1
|
Al Haffar M, Fajloun Z, Azar S, Sabatier JM, Abi Khattar Z. Lesser-Known Cyanotoxins: A Comprehensive Review of Their Health and Environmental Impacts. Toxins (Basel) 2024; 16:551. [PMID: 39728809 DOI: 10.3390/toxins16120551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by Lyngbya and Nostoc, remain underexplored. These lesser-known toxins can cause various health issues in humans, including neurotoxicity, hepatotoxicity, and dermatotoxicity, each through distinct mechanisms. Moreover, recent studies have shown that cyanobacteria can be aerosolized and transmitted through the air over long distances, providing an additional route for human exposure to their harmful effects. However, it remains an area that requires much more investigation to accurately assess the health risks and develop appropriate public health guidelines. In addition to direct exposure to toxins, cyanobacteria can lead to harmful algal blooms, which pose further risks to human and wildlife health, and are a global concern. There is limited knowledge about these lesser-known cyanotoxins, highlighting the need for further research to understand their clinical manifestations and improve society's preparedness for the associated health risks. This work aims to review the existing literature on these underexplored cyanotoxins, which are associated with human intoxication, elucidate their clinical relevance, address significant challenges in cyanobacterial research, and provide guidance on mitigating their adverse effects.
Collapse
Affiliation(s)
- Molham Al Haffar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon
| |
Collapse
|
2
|
Martínez-Payá JJ, Ríos-Díaz J, Del Baño-Aledo ME, Hervás D, Tembl-Ferrairó JI, Sevilla-Mantecón T, Vázquez-Costa JF. The cross-sectional area of the median nerve: An independent prognostic biomarker in amyotrophic lateral sclerosis. Neurologia 2024; 39:564-572. [PMID: 39232594 DOI: 10.1016/j.nrleng.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/15/2022] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Ultrasound changes in the cross-sectional area of the median nerve (CSAmn) could be of interest as biomarkers in patients with amyotrophic lateral sclerosis (ALS). METHODS Eighty-four ALS patients (51 men [60.7%]; mean 62.0 [SD 11.46] years old) and forty-six controls (27 men [58.7%]; mean 59.9 [SD 8.08] years old) of two different cohorts were recruited between September 2013 and February 2018. The CSAmn was measured bilaterally in each cohort, by two different examiners with two different ultrasound machines (one in each cohort). Its association with clinical variables (disease duration, muscle strength, disability, progression rate and tracheostomy-free survival) was assessed. RESULTS The CSAmn was smaller in patients than in controls, and the study cohort did not influence its values. A mild correlation between the strength of the wrist flexor and the CSAmn was found. In the multivariable analysis, the probability of this association being true was 90%. In the cox regression, both a faster progression rate and a larger CSAmn independently predicted poor survival (HR=4.29, [Cr.I95%: 2.71-6.80], p<0.001; and HR=1.14, [Cr.I95%: 1.03-1.25], p=0.01), after adjusting by age, body mass index, bulbar onset, and diagnostic delay. CONCLUSIONS The CSAmn is an easy to assess biomarker that seems reliable and reproducible. Our data also suggest that it could act as a progression and prognostic biomarker in ALS patients. Longitudinal studies with repeated measures are warranted to confirm its usefulness in the clinical practice.
Collapse
Affiliation(s)
- J J Martínez-Payá
- Physiotherapy Department, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - J Ríos-Díaz
- Campus San Rafael, Escuela de Enfermería y Fisioterapia San Juan de Dios, Universidad Pontificia de Comillas, Madrid, Spain.
| | - M E Del Baño-Aledo
- Physiotherapy Department, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - D Hervás
- Department of Applied Statistics and Operations Research, and Quality, Universitat Politècnica de València, Valencia, Spain; Medicine Department, Facultad de Medicina, Universitat de València, Valencia, Spain
| | - J I Tembl-Ferrairó
- Neurosonology Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - T Sevilla-Mantecón
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medicine Department, Facultad de Medicina, Universitat de València, Valencia, Spain
| | - J F Vázquez-Costa
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medicine Department, Facultad de Medicina, Universitat de València, Valencia, Spain.
| |
Collapse
|
3
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
4
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The effects of axonal beading and undulation on axonal diameter estimation from diffusion MRI: Insights from simulations in human axons segmented from three-dimensional electron microscopy. NMR IN BIOMEDICINE 2024; 37:e5087. [PMID: 38168082 PMCID: PMC10942763 DOI: 10.1002/nbm.5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
The increasing availability of high-performance gradient systems in human MRI scanners has generated great interest in diffusion microstructural imaging applications such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion MRI is attained at strong diffusion weightings b , where the deviation from the expected 1 / b scaling in white matter yields a finite transverse diffusivity, which is then translated into an axon diameter estimate. While axons are usually modeled as perfectly straight, impermeable cylinders, local variations in diameter (caliber variation or beading) and direction (undulation) are known to influence axonal diameter estimates and have been observed in microscopy data of human axons. In this study, we performed Monte Carlo simulations of diffusion in axons reconstructed from three-dimensional electron microscopy of a human temporal lobe specimen using simulated sequence parameters matched to the maximal gradient strength of the next-generation Connectome 2.0 human MRI scanner ( ≲ 500 mT/m). We show that axon diameter estimation is accurate for nonbeaded, nonundulating fibers; however, in fibers with caliber variations and undulations, the axon diameter is heavily underestimated due to caliber variations, and this effect overshadows the known overestimation of the axon diameter due to undulations. This unexpected underestimation may originate from variations in the coarse-grained axial diffusivity due to caliber variations. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard–MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Ntoumenopoulos G, Andersen T, Hardingham NM. Upper airway assessment and its implications for interventions by respiratory physiotherapists. Physiother Theory Pract 2024; 40:184-189. [PMID: 35904123 DOI: 10.1080/09593985.2022.2106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND When noninvasive interventions such as chest physiotherapy fail, then more aggressive interventions for airway secretion clearance with nasotracheal airway suctioning may be required. Clinicians however have to insert the nasotracheal suction catheter "blindly" and the success of being able to trigger a cough and pass through the vocal folds with a suction catheter is low. CASE DESCRIPTION The patient, a 48-year-old male underwent a heart and lung transplant. Following extubation, the patient developed secretion retention with a weak ineffective cough and swallow and required physiotherapy interventions with frequent "blind" passes of nasotracheal suctioning. OUTCOMES The patient required nasotracheal suction with frequent multiple failed attempts before successful passage of the suction catheter to trigger a cough reflex and clear secretions. A combined physiotherapist and speech and language therapist intervention during fiberoptic endoscopic evaluation of swallow (FEES) was recorded to both evaluate swallow and passage of the suction catheter. The video illustrated the successful passage of a suctioning catheter through the vocal folds leading to an effective cough and airway clearance. DISCUSSION We present a case report demonstrating that it is feasible to visualize the upper airways during nasotracheal suctioning as an objective means to guide the more accurate successful insertion of the suction catheter past the vocal folds. Rather than "blind" placement of nasotracheal suction catheters visualization using transnasal laryngoscopy should be useful to increase chances of passing through the vocal folds.
Collapse
Affiliation(s)
| | - Tiina Andersen
- Norwegian Centre of Excellence for Home Mechanical Ventilation, Thoracic Department, Haukeland University Hospital, Bergen, Norway
| | - Nicola M Hardingham
- Speech Pathology Department, St Vincent's Hospital, Sydney, Australia
- School of Health and Rehabilitation Sciences, University of Queensland, St Lucia, Australia
| |
Collapse
|
7
|
Yuan Y, Bailey JM, Rivera-Lopez GM, Atchison WD. Preferential potentiation of AMPA-mediated currents in brainstem hypoglossal motoneurons by subchronic exposure of mice expressing the human superoxide dismutase 1 G93A gene mutation to neurotoxicant methylmercury in vivo. Neurotoxicology 2024; 100:72-84. [PMID: 38065418 PMCID: PMC10877233 DOI: 10.1016/j.neuro.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA.
