCR (AL-PCR) to determine the GGC repeat size. Detailed clinical data as well as nerve, muscle, and skin biopsy were reviewed and analyzed in the NOTCH2NLC-related IPN patients. In total, five of the 142 patients (3.52%) were found to have pathogenic GGC expansion in NOTCH2NLC, with repeat size ranging from 126 to 206 repeats. All the NOTCH2NLC-related IPN patients presented with adult-onset motor-sensory and autonomic neuropathy that predominantly affected the motor component of peripheral nerves. While tremor and irritating dry cough were noted in four-fifths of the patients, no other signs of the central nervous system were presented. Electrophysiological studies revealed both demyelinating and axonal changes of polyneuropathy that were more severe in lower limbs and asymmetrically in upper limbs. Sural nerve pathology was characterized by multiple fibers with thin myelination, indicating a predominant demyelinating process. Muscle pathology was consistent with neuropathic changes. P62-positive intranuclear inclusions were observed in nerve, skin, and muscle tissues. Our study has demonstrated that GGC expansion in NOTCH2NLC is associated with IPN presenting as predominant motor-sensory and autonomic neuropathy, which expands the phenotype of the NOTCH2NLC-related repeat expansion spectrum. Screening of GGC repeat expansions in the NOTCH2NLC should be considered in patients presenting with peripheral neuropathy with tremor and irritating dry cough.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xin Shi
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Liang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhirong Jia
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
45
|
Yu J, Luan XH, Yu M, Zhang W, Lv H, Cao L, Meng L, Zhu M, Zhou B, Wu XR, Li P, Gang Q, Liu J, Shi X, Liang W, Jia Z, Yao S, Yuan Y, Deng J, Hong D, Wang Z. GGC repeat expansions in NOTCH2NLC causing a phenotype of distal motor neuropathy and myopathy. Ann Clin Transl Neurol 2021; 8:1330-1342. [PMID: 33943039 PMCID: PMC8164861 DOI: 10.1002/acn3.51371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Background The expansion of GGC repeat in the 5' untranslated region of the NOTCH2NLC has been associated with various neurogenerative disorders of the central nervous system and, more recently, oculopharyngodistal myopathy. This study aimed to report patients with distal weakness with both neuropathic and myopathic features on electrophysiology and pathology who present GGC repeat expansions in the NOTCH2NLC. Methods Whole‐exome sequencing (WES) and long‐read sequencing were implemented to identify the candidate genes. In addition, the available clinical data and the pathological changes associated with peripheral nerve and muscle biopsies were reviewed and studied. Results We identified and validated GGC repeat expansions of NOTCH2NLC in three unrelated patients who presented with progressive weakness predominantly affecting distal lower limb muscles, following negative results in an initial WES. We found intranuclear inclusions with multiple proteins deposits in the nuclei of both myofibers and Schwann cells. The clinical features of these patients are compatible with the diagnosis of distal motor neuropathy and rimmed vacuolar myopathy. Interpretation These phenotypes enrich the class of features associated with NOTCH2NLC‐related repeat expansion disorders (NRED), and provide further evidence that the neurological symptoms of NRED include not only brain, spinal cord, and peripheral nerves damage, but also myopathy, and that overlapping symptoms might exist.