| | - Jordan M Bailey
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - Gretchen M Rivera-Lopez
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| |
Collapse
|
8
|
Pino MG, Rich KA, Hall NJ, Jones ML, Fox A, Musier-Forsyth K, Kolb SJ. Heterogeneous splicing patterns resulting from KIF5A variants associated with amyotrophic lateral sclerosis. Hum Mol Genet 2023; 32:3166-3180. [PMID: 37593923 DOI: 10.1093/hmg/ddad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Single-nucleotide variants (SNVs) in the gene encoding Kinesin Family Member 5A (KIF5A), a neuronal motor protein involved in anterograde transport along microtubules, have been associated with amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive and fatal neurodegenerative disease that primarily affects the motor neurons. Numerous ALS-associated KIF5A SNVs are clustered near the splice-site junctions of the penultimate exon 27 and are predicted to alter the carboxy-terminal (C-term) cargo-binding domain of KIF5A. Mis-splicing of exon 27, resulting in exon exclusion, is proposed to be the mechanism by which these SNVs cause ALS. Whether all SNVs proximal to exon 27 result in exon exclusion is unclear. To address this question, we designed an in vitro minigene splicing assay in human embryonic kidney 293 cells, which revealed heterogeneous site-specific effects on splicing: only 5' splice-site (5'ss) SNVs resulted in exon skipping. We also quantified splicing in select clustered, regularly interspaced, short palindromic repeats-edited human stem cells, differentiated to motor neurons, and in neuronal tissues from a 5'ss SNV knock-in mouse, which showed the same result. Moreover, the survival of representative 3' splice site, 5'ss, and truncated C-term variant KIF5A (v-KIF5A) motor neurons was severely reduced compared with wild-type motor neurons, and overt morphological changes were apparent. While the total KIF5A mRNA levels were comparable across the cell lines, the total KIF5A protein levels were decreased for v-KIF5A lines, suggesting an impairment of protein synthesis or stability. Thus, despite the heterogeneous effect on ribonucleic acid splicing, KIF5A SNVs similarly reduce the availability of the KIF5A protein, leading to axonal transport defects and motor neuron pathology.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Nicholas J Hall
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Meredith L Jones
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Ashley Fox
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Karin Musier-Forsyth
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
9
|
Ribeiro SS, Gnutt D, Azoulay-Ginsburg S, Fetahaj Z, Spurlock E, Lindner F, Kuz D, Cohen-Erez Y, Rapaport H, Israelson A, Gruzman AL, Ebbinghaus S. Intracellular spatially-targeted chemical chaperones increase native state stability of mutant SOD1 barrel. Biol Chem 2023; 404:909-930. [PMID: 37555646 DOI: 10.1515/hsz-2023-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder with currently no cure. Central to the cellular dysfunction associated with this fatal proteinopathy is the accumulation of unfolded/misfolded superoxide dismutase 1 (SOD1) in various subcellular locations. The molecular mechanism driving the formation of SOD1 aggregates is not fully understood but numerous studies suggest that aberrant aggregation escalates with folding instability of mutant apoSOD1. Recent advances on combining organelle-targeting therapies with the anti-aggregation capacity of chemical chaperones have successfully reduce the subcellular load of misfolded/aggregated SOD1 as well as their downstream anomalous cellular processes at low concentrations (micromolar range). Nevertheless, if such local aggregate reduction directly correlates with increased folding stability remains to be explored. To fill this gap, we synthesized and tested here the effect of 9 ER-, mitochondria- and lysosome-targeted chemical chaperones on the folding stability of truncated monomeric SOD1 (SOD1bar) mutants directed to those organelles. We found that compound ER-15 specifically increased the native state stability of ER-SOD1bar-A4V, while scaffold compound FDA-approved 4-phenylbutyric acid (PBA) decreased it. Furthermore, our results suggested that ER15 mechanism of action is distinct from that of PBA, opening new therapeutic perspectives of this novel chemical chaperone on ALS treatment.
Collapse
Affiliation(s)
- Sara S Ribeiro
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany
| | | | - Zamira Fetahaj
- Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany
| | - Ella Spurlock
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - Felix Lindner
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - Damon Kuz
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - Yfat Cohen-Erez
- Department of Biotechnology Engineering, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Hanna Rapaport
- Department of Biotechnology Engineering, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Arie-Lev Gruzman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Duisburg, Germany
| |
Collapse
|
10
|
Wang S, Sun S. Translation dysregulation in neurodegenerative diseases: a focus on ALS. Mol Neurodegener 2023; 18:58. [PMID: 37626421 PMCID: PMC10464328 DOI: 10.1186/s13024-023-00642-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
RNA translation is tightly controlled in eukaryotic cells to regulate gene expression and maintain proteome homeostasis. RNA binding proteins, translation factors, and cell signaling pathways all modulate the translation process. Defective translation is involved in multiple neurological diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder and poses a major public health challenge worldwide. Over the past few years, tremendous advances have been made in the understanding of the genetics and pathogenesis of ALS. Dysfunction of RNA metabolisms, including RNA translation, has been closely associated with ALS. Here, we first introduce the general mechanisms of translational regulation under physiological and stress conditions and review well-known examples of translation defects in neurodegenerative diseases. We then focus on ALS-linked genes and discuss the recent progress on how translation is affected by various mutant genes and the repeat expansion-mediated non-canonical translation in ALS.
Collapse
Affiliation(s)
- Shaopeng Wang
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Rajaratnam S, Soman AP, Phalguna KS, Pradhan SS, Manjunath M, Rao RK, Dandamudi RB, Bhagavatham SKS, Pulukool SK, Rathnakumar S, Kocherlakota S, Pargaonkar A, Veeranna RP, Arumugam N, Almansour AI, Choudhary B, Sivaramakrishnan V. Integrated Omic Analysis Delineates Pathways Modulating Toxic TDP-43 Protein Aggregates in Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12091228. [PMID: 37174628 PMCID: PMC10177613 DOI: 10.3390/cells12091228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-systemic, incurable, amyloid disease affecting the motor neurons, resulting in the death of patients. The disease is either sporadic or familial with SOD1, C9orf72, FUS, and TDP-43 constituting the majority of familial ALS. Multi-omics studies on patients and model systems like mice and yeast have helped in understanding the association of various signaling and metabolic pathways with the disease. The yeast model system has played a pivotal role in elucidating the gene amyloid interactions. We carried out an integrated transcriptomic and metabolomic analysis of the TDP-43 expressing yeast model to elucidate deregulated pathways associated with the disease. The analysis shows the deregulation of the TCA cycle, single carbon metabolism, glutathione metabolism, and fatty acid metabolism. Transcriptomic analysis of GEO datasets of TDP-43 expressing motor neurons from mice models of ALS and ALS patients shows considerable overlap with experimental results. Furthermore, a yeast model was used to validate the obtained results using metabolite addition and gene knock-out experiments. Taken together, our result shows a potential role for the TCA cycle, cellular redox pathway, NAD metabolism, and fatty acid metabolism in disease. Supplementation of reduced glutathione, nicotinate, and the keto diet might help to manage the disease.
Collapse
Affiliation(s)
- Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Akhil P Soman
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
- Central Water and Power Research Station, Khadakwasla, Pune 411024, Maharashtra, India
| | - Kanikaram Sai Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India
| | - Raksha Kanthavara Rao
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India
| | | | - Sai Krishna Srimadh Bhagavatham
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru 560066, Karnataka, India
| | - Ravindra P Veeranna
- Department of Biochemistry, Council of Scientific & Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| |
Collapse
|
12
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The influence of axonal beading and undulation on axonal diameter mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537494. [PMID: 37131702 PMCID: PMC10153226 DOI: 10.1101/2023.04.19.537494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We consider the effect of non-cylindrical axonal shape on axonal diameter mapping with diffusion MRI. Practical sensitivity to axon diameter is attained at strong diffusion weightings b , where the deviation from the 1 / b scaling yields the finite transverse diffusivity, which is then translated into axon diameter. While axons are usually modeled as perfectly straight, impermeable cylinders, the local variations in diameter (caliber variation or beading) and direction (undulation) have been observed in microscopy data of human axons. Here we quantify the influence of cellular-level features such as caliber variation and undulation on axon diameter estimation. For that, we simulate the diffusion MRI signal in realistic axons segmented from 3-dimensional electron microscopy of a human brain sample. We then create artificial fibers with the same features and tune the amplitude of their caliber variations and undulations. Numerical simulations of diffusion in fibers with such tunable features show that caliber variations and undulations result in under- and over-estimation of axon diameters, correspondingly; this bias can be as large as 100%. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Liu W, Zhu SO, Guo YL, Tu LF, Zhen YQ, Zhao RY, Ou-Yang L, Kurihara H, He RR, Liu B. BL-918, a small-molecule activator of ULK1, induces cytoprotective autophagy for amyotrophic lateral sclerosis therapy. Acta Pharmacol Sin 2023; 44:524-537. [PMID: 36042292 PMCID: PMC9958028 DOI: 10.1038/s41401-022-00972-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/28/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common fatal neurodegenerative diseases in adults. ALS pathogenesis is associated with toxic SOD1 aggregates generated by mutant SOD1. Since autophagy is responsible for the clearance of toxic protein aggregates including SOD1 aggregates, autophagy induction has been considered as a potential strategy for treating ALS. Autophagic signaling is initiated by unc-51 like autophagy activating kinase 1 (ULK1) complex. We previously identified that BL-918 as a specific ULK1 activator, which exerted cytoprotective effect against Parkinson's disease in vitro and in vivo. In this study we investigated whether BL-918 exerted a therapeutic effect against ALS, and characterized its pharmacokinetic profile in rats. In hSODG93A-NSC34 cells, treatment with BL-918 (5, 10 μM) dose-dependently induced ULK1-dependent autophagy, and eliminated toxic SOD1 aggregates. In SODG93A mice, administration of BL-918 (40, 80 mg/kg, b.i.d., i.g.) dose-dependently prolonged lifespan and improved the motor function, and enhanced the clearance of SOD1 aggregates in spinal cord and cerebral cortex through inducing autophagy. In the pharmacokinetic study conducted in rats, we found BL-918 and its 2 metabolites (M8 and M10) present in spinal cord and brain; after intragastric and intravenous administration, BL-918 reached the highest blood concentration compared to M8 and M10. Collectively, ULK1 activator BL-918 displays a therapeutic potential on ALS through inducing cytoprotective autophagy. This study provides a further clue for autophagic dysfunction in ALS pathogenesis.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi-Ou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu-Lin Guo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Long-Fang Tu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Yong-Qi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong-Yan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Ou-Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hiroshi Kurihara
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Martínez-Payá J, Ríos-Díaz J, del Baño-Aledo M, Hervás D, Tembl-Ferrairó J, Sevilla-Mantecón T, Vázquez-Costa J. The cross-sectional area of the median nerve: An independent prognostic biomarker in amyotrophic lateral sclerosis. Neurologia 2022. [DOI: 10.1016/j.nrl.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Moya MV, Kim RD, Rao MN, Cotto BA, Pickett SB, Sferrazza CE, Heintz N, Schmidt EF. Unique molecular features and cellular responses differentiate two populations of motor cortical layer 5b neurons in a preclinical model of ALS. Cell Rep 2022; 38:110556. [PMID: 35320722 PMCID: PMC9059890 DOI: 10.1016/j.celrep.2022.110556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), lead to the selective degeneration of discrete cell types in the CNS despite the ubiquitous expression of many genes linked to disease. Therapeutic advancement depends on understanding the unique cellular adaptations that underlie pathology of vulnerable cells in the context of disease-causing mutations. Here, we employ bacTRAP molecular profiling to elucidate cell type-specific molecular responses of cortical upper motor neurons in a preclinical ALS model. Using two bacTRAP mouse lines that label distinct vulnerable or resilient projection neuron populations in motor cortex, we show that the regulation of oxidative phosphorylation (Oxphos) pathways is a common response in both cell types. However, differences in the baseline expression of genes involved in Oxphos and the handling of reactive oxygen species likely lead to the selective degeneration of the vulnerable cells. These results provide a framework to identify cell-type-specific processes in neurodegenerative disease. Moya et al. use bacTRAP mouse lines to characterize two highly related subpopulations of layer 5b projection neurons in motor cortex that are differentially susceptible to neurodegeneration in the SOD1-G93A mouse model of ALS. They identify the regulation of genes involved in bioenergetics as a key factor regulating susceptibility.
Collapse
Affiliation(s)
- Maria V Moya
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Rachel D Kim
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Meghana N Rao
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Bianca A Cotto
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Sarah B Pickett
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Caroline E Sferrazza
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Eric F Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA.
| |
Collapse
|
16
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
17
|
Walsh LJ, Deasy KF, Gomez F, O'Sullivan E, Eustace J, Ryan AM, Murphy DM. Use of non-invasive ventilation in motor neuron disease - a retrospective cohort analysis. Chron Respir Dis 2021; 18:14799731211063886. [PMID: 34854787 PMCID: PMC8646818 DOI: 10.1177/14799731211063886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Motor neuron disease (MND) is a neurodegenerative disorder which leads to progressive muscle weakness including respiratory muscle decline. The introduction of non-invasive ventilation (NIV) has been shown to improve quality of life, survival and slow the rate of pulmonary function decline. A retrospective chart analysis of patients who attended the MND clinic from 2014 to 2019 at a tertiary-referral, academic, teaching hospital was carried out to evaluate if NIV and greater compliance with NIV was associated with improved survival. 111 patients were included. The mean age at diagnosis was 63.8 years and 61.3% were males. 66.7% of our cohort used NIV and of this 66.7%, 44.1% were compliant. There was a significantly longer survival in those who used NIV (p = 0.002) and in those who used NIV optimally (p = 0.02) when both groups were compared to those who did not use NIV. In the bulbar MND group those who were compliant with NIV survived longer than who those who did not use NIV (p = 0.001). We found a significantly longer survival with the use of NIV, the use of NIV optimally and with use of NIV in those with bulbar onset MND compared to those who did not use NIV.
Collapse
Affiliation(s)
- Laura J Walsh
- Department of Respiratory Medicine, 57983Cork University Hospital, Cork, Ireland
| | - Kevin F Deasy
- Department of Respiratory Medicine, 57983Cork University Hospital, Cork, Ireland
| | - Fernando Gomez
- Department of Respiratory Medicine, 57983Cork University Hospital, Cork, Ireland
| | | | - Joseph Eustace
- Health Research Board, Clinical Research Facility, 8795University College Cork, Cork, Ireland
| | - Aisling M Ryan
- Department of Neurology, 57983Cork University Hospital, Cork, Ireland
| | - Desmond M Murphy
- Department of Respiratory Medicine, 57983Cork University Hospital, Cork, Ireland.,Health Research Board, Clinical Research Facility, 8795University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Lee H, Lee JJ, Park NY, Dubey SK, Kim T, Ruan K, Lim SB, Park SH, Ha S, Kovlyagina I, Kim KT, Kim S, Oh Y, Kim H, Kang SU, Song MR, Lloyd TE, Maragakis NJ, Hong YB, Eoh H, Lee G. Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS. Nat Neurosci 2021; 24:1673-1685. [PMID: 34782793 PMCID: PMC8639773 DOI: 10.1038/s41593-021-00944-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disorder in which motor neurons degenerate, the causes of which remain unclear. In particular, the basis for selective vulnerability of spinal motor neurons (sMNs) and resistance of ocular motor neurons to degeneration in ALS has yet to be elucidated. Here, we applied comparative multi-omics analysis of human induced pluripotent stem cell-derived sMNs and ocular motor neurons to identify shared metabolic perturbations in inherited and sporadic ALS sMNs, revealing dysregulation in lipid metabolism and its related genes. Targeted metabolomics studies confirmed such findings in sMNs of 17 ALS (SOD1, C9ORF72, TDP43 (TARDBP) and sporadic) human induced pluripotent stem cell lines, identifying elevated levels of arachidonic acid. Pharmacological reduction of arachidonic acid levels was sufficient to reverse ALS-related phenotypes in both human sMNs and in vivo in Drosophila and SOD1G93A mouse models. Collectively, these findings pinpoint a catalytic step of lipid metabolism as a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Hojae Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Robert Packard Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jae Jin Lee
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Na Young Park
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea
| | - Sandeep Kumar Dubey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taeyong Kim
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Kai Ruan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Seong-Hyun Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shinwon Ha
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Kovlyagina
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kyung-Tai Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Seongjun Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yohan Oh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyesoo Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Ung Kang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas J Maragakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea.
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea.
| | - Hyungjin Eoh
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA.
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Robert Packard Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Kok JR, Palminha NM, Dos Santos Souza C, El-Khamisy SF, Ferraiuolo L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell Mol Life Sci 2021; 78:5707-5729. [PMID: 34173837 PMCID: PMC8316199 DOI: 10.1007/s00018-021-03872-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.
Collapse
Affiliation(s)
- Jannigje Rachel Kok
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Nelma M Palminha
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, West Yorkshire, UK.
| | - Laura Ferraiuolo
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
20
|
Sumikawa M, Yano T, Mizutani M, Fujishiro T, Nakaya Y, Hayama S, Nakano A, Fujiwara K, Neo M. Hidden coexisting pathology diagnosed after cervical surgery in patients with degenerative cervical myelopathy or myeloradiculopathy: A case series report. J Clin Neurosci 2021; 93:253-258. [PMID: 34090764 DOI: 10.1016/j.jocn.2021.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Abstract
Many neurological disorders can present similar symptomatology to degenerative cervical myelopathy (DCM) or myeloradiculopathy (DCMR). Therefore, to avoid misdiagnosis, it is important to recognise the differential diagnosis, which has been well described in previous literature. Additionally, DCM or DCMR can also coexist with other diseases that overlap some of its clinical manifestations, which may be overlooked before cervical surgery. Nevertheless, few studies have addressed this clinical situation. In clinical practice, the diagnosis of coexisting disease with DCM or DCMR would be typically made when some symptoms persist without improvement after cervical surgery. To inform the patients of this possibility preoperatively and arrive at the early diagnosis during the postoperative period, some knowledge of the possible coexisting diseases would be necessary. In this report, we reviewed 230 patients who underwent surgery for DCM or DCMR in an academic centre to examine the prevalence and kind of underlying disease that was overlooked preoperatively. The coexisting diseases relevant to their baseline symptoms were diagnosed only after cervical surgery in three patients (1.3%) and included amyotrophic lateral sclerosis, lung cancer and polymyalgia rheumatica. The overlapping symptoms were gait difficulty, scapular pain and neck pain, respectively. Surgeons should recognise that the coexisting disease with DCM or DCMR may be overlooked before cervical surgery because of overlapping symptomatology, although its prevalence is not certainly high. Further, when the specific symptom persisted without improvement after surgery for DCM or DCMR, the patient should be comprehensively examined, considering diverse pathological conditions, not only neurological disorders.