Collapse
Affiliation(s)
- Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Xing-Hua Luan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Binbin Zhou
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiao-Rong Wu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Pidong Li
- Grandomics Biosciences, Beijing, 100176, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Xin Shi
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Wei Liang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Zhirong Jia
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Sheng Yao
- Department of Neurology, Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| |
Collapse
|
46
|
Pang J, Yang J, Yuan Y, Gao Y, Shi C, Fan S, Xu Y. The Value of NOTCH2NLC Gene Detection and Skin Biopsy in the Diagnosis of Neuronal Intranuclear Inclusion Disease. Front Neurol 2021; 12:624321. [PMID: 34017298 PMCID: PMC8129528 DOI: 10.3389/fneur.2021.624321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The clinical manifestations of neuronal intranuclear inclusion disease (NIID) are heterogeneous, and the premortem diagnosis is mainly based on skin biopsy findings. Abnormal GGC repeat expansions in NOTCH2NLC was recently identified in familial and sporadic NIID. The comparison of diagnostic value between abnormal GGC repeat expansions of NOTCH2NLC and skin biopsy has not been conducted yet. In this study, skin biopsy was performed in 10 suspected adult NIID patients with clinical and imaging manifestations, and GGC repeat size in NOTCH2NLC was also screened by repeat primed-PCR and GC-rich PCR. We found that five cases had ubiquitin-immunolabelling intranuclear inclusion bodies by skin biopsy, and all of them were identified with abnormal GGC repeat expansions in NOTCH2NLC, among whom four patients showed typical linear hyperintensity at corticomedullary junction on DWI. Five (5/10) NIID patients were diagnosed by combination of NOTCH2NLC gene detection, skin biopsy or combination of NOTCH2NLC, and typical MRI findings. The diagnostic performance of NOTCH2NLC gene detection was highly consistent with that of skin biopsy (Kappa = 1). The unexplained headache was firstly reported as a new early phenotype of NIID. These findings indicate that NOTCH2NLC gene detection is needed to be a supplement in the diagnose flow of NIID and also may be used as an alternative method to skin biopsy especially in Asian population.
Collapse
Affiliation(s)
- Jie Pang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,National Health Commission Key Laboratory of Cerebrovascular Disease, Zhengzhou University, Zhengzhou, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,National Health Commission Key Laboratory of Cerebrovascular Disease, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Shiheng Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,National Health Commission Key Laboratory of Cerebrovascular Disease, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Norioka R, Sugaya K, Murayama A, Kawazoe T, Tobisawa S, Kawata A, Takahashi K. Midbrain atrophy related to parkinsonism in a non-coding repeat expansion disorder: five cases of spinocerebellar ataxia type 31 with nigrostriatal dopaminergic dysfunction. CEREBELLUM & ATAXIAS 2021; 8:11. [PMID: 33785066 PMCID: PMC8010976 DOI: 10.1186/s40673-021-00134-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Background Spinocerebellar ataxia type 31 (SCA31) is caused by non-coding pentanucleotide repeat expansions in the BEAN1 gene. Clinically, SCA31 is characterized by late adult-onset, pure cerebellar ataxia. To explore the association between parkinsonism and SCA31, five patients with SCA31 with concomitant nigrostriatal dopaminergic dysfunction (NSDD) development, including three cases of L-DOPA responsive parkinsonism, were analyzed. Methods To assess regional brain atrophy, cross-sectional and longitudinal imaging analyses were retrospectively performed using magnetic resonance imaging (MRI) planimetry. The midbrain-to-pons (M/P) area ratio and cerebellar area were measured on midsagittal T1-weighted MRI in five patients with SCA31 with concomitant NSDD (NSDD(+)), 14 patients with SCA31 without NSDD (NSDD(−)), 32 patients with Parkinson’s disease (PD), and 15 patients with progressive supranuclear palsy (PSP). Longitudinal changes in the M/P area ratio were assessed by serial MRI of NSDD(+) (n = 5) and NSDD(−) (n = 9). Results The clinical characteristics assessed in the five patients with NSDD were as follows: the mean age at NSDD onset (72.0 ± 10.8 years), prominence of bradykinesia/akinesia (5/5), rigidity (4/5), tremor (2/5), dysautonomia (0/5), vertical gaze limitation (1/5), and abnormalities on 123I-ioflupane dopamine transporter scintigraphy (3/3) and 3-Tesla neuromelanin MRI (4/4). A clear reduction in the midbrain area and the M/P area ratio was observed in the NSDD(+) group (p < 0.05) while there was no significant difference in disease duration or in the pons area among the NSDD(+), NSDD(−), and PD groups. There was also a significant difference in the midbrain and pons area between NSDD(+) and PSP (p < 0.05). Thus, mild but significant midbrain atrophy was observed in NSDD(+). A faster rate of decline in the midbrain area and the M/P area ratio was evident in NSDD(+) (p < 0.05). Conclusion The clinical characteristics of the five patients with SCA31 with concomitant NSDD, together with the topographical pattern of atrophy, were inconsistent with PD, PSP, and multiple system atrophy, suggesting that SCA31 may manifest NSDD in association with the pathomechanisms underlying SCA31. Supplementary Information The online version contains supplementary material available at 10.1186/s40673-021-00134-4.