Collapse
Affiliation(s)
- Minako Sumikawa
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Toma Yano
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Masahiro Mizutani
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Takashi Fujishiro
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686, Japan.
| | - Yoshiharu Nakaya
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Sachio Hayama
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Atsushi Nakano
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Kenta Fujiwara
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Masashi Neo
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
21
|
Shuster SO, Lee JC. Tryptophan Probes of TDP-43 C-Terminal Domain Amyloid Formation. J Phys Chem B 2021; 125:3781-3789. [PMID: 33835818 DOI: 10.1021/acs.jpcb.1c00767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregated TAR DNA-binding protein 43 (TDP-43) forms the cytoplasmic hallmarks associated with patients suffering from amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin. Under normal conditions, TDP-43 is a 414-amino acid protein; however, aggregates are enriched with N-terminal truncations which contain residues 267-414, known as the C-terminal domain of TDP-43 (TDP-43CTD). To gain residue-specific information on the aggregation process of TDP-43CTD, we created three single-Trp containing mutants (W385F/W412F, W334F/W412F, and W334F/W385F) by substituting two of the three native Trp residues with Phe, yielding fluorescent probes at W334, W385, and W412, respectively. Aggregation kinetics, secondary structure, and fibril morphology were compared to the wild-type protein using thioflavin-T fluorescence, Raman spectroscopy, and transmission electron microscopy, respectively. While only W334 is determined to be in the proteinase-K resistant core, all three sites are sensitive reporters of aggregation, revealing site-specific differences. Interestingly, W334 exhibited unusual multistep Trp kinetics, pinpointing a distinctive role for W334 and its nearby region during aggregation. This behavior is retained even upon seeding, suggesting the observed spectral change is related to fibril growth. This work provides new insights into the aggregation mechanism of TDP-43CTD and exemplifies the advantages of Trp as a site-specific environmentally sensitive fluorescent probe.
Collapse
Affiliation(s)
- Sydney O Shuster
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
22
|
Otake K, Adachi-Tominari K, Nagai H, Saito M, Sano O, Hirozane Y, Iwata H. Quantitative comparison of the mRNA content of human iPSC-derived motor neurons and their extracellular vesicles. FEBS Open Bio 2021; 11:494-506. [PMID: 33296136 PMCID: PMC7876496 DOI: 10.1002/2211-5463.13059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023] Open
Abstract
Extracellular vesicles (EVs) contain various cargo molecules, including RNAs and proteins. EVs, which include exosomes, are predicted to be suitable surrogates of their source cells for liquid biopsy to measure biomarkers. Several studies have performed qualitative comparisons of cargo molecule repertoires between source cells and their EVs. However, quantitative comparisons have not been reported so far. Furthermore, many studies analyzed microRNAs or proteins in EVs, but not mRNAs. In this study, we analyzed mRNAs in motor neurons and their EVs. Normal human-induced pluripotent stem cells were differentiated into motor neurons, and comprehensive analysis of mRNAs in the cells and their EVs was performed by RNA sequencing. Differential analysis between cellular and EV mRNAs was performed by edgeR after normalization of read count. The results suggest that signatures in the abundance of EV mRNAs were different from those of cellular mRNAs. Comparison of intracellular vesicle and EV mRNA abundance showed negatively and positively biased genes in the EVs. Gene Ontology analysis revealed that the genes showing negatively biased abundance in the EVs were enriched in many functions regarding neuronal development. In contrast, the positively biased genes were enriched in functions regarding cellular metabolism and protein synthesis. These results suggest that mRNAs in motor neurons are loaded into EVs to regulate certain mechanisms, which are yet to be elucidated.
Collapse
Affiliation(s)
- Kentaro Otake
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Keiko Adachi-Tominari
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hiroaki Nagai
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masayo Saito
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Osamu Sano
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshihiko Hirozane
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hidehisa Iwata
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
23
|
Walsh LJ, Murphy DM. The Benefit of Non-invasive Ventilation in Motor Neuron Disease. Open Respir Med J 2021; 14:53-61. [PMID: 33425067 PMCID: PMC7774097 DOI: 10.2174/1874306402014010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/09/2020] [Accepted: 10/02/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Motor Neuron Disease (MND) is a progressive neurodegenerative disorder leading to respiratory muscle weakness with dyspnoea, morning headaches, orthopnoea, poor concentration, unrefreshing sleep, fatigue and daytime somnolence. Respiratory failure is the primary cause of death in those with MND. Methods: Although guidelines suggest the use of non-invasive ventilation (NIV) in MND, there lacks clear guidance as to when is the optimal time to initiate NIV and which markers of respiratory muscle decline are the best predictors of prognosis. There have been a number of studies that have found a significant survival advantage to the use of NIV in MND. Similarly, in quality-of-life questionnaires, those treated with NIV tend to perform better and maintain a better quality of life for longer. Furthermore, studies also suggest that improved compliance and greater tolerance of NIV confer a survival advantage. Results and Discussion: Forced Vital Capacity (FVC) has traditionally been the main pulmonary function test to determine the respiratory function in those with MND; however, FVC may not be entirely reflective of early respiratory muscle dysfunction. Evidence suggests that sniff nasal inspiratory pressure and maximum mouth inspiratory pressure may be better indicators of early respiratory muscle decline. These measures have been shown to be easier to perform later in the disease, in patients with bulbar onset disease, and may indeed be better prognostic indicators. Conclusion: Despite ongoing research, there remains a paucity of randomised controlled data in this area. This review aims to summarise the evidence to date on these topics.
Collapse
Affiliation(s)
- Laura J Walsh
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - Desmond M Murphy
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland.,The HRB- Clinical Research Facility, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Agrawal S, Jain M, Yang WZ, Yuan HS. Frontotemporal dementia-linked P112H mutation of TDP-43 induces protein structural change and impairs its RNA binding function. Protein Sci 2020; 30:350-365. [PMID: 33151007 PMCID: PMC7784771 DOI: 10.1002/pro.3990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
TDP‐43 forms the primary constituents of the cytoplasmic inclusions contributing to various neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia (FTD). Over 60 TDP‐43 mutations have been identified in patients suffering from these two diseases, but most variations are located in the protein's disordered C‐terminal glycine‐rich region. P112H mutation of TDP‐43 has been uniquely linked to FTD, and is located in the first RNA recognition motif (RRM1). This mutation is thought to be pathogenic, but its impact on TDP‐43 at the protein level remains unclear. Here, we compare the biochemical and biophysical properties of TDP‐43 truncated proteins with or without P112H mutation. We show that P112H‐mutated TDP‐43 proteins exhibit higher thermal stability, impaired RNA‐binding activity, and a reduced tendency to aggregate relative to wild‐type proteins. Near‐UV CD, 2D‐nuclear‐magnetic resonance, and intrinsic fluorescence spectrometry further reveal that the P112H mutation in RRM1 generates local conformational changes surrounding the mutational site that disrupt the stacking interactions of the W113 side chain with nucleic acids. Together, these results support the notion that P112H mutation of TDP‐43 contributes to FTD through functional impairment of RNA metabolism and/or structural changes that curtail protein clearance.
Collapse
Affiliation(s)
- Sashank Agrawal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Monika Jain
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
25
|
Marques RF, Engler JB, Küchler K, Jones RA, Lingner T, Salinas G, Gillingwater TH, Friese MA, Duncan KE. Motor neuron translatome reveals deregulation of SYNGR4 and PLEKHB1 in mutant TDP-43 amyotrophic lateral sclerosis models. Hum Mol Genet 2020; 29:2647-2661. [PMID: 32686835 PMCID: PMC7530531 DOI: 10.1093/hmg/ddaa140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurological disease with progressive loss of motor neuron (MN) function in the brain and spinal cord. Mutations in TARDBP, encoding the RNA-binding protein TDP-43, are one cause of ALS, and TDP-43 mislocalization in MNs is a key pathological feature of >95% of ALS cases. While numerous studies support altered RNA regulation by TDP-43 as a major cause of disease, specific changes within MNs that trigger disease onset remain unclear. Here, we combined translating ribosome affinity purification (TRAP) with RNA sequencing to identify molecular changes in spinal MNs of TDP-43-driven ALS at motor symptom onset. By comparing the MN translatome of hTDP-43A315T mice to littermate controls and to mice expressing wild type hTDP-43, we identified hundreds of mRNAs that were selectively up- or downregulated in MNs. We validated the deregulated candidates Tex26, Syngr4, and Plekhb1 mRNAs in an independent TRAP experiment. Moreover, by quantitative immunostaining of spinal cord MNs, we found corresponding protein level changes for SYNGR4 and PLEKHB1. We also observed these changes in spinal MNs of an independent ALS mouse model caused by a different patient mutant allele of TDP-43, suggesting that they are general features of TDP-43-driven ALS. Thus, we identified SYNGR4 and PLEKHB1 to be deregulated in MNs at motor symptom onset in TDP-43-driven ALS models. This spatial and temporal pattern suggests that these proteins could be functionally important for driving the transition to the symptomatic phase of the disease.
Collapse
Affiliation(s)
- Rita F Marques
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katrin Küchler
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Thomas Lingner
- NGS—Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Gabriela Salinas
- NGS—Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Kent E Duncan
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
26
|
Ravnik-Glavač M, Glavač D. Circulating RNAs as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21051714. [PMID: 32138249 PMCID: PMC7084402 DOI: 10.3390/ijms21051714] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex multi-system neurodegenerative disorder with currently limited diagnostic and no therapeutic options. Despite the intense efforts no clinically applicable biomarkers for ALS are yet established. Most current research is thus focused, in particular, in identifying potential non-invasive circulating biomarkers for more rapid and accurate diagnosis and monitoring of the disease. In this review, we have focused on messenger RNA (mRNA), non-coding RNAs (lncRNAs), micro RNAs (miRNAs) and circular RNA (circRNAs) as potential biomarkers for ALS in peripheral blood serum, plasma and cells. The most promising miRNAs include miR-206, miR-133b, miR-27a, mi-338-3p, miR-183, miR-451, let-7 and miR-125b. To test clinical potential of this miRNA panel, a useful approach may be to perform such analysis on larger multi-center scale using similar experimental design. However, other types of RNAs (lncRNAs, circRNAs and mRNAs) that, together with miRNAs, represent RNA networks, have not been yet extensively studied in blood samples of patients with ALS. Additional research has to be done in order to find robust circulating biomarkers and therapeutic targets that will distinguish key RNA interactions in specific ALS-types to facilitate diagnosis, predict progression and design therapy.
Collapse
Affiliation(s)
- Metka Ravnik-Glavač
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| |
Collapse
|
27
|
Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. Int J Biol Macromol 2020; 145:904-913. [PMID: 31669277 DOI: 10.1016/j.ijbiomac.2019.09.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Protein misfolding and aggregation due to mutations, are associated with fatal neurodegenerative disorders. The mutations in Cu/Zn superoxide dismutase (SOD1) causing its misfolding and aggregation are found linked to the motor neuron disorder, amyotrophic lateral sclerosis. Since the mutations are scattered throughout SOD1 structure, determining the exact molecular mechanism underlying the ALS pathology remains unresolved. In this study, we have investigated the major molecular factors that mainly contribute to SOD1 destabilization, intrinsic disorder, and misfolding using sequence and structural information. We have analysed 153 ALS causing SOD1 point mutants for aggregation tendency using four different aggregation prediction tools, viz., Aggrescan3D (A3D), CamSol, GAP and Zyggregator. Our results suggest that 74-79 mutants are susceptible to aggregation, due to distorted native interactions originated at the mutation site. Majority of the aggregation prone mutants are located in the buried regions of SOD1 molecule. Further, the mutations at the hydrophobic amino acids primarily promote the aggregation tendency of SOD1 protein through different destabilizing mechanisms including changes in hydrophobic free energy, loss of electrostatic interactions in the protein's surface and loss of hydrogen bonds that bridges the protein core and surface.
Collapse
|
28
|
Dash RP, Babu RJ, Srinivas NR. Two Decades-Long Journey from Riluzole to Edaravone: Revisiting the Clinical Pharmacokinetics of the Only Two Amyotrophic Lateral Sclerosis Therapeutics. Clin Pharmacokinet 2019; 57:1385-1398. [PMID: 29682695 DOI: 10.1007/s40262-018-0655-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent approval of edaravone has provided an intravenous option to treat amyotrophic lateral sclerosis (ALS) in addition to the existing oral agent, riluzole. The present work was primarily undertaken to provide a comprehensive clinical pharmacokinetic summary of the two approved ALS therapeutics. The key objectives of the review were to (i) tabulate the clinical pharmacokinetics of riluzole and edaravone with emphasis on absorption, distribution, metabolism and excretion (ADME) properties; (ii) provide a comparative scenario of the pharmacokinetics of the two drugs wherever possible; and (iii) provide perspectives and introspection on the gathered clinical pharmacokinetic data of the two drugs with appropriate conjectures to quench scientific curiosity. Based on this review, the following key highlights were deduced: (i) as a result of both presystemic metabolism and polymorphic hepatic cytochrome P450 (CYP) metabolism, the oral drug riluzole exhibited more inter-subject variability than that of intravenous edaravone; (ii) using various parameters for comparison, including the published intravenous data for riluzole, it was apparent that edaravone was achieving the desired systemic concentrations to possibly drive the local brain concentrations for its efficacy in ALS patients with lesser variability than riluzole; (iii) using scientific conjectures, it was deduced that the availability of intravenous riluzole may not be beneficial in therapy due to its fast systemic clearance; (iv) on the contrary, however, there appeared to be an opportunity for the development of an oral dosage form of edaravone, which may potentially benefit the therapy option for ALS patients by avoiding hospitalization costs; and (v) because of the existence of pharmaco-resistance for the brain entry in ALS patients, it appeared prudent to consider combination strategies of edaravone and/or riluzole with suitable P-glycoprotein efflux-blocking drugs to gain more favorable outcomes in ALS patients.
Collapse
Affiliation(s)
- Ranjeet Prasad Dash
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Nuggehally R Srinivas
- Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, Gujarat, 382210, India.
| |
Collapse
|
29
|
Huang SY, Tian Q, Fan Q, Witzel T, Wichtmann B, McNab JA, Daniel Bireley J, Machado N, Klawiter EC, Mekkaoui C, Wald LL, Nummenmaa A. High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain. Brain Struct Funct 2019; 225:1277-1291. [PMID: 31563995 DOI: 10.1007/s00429-019-01961-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/19/2019] [Indexed: 12/01/2022]
Abstract
Axon diameter and density are important microstructural metrics that offer valuable insight into the structural organization of white matter throughout the human brain. We report the systematic acquisition and analysis of a comprehensive diffusion MRI data set acquired with 300 mT/m maximum gradient strength in a cohort of 20 healthy human subjects that yields distinct and consistent patterns of axon diameter index in white matter tracts of arbitrary orientation. We use a straightforward, previously validated approach to estimating indices of axon diameter and volume fraction that involves interpolating the diffusion signal perpendicular to the principal fiber orientation and fitting a three-compartment model of intra-axonal, extra-axonal and free water diffusion. The resultant maps confirm the presence of larger diameter indices in the body of corpus callosum compared to the genu and splenium, as previously reported, and show larger axon diameter index in the corticospinal tracts compared to adjacent white matter tracts such as the cingulum. An anterior-to-posterior gradient in axon diameter index is also observed, with smaller diameter indices in the frontal lobes and larger diameter indices in the parieto-occipital white matter. These observations are consistent with known trends from prior histologic studies in humans and non-human primates. Rather than serving as fully quantitative measures of axon diameter and density, our results may be considered as axon diameter- and volume fraction-weighted images that appear to be modulated by the underlying microstructure and may capture broad trends in axonal size and packing density, acknowledging that the precise origin of such modulation requires further investigation that will be facilitated by the availability of high gradient strengths for in vivo human imaging.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara Wichtmann
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jennifer A McNab
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, USA
| | - J Daniel Bireley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalya Machado
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Held A, Major P, Sahin A, Reenan RA, Lipscombe D, Wharton KA. Circuit Dysfunction in SOD1-ALS Model First Detected in Sensory Feedback Prior to Motor Neuron Degeneration Is Alleviated by BMP Signaling. J Neurosci 2019; 39:2347-2364. [PMID: 30659087 PMCID: PMC6433758 DOI: 10.1523/jneurosci.1771-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which the origin and underlying cellular defects are not fully understood. Although motor neuron degeneration is the signature feature of ALS, it is not clear whether motor neurons or other cells of the motor circuit are the site of disease initiation. To better understand the contribution of multiple cell types in ALS, we made use of a Drosophila Sod1G85R knock-in model, in which all cells harbor the disease allele. End-stage dSod1G85R animals of both sexes exhibit severe motor deficits with clear degeneration of motor neurons. Interestingly, earlier in dSod1G85R larvae, motor function is also compromised, but their motor neurons exhibit only subtle morphological and electrophysiological changes that are unlikely to cause the observed decrease in locomotion. We analyzed the intact motor circuit and identified a defect in sensory feedback that likely accounts for the altered motor activity of dSod1G85R We found cell-autonomous activation of bone morphogenetic protein signaling in proprioceptor sensory neurons which are critical for the relay of the contractile status of muscles back to the central nerve cord, completely rescues early-stage motor defects and partially rescue late-stage motor function to extend lifespan. Identification of a defect in sensory feedback as a potential initiating event in ALS motor dysfunction, coupled with the ability of modified proprioceptors to alleviate such motor deficits, underscores the critical role that nonmotor neurons play in disease progression and highlights their potential as a site to identify early-stage ALS biomarkers and for therapeutic intervention.SIGNIFICANCE STATEMENT At diagnosis, many cellular processes are already disrupted in the amyotrophic lateral sclerosis (ALS) patient. Identifying the initiating cellular events is critical for achieving an earlier diagnosis to slow or prevent disease progression. Our findings indicate that neurons relaying sensory information underlie early stage motor deficits in a Drosophila knock-in model of ALS that best replicates gene dosage in familial ALS (fALS). Importantly, studies on intact motor circuits revealed defects in sensory feedback before evidence of motor neuron degeneration. These findings strengthen our understanding of how neural circuit dysfunctions lead to neurodegeneration and, coupled with our demonstration that the activation of bone morphogenetic protein signaling in proprioceptors alleviates both early and late motor dysfunction, underscores the importance of considering nonmotor neurons as therapeutic targets.
Collapse
Affiliation(s)
- Aaron Held
- Department of Molecular Biology, Cell Biology and Biochemistry
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Paxton Major
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Asli Sahin
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Robert A Reenan
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Diane Lipscombe
- Department of Neuroscience, and
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry,
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
31
|
Braun AT, Caballero-Eraso C, Lechtzin N. Amyotrophic Lateral Sclerosis and the Respiratory System. Clin Chest Med 2019; 39:391-400. [PMID: 29779597 DOI: 10.1016/j.ccm.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that always affects the respiratory muscles. It is characterized by degeneration of motor neurons in the brain and spinal cord. Respiratory complications are the most common causes of death in ALS and typically occur within 3 to 5 years of diagnosis. Because ALS affects both upper and lower motor neurons, it causes hyperreflexia, spasticity, muscle fasciculations, muscle atrophy, and weakness. It ultimately progresses to functional quadriplegia. ALS most commonly begins in the limbs, but in about one-third of cases it begins in the bulbar muscles responsible for speech and swallowing.
Collapse
Affiliation(s)
- Andrew T Braun
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD 21205, USA; Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Candelaria Caballero-Eraso
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD 21205, USA; Medical-Surgical Unit of Respiratory Diseases, Institute of Biomedicine of Seville (IBiS), Centre for Biomedical Research in Respiratory Diseases Network (CIBERES), University Hospital Virgen del Rocío, University of Seville, Avenida Dr. Fedriani, 41009 Sevilla, Spain
| | - Noah Lechtzin
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
The Neuroprotective Role of Origanum syriacum L. and Lavandula dentata L. Essential Oils through Their Effects on AMPA Receptors. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5640173. [PMID: 31275977 PMCID: PMC6582867 DOI: 10.1155/2019/5640173] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/08/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022]
Abstract
Lavandula dentata L. and Origanum syriacum L. essential oils have numerous health benefits and properties, such as possessing common components with a variant degree of depressive actions in the central nervous system. We investigated the depressive property of these oils on AMPA receptors, which are responsible for most of the fast-excitatory neurotransmission in the CNS and play a critical role in synaptic plasticity. Since excessive activation of AMPARs has been linked to neurotoxicity leading to various pathologies, we hypothesize that these oils have a neuroprotective role by acting directly on the kinetics of AMPARs. Using Gas Chromatography-Mass Spectrometry (GC/MS) and patch-clamp electrophysiology, the essential oils of L. dentata flowers and O. syriacum leaves were characterized and the whole cell currents were measured with and without the administration of the oils onto HEK293 cells. The current study results showed that the biophysical properties of AMPA receptor subunits showed a decrease in desensitization rate of GluA1 and GluA2 homomers, using O. syriacum, while administering L. dentata oil decreased the desensitization rate of GluA1 and GluA2 homomers, as well as GluA1/2 heteromers. As for the deactivation rate, both oils slowed the deactivation kinetics of all AMPA receptor subunits. Intriguingly, between the two oils, the effect of desensitization and deactivation was of a greater significance for L. dentata oil than O. syriacum. Our data suggest that the two oils contain components that are essential to identify, as those active components underlie the oils' neuronal depressive properties reported, and to extract them to synthesize a potent neuroprotective drug to treat neurological diseases potentially.
Collapse
|
33
|
Otake K, Kamiguchi H, Hirozane Y. Identification of biomarkers for amyotrophic lateral sclerosis by comprehensive analysis of exosomal mRNAs in human cerebrospinal fluid. BMC Med Genomics 2019; 12:7. [PMID: 30630471 PMCID: PMC6329125 DOI: 10.1186/s12920-019-0473-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background Exosomes are a subset of extracellular vesicles 30–200 nm in diameter secreted from cells, which contain functional mRNAs and microRNAs. Cerebrospinal fluid (CSF) is the primary source for liquid biopsy to examine diseases in central nervous system. To date, there is no available method to analyze exosomal mRNAs comprehensively in human CSF. Methods The main purpose of this study is to established the methodology of comprehensive analysis of exosomal mRNAs in CSF by a highly sensitive next-generation sequencing. The signatures of CSF exosomal mRNAs were then compared between four normal healthy donors and four sporadic amyotrophic lateral sclerosis patients to identify disease-related biomarkers. Differentially expressed genes were identified by DESeq2. Results RNA sequencing from CSF exosomes was successfully performed, that was demonstrated by the high pearson’s product-moment correlation coefficient (r = 0.993) in the technical replicates. Also, position coverage analysis revealed that most detected mRNAs retained their integrity throughout their full-length in CSF exosomes. In CSF exosomes from normal healthy donors, an average of 14,807 genes were detected, of which 4580 genes were commonly detected among four individuals, including neuron-enriched genes such as TUBB3 and CAMK2A. In comparison with exosomal mRNAs in CSF from four patients with amyotrophic lateral sclerosis, 543 genes were significantly changed, as represented by CUEDC2. Gene Ontology analysis and pathway analysis with these genes revealed functional enrichment of ubiquitin-proteasome pathway, oxidative stress response, and unfolded protein response. These pathways are related to pathomechanisms of amyotrophic lateral sclerosis. Conclusion We successfully established the methodology of comprehensive analysis of exosomal mRNAs in human CSF. It was shown to be useful to identify disease biomarkers for central nervous system. Several genes, such as CUEDC2, in CSF exosomes were suggested to be candidate disease biomarkers for amyotrophic lateral sclerosis. Electronic supplementary material The online version of this article (10.1186/s12920-019-0473-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kentaro Otake
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Hidenori Kamiguchi
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yoshihiko Hirozane
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|
34
|
Ruffell TO, Martin NH, Janssen A, Wijesekera L, Knights C, Burman R, Oliver DJ, Al-Chalabi A, Goldstein LH. Healthcare Professionals’ Views on the provision of Gastrostomy and Noninvasive Ventilation to Amyotrophic Lateral Sclerosis Patients in England, Wales, and Northern Ireland. J Palliat Care 2018. [DOI: 10.1177/082585971302900404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrostomy and noninvasive ventilation (NIV) are recommended interventions for the management of symptoms associated with amyotrophic lateral sclerosis (ALS). This study aimed to quantify the views of a range of healthcare professionals (HCPs) on the provision of these interventions in the United Kingdom. A total of 177 HCPs participated in an online survey. Significant differences were found between medical and allied HCPs’ views on: whether HCPs adhere to policy and accept legal constraints when it comes to making gastrostomy available to people with ALS; the impressions that HCPs receive of the way patients and caregivers understand the effects of gastrostomy and NIV on symptoms and quality of life; and the challenges HCPs face when caring for patients who have refused gastrostomy. More widely available guidelines for the provision of gastrostomy and advice on the best way to impart information to patients and caregivers about gastrostomy and NIV appear to be needed.
Collapse
Affiliation(s)
| | | | - Anna Janssen
- King's College London, Institute of Psychiatry, London, UK
| | - Lokesh Wijesekera
- KHP Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK
| | - Catherine Knights
- King's MND Care and Research Centre, King's College London, London, UK
| | - Rachel Burman
- King's College Hospital NHS Foundation Trust, Cicely Saunders Institute, London, UK
| | - David J. Oliver
- Wisdom Hospice, Rochester, and the Centre for Professional Practice, University of Kent, Chatham, UK
| | - Ammar Al-Chalabi
- KHP Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, and Department of Clinical Neuroscience, King's College London, Institute of Psychiatry, London, UK
| | - Laura H. Goldstein
- LH Goldstein (corresponding author): Department of Psychology, King's College London, Institute of Psychiatry, Box PO77, Henry Wellcome Building, De Crespigny Park, Denmark Hill, London SE5 8AF UK
| |
Collapse
|
35
|
Sun Y, Medina Cruz A, Hadley KC, Galant NJ, Law R, Vernon RM, Morris VK, Robertson J, Chakrabartty A. Physiologically Important Electrolytes as Regulators of TDP-43 Aggregation and Droplet-Phase Behavior. Biochemistry 2018; 58:590-607. [DOI: 10.1021/acs.biochem.8b00842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yulong Sun
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Alison Medina Cruz
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Kevin C. Hadley
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Natalie J. Galant
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Ryan Law
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Robert M. Vernon
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Vanessa K. Morris
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
- School of Biological Sciences, University of Canterbury, Ilam, Christchurch 8041, New Zealand
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Avijit Chakrabartty
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Biochemistry, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
36
|
Shijo T, Warita H, Suzuki N, Ikeda K, Mitsuzawa S, Akiyama T, Ono H, Nishiyama A, Izumi R, Kitajima Y, Aoki M. Antagonizing bone morphogenetic protein 4 attenuates disease progression in a rat model of amyotrophic lateral sclerosis. Exp Neurol 2018; 307:164-179. [PMID: 29932880 DOI: 10.1016/j.expneurol.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/25/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, fatal neurodegenerative syndrome characterized by the systemic loss of motor neurons with prominent astrocytosis and microgliosis in the spinal cord and brain. Astrocytes play an essential role in maintaining extracellular microenvironments that surround motor neurons, and are activated by various insults. Growing evidence points to a non-cell autonomous neurotoxicity caused by chronic and sustained astrocytic activation in patients with neurodegenerative diseases, including ALS. However, the mechanisms that underlie the harmful effects of astrocytosis in patients with ALS remain unresolved. We focused on bone morphogenetic proteins as a major soluble factor that promotes astrocytogenesis and its activation in the adult spinal cord. In a transgenic rat model with ALS-linked mutant Cu/Zn superoxide dismutase gene, BMP4 was progressively up-regulated in reactive astrocytes of the spinal ventral horns, whereas the BMP-antagonist noggin was decreased in association with neuronal degeneration. Continuous intrathecal noggin supplementation after disease onset significantly ameliorated motor dysfunction symptoms, neurogenic muscle atrophy, and extended survival of symptomatic ALS model rats, despite lack of deterrence against neuronal death itself. The exogenous noggin inhibited astrocytic hypertrophy, astrocytogenesis, and neuroinflammation by inactivating both Smad1/5/8 and p38 mitogen-activated protein kinase pathways. Moreover, intrathecal infusion of a Bmp4-targeted antisense oligonucleotides and provided selective Bmp4 knockdown in vivo, which suppressed astrocyte and microglia activation, reproducing the aforementioned results by noggin treatment. Collectively, we clarified the involvement of BMP4 in the processes of excessive gliosis that exacerbate the disease progression of the ALS model rats. Our study demonstrated that BMP4, with its downstream signaling, might be a novel therapeutic target for disease-modifying therapies in ALS.
Collapse
Affiliation(s)
- Tomomi Shijo
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Shio Mitsuzawa
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Yasuo Kitajima
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
37
|
Prakash A, Kumar V, Meena NK, Hassan MI, Lynn AM. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43). J Biomol Struct Dyn 2018; 37:178-194. [DOI: 10.1080/07391102.2017.1422026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amresh Prakash
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naveen Kumar Meena
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Andrew M. Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
38
|
Brinkmeyer-Langford CL, Rech R, Amstalden K, Kochan KJ, Hillhouse AE, Young C, Welsh CJ, Threadgill DW. Host genetic background influences diverse neurological responses to viral infection in mice. Sci Rep 2017; 7:12194. [PMID: 28939838 PMCID: PMC5610195 DOI: 10.1038/s41598-017-12477-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infection by Theiler's murine encephalomyelitis virus (TMEV) is a model for neurological outcomes caused by virus infection because it leads to diverse neurological conditions in mice, depending on the strain infected. To extend knowledge on the heterogeneous neurological outcomes caused by TMEV and identify new models of human neurological diseases associated with antecedent infections, we analyzed the phenotypic consequences of TMEV infection in the Collaborative Cross (CC) mouse population. We evaluated 5 different CC strains for outcomes of long-term infection (3 months) and acute vs. early chronic infection (7 vs. 28 days post-infection), using neurological and behavioral phenotyping tests and histology. We correlated phenotypic observations with haplotypes of genomic regions previously linked to TMEV susceptibility to test the hypothesis that genomic diversity within CC mice results in variable disease phenotypes in response to TMEV. None of the 5 strains analyzed had a response identical to that of any other CC strain or inbred strain for which prior data are available, indicating that strains of the CC can produce novel models of neurological disease. Thus, CC strains can be a powerful resource for studying how viral infection can cause different neurological outcomes depending on host genetic background.
Collapse
Affiliation(s)
| | - Raquel Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Katia Amstalden
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Kelli J Kochan
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Andrew E Hillhouse
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Colin Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
| | - C Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
39
|
Shijo T, Warita H, Suzuki N, Kitajima Y, Ikeda K, Akiyama T, Ono H, Mitsuzawa S, Nishiyama A, Izumi R, Aoki M. Aberrant astrocytic expression of chondroitin sulfate proteoglycan receptors in a rat model of amyotrophic lateral sclerosis. J Neurosci Res 2017; 96:222-233. [DOI: 10.1002/jnr.24127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Tomomi Shijo
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Hitoshi Warita
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Naoki Suzuki
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Yasuo Kitajima
- Medicine and Science in Sports and Exercise; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Kensuke Ikeda
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Tetsuya Akiyama
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Hiroya Ono
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Shio Mitsuzawa
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Ayumi Nishiyama
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Rumiko Izumi
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Masashi Aoki
- Department of Neurology; Tohoku University Graduate School of Medicine; Sendai Japan
| |
Collapse
|
40
|
Bailey JM, Colón-Rodríguez A, Atchison WD. Evaluating a Gene-Environment Interaction in Amyotrophic Lateral Sclerosis: Methylmercury Exposure and Mutated SOD1. Curr Environ Health Rep 2017; 4:200-207. [PMID: 28397096 PMCID: PMC5494256 DOI: 10.1007/s40572-017-0144-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Gene-environment (GxE) interactions likely contribute to numerous diseases, but are often difficult to model in the laboratory. Such interactions have been widely hypothesized for amyotrophic lateral sclerosis (ALS); recent controlled laboratory studies are discussed here and hypotheses related to possible mechanisms of action are offered. Using methylmercury exposure and mutated SOD1 to model the impacts of such an interaction, we interpret evidence about their respective mechanisms of toxicity to interrogate the possibility of additive (or synergistic) effects when combined. RECENT FINDINGS Recent work has converged on mechanisms of calcium-mediated glutamate excitotoxicity as a likely contributor in one model of a gene-environment interaction affecting the onset and progression of ALS-like phenotype. The current experimental literature on mechanisms of metal-induced neuronal injury and their relevant interactions with genetic contributions in ALS is sparse, but we describe those studies here and offer several integrative hypotheses about the likely mechanisms involved.
Collapse
Affiliation(s)
- Jordan M Bailey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA
| | - Alexandra Colón-Rodríguez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA.
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, 48824-1317, USA.
- , Life Science Building, 1355 Bogue St. Room B331A, East Lansing, MI, 48824-1317, USA.
| |
Collapse
|
41
|
Abstract
TDP-43 is a dimeric nuclear protein that plays a central role in RNA metabolism. In recent years, this protein has become a focal point of research in the amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) disease spectrum, as pathognomonic inclusions within affected neurons contain post-translationally modified TDP-43. A key question in TDP-43 research involves determining the mechanisms and triggers that cause TDP-43 to form pathological aggregates. This review gives a brief overview of the physiological and pathological roles of TDP-43 and focuses on the structural features of its protein domains and how they may contribute to normal protein function and to disease. A special emphasis is placed on the C-terminal prion-like region thought to be implicated in pathology, as it is where nearly all ALS/FTD-associated mutations reside. Recent structural studies of this domain revealed its crucial role in the formation of phase-separated liquid droplets through a partially populated α-helix. This new discovery provides further support for the theory that liquid droplets such as stress granules may be precursors to pathological aggregates, linking environmental effects such as stress to the potential etiology of the disease. The transition of TDP-43 among soluble, droplet, and aggregate phases and the implications of these transitions for pathological aggregation are summarized and discussed.
Collapse
Affiliation(s)
- Yulong Sun
- Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G1L7, Canada
| | - Avijit Chakrabartty
- Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G1L7, Canada.,Department of Biochemistry, University of Toronto , Toronto, Ontario M5G1L7, Canada
| |
Collapse
|
42
|
Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy. Proc Natl Acad Sci U S A 2016; 113:E6939-E6945. [PMID: 27791136 DOI: 10.1073/pnas.1611418113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that, in some cases, has been linked with mutations to the antioxidant metalloenzyme superoxide dismutase (SOD1). Although the mature form of this enzyme is highly stable and resistant to aggregation, the most immature form, lacking metal and a stabilizing intrasubunit disulfide bond, apoSOD12SH, is dynamic and hypothesized to be a major cause of toxicity in vivo. Previous solution NMR studies of wild-type apoSOD12SH have shown that the ground state interconverts with a series of sparsely populated and transiently formed conformers, some of which have aberrant nonnative structures. Here, we study seven disease mutants of apoSOD12SH and characterize their free energy landscapes as a first step in understanding the initial stages of disease progression and, more generally, to evaluate the plasticity of low-lying protein conformational states. The mutations lead to little change in the structures and dynamics of the ground states of the mutant proteins. By contrast, the numbers of low-lying excited states that are accessible to each of the disease mutants can vary significantly, with additional conformers accessed in some cases. Our study suggests that the diversity of these structures can provide alternate interaction motifs for different mutants, establishing additional pathways for new and often aberrant intra- and intermolecular contacts. Further, it emphasizes the potential importance of conformationally excited states in directing both folding and misfolding processes.
Collapse
|
43
|
Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro. Biochem Biophys Res Commun 2016; 479:434-439. [PMID: 27641665 DOI: 10.1016/j.bbrc.2016.09.069] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 01/11/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disorder that involves the death of motor neurons in the cortex, brain stem, and spinal cord. Adipose-derived stem cells (ADSCs) are considered as a perspective remedy for therapy of neurodegenerative diseases including ALS. Stem cells secrete various factors which can modulate a hostile environment, called paracrine effect. Exosomes are small extracellular vesicles containing cell derived factors and mediate paracrine effect of cells. Thus, exosomes from ADSCs (ADSC-exo) can be a potential candidate of therapeutic effects of stem cells. To investigate the effect of ADSC-exo on the cellular phenotypes of ALS, we used neuronal stem cells (NSCs), which can be differentiated into neuronal cells, isolated from wild type or G93A ALS mice model. ADSC-exo was treated to neuronal cells from G93A ALS mice model. Immunocytochemistry and dot-blot assay result showed that ADSC-exo alleviated aggregation of superoxide dismutase 1 (SOD1). Reduction of cytosolic SOD1 level by ADSC-exo was also confirmed by western blot. Mitochondria display various abnormalities in ALS and the decrease of phospho-CREB and PGC-1α were observed in the G93A cells. ADSC-exo treatment showed normalization of phospho-CREB/CREB ratio and PGC-1α expression level. Our results suggest that ADSC-exo modulates cellular phenotypes of ALS including SOD-1 aggregation and mitochondrial dysfunction, and can be a therapeutic candidate for ALS.
Collapse
|
44
|
Abstract
This preliminary study explores the everyday needs and requirements of patients with motor neurone disease (MND) and indicates similarities and differences between the patient's viewpoint, that of their main carer and that of their occupational therapist (OT). The study highlights differences between the three subject groups. The MND subjects' views centred on physical needs, the carers on the emotional and psychological impact of MND and caring, while that of the OTs focused on the co-ordination of physical and psychological aspects of MND, both for patient and carer. The primary need agreed upon by all subject groups was the essential role of the carer in the management of MND.
Collapse
Affiliation(s)
- Diane L Cox
- Neurosciences Unit, Oldchurch Hospital, Romford
| |
Collapse
|
45
|
|
46
|
Wang C, Li M, Jiang H, Tong H, Feng Y, Wang Y, Pi X, Guo L, Nie M, Feng H, Li E. Comparative Analysis of VOCs in Exhaled Breath of Amyotrophic Lateral Sclerosis and Cervical Spondylotic Myelopathy Patients. Sci Rep 2016; 6:26120. [PMID: 27212435 PMCID: PMC4876505 DOI: 10.1038/srep26120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/27/2016] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurological degenerative disease. It can cause irreversible neurological damage to motor neurons; typical symptoms include muscle weakness and atrophy, bulbar paralysis and pyramidal tract signs. The ALS-mimicking disease cervical spondylotic myelopathy (CSM) presents similar symptoms, but analysis of breath volatile organic compounds (VOCs) can potentially be used to distinguish ALS from CSM. In this study, breath samples were collected from 28 ALS and 13 CSM patients. Subsequently, gas chromatography/mass spectrometry (GCMS) was used to analyze breath VOCs. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLSDA) were the statistical methods used to process the final data. We identified 4 compounds with significantly decreased levels in ALS patients compared with CSM controls: (1) carbamic acid, monoammonium salt; (2) 1-alanine ethylamide, (S)-; (3) guanidine, N,N-dimethyl-; and (4) phosphonic acid, (p-hydroxyphenyl)-. Currently, the metabolic origin of the VOCs remains unclear; however, several pathways might explain the decreasing trends observed. The results of this study demonstrate that there are specific VOC profiles associated with ALS and CSM patients that can be used to differentiate between the two. In addition, these metabolites could contribute to a better understanding of the underlying pathophysiological mechanisms of ALS.
Collapse
Affiliation(s)
- Changsong Wang
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of critical care medicine, the Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingjuan Li
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongquan Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongshuang Tong
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Feng
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Pi
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Guo
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Maomao Nie
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Honglin Feng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Enyou Li
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Abstract
Radical S-adenosylmethionine (SAM) enzymes catalyze an astonishing array of complex and chemically challenging reactions across all domains of life. Of approximately 114,000 of these enzymes, 8 are known to be present in humans: MOCS1, molybdenum cofactor biosynthesis; LIAS, lipoic acid biosynthesis; CDK5RAP1, 2-methylthio-N(6)-isopentenyladenosine biosynthesis; CDKAL1, methylthio-N(6)-threonylcarbamoyladenosine biosynthesis; TYW1, wybutosine biosynthesis; ELP3, 5-methoxycarbonylmethyl uridine; and RSAD1 and viperin, both of unknown function. Aberrations in the genes encoding these proteins result in a variety of diseases. In this review, we summarize the biochemical characterization of these 8 radical S-adenosylmethionine enzymes and, in the context of human health, describe the deleterious effects that result from such genetic mutations.
Collapse
Affiliation(s)
- Bradley J Landgraf
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Erin L McCarthy
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802.,The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
48
|
Ruegsegger C, Saxena S. Proteostasis impairment in ALS. Brain Res 2016; 1648:571-579. [PMID: 27033833 DOI: 10.1016/j.brainres.2016.03.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
In physiological conditions the maintenance of the cellular proteome is a prerequisite for optimal cell functioning and cell survival. Additionally, cells need to constantly sense and adapt to their changing environment and associated stressors. Cells achieve this via a set of molecular chaperones, protein clearance pathways as well as stress-associated signaling networks which work together to prevent protein misfolding, its aggregation and accumulation in subcellular compartments. These processes together form the proteostasis network which helps in maintaining cellular proteostasis. Imbalance or impairment in this processes is directly linked to ageing associated disorders such as diabetes, cancer, stroke, metabolic disorders, pulmonary fibrosis, inflammation and neurodegenerative diseases. In this review, we provide insights into the proteostasis process and how its failure governs neurodegenerative disorders with a special focus on Amyotrophic lateral sclerosis (ALS). This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Céline Ruegsegger
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
49
|
Neuroplasticity and Repair in Rodent Neurotoxic Models of Spinal Motoneuron Disease. Neural Plast 2016; 2016:2769735. [PMID: 26862439 PMCID: PMC4735933 DOI: 10.1155/2016/2769735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/12/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Retrogradely transported toxins are widely used to set up protocols for selective lesioning of the nervous system. These