Collapse
Affiliation(s)
- Ryohei Norioka
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| | - Aki Murayama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Tomoya Kawazoe
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Shinsuke Tobisawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| |
Collapse
|
48
|
Deng J, Zhou B, Yu J, Han X, Fu J, Li X, Xie X, Zhu M, Zheng Y, Guo X, Li P, Wang Q, Liu J, Zhang W, Yuan Y, Yao S, Wang Z, Hong D. Genetic origin of sporadic cases and RNA toxicity in neuronal intranuclear inclusion disease. J Med Genet 2021; 59:462-469. [PMID: 33766934 DOI: 10.1136/jmedgenet-2020-107649] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND GGC repeat expansion in NOTCH2NLC has been recently linked to neuronal intranuclear inclusion disease (NIID) via unknown disease mechanisms. Herein, we explore the genetic origin of the sporadic cases and toxic RNA gain-of-function mechanism in NIID. METHODS Multiple genetic screenings were performed on NIID individuals and their available family members. Methylation status of blood DNA, NOTCH2NLC mRNA level from muscle biopsies and RNA foci from skin biopsies of NIID individuals or asymptomatic carriers were evaluated and compared. RESULTS In two sporadic NIID families, we identified two clinically and pathologically asymptomatic fathers carrying large GGC repeat expansion, above 300 repeats, with offspring repeat numbers of 172 and 148, respectively. Further evaluation revealed that the GGC repeat numbers in the sperm from two asymptomatic fathers were only 63 and 98, respectively. The CpG island in NOTCH2NLC of the asymptomatic carriers was hypermethylated, and accordingly, the NOTCH2NLC mRNA levels were decreased in the asymptomatic fathers. GGC repeat expansion RNA formed RNA foci and sequestered RNA binding proteins into p62 positive intranuclear inclusions in NIID individuals but not in the control or asymptomatic carrier. CONCLUSION Our study suggested the GGC repeat expansion in NOTCH2NLC might have a disease-causing number ranging from ~41 to ~300 repeats. The contraction of GGC repeat expansion in sperm could be a possible mechanism for the paternal-biased origin in some sporadic or recessive inherited NIID individuals. The toxic RNA gain-of-function mechanism was identified to be involved in the pathogenicity of this disease.
Collapse
Affiliation(s)
- Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Binbin Zhou
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Xiaochen Han
- Department of Neurology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Xiaobin Li
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xufang Xie
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Zhu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yilei Zheng
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xueyu Guo
- Grandomics Biosciences, Beijing, China
| | - Pidong Li
- Grandomics Biosciences, Beijing, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Sheng Yao
- Department of Neurology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Daojun Hong
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China .,Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
49
|
Yau WY, Sullivan R, Rocca C, Cali E, Vandrovcova J, Wood NW, Houlden H. NOTCH2NLC Intermediate-Length Repeat Expansion and Parkinson's Disease in Patients of European Descent. Ann Neurol 2021; 89:633-635. [PMID: 33377220 DOI: 10.1002/ana.26003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Wai Yan Yau
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Roisin Sullivan
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Elisa Cali
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK.,Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK.,Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
50
|
Shi CH, Fan Y, Xu YM. Reply to "NOTCH2NLC Intermediate-Length Repeat Expansions Are Associated with Parkinson Disease". Ann Neurol 2021; 89:635. [PMID: 33377207 DOI: 10.1002/ana.26005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Chang-He Shi
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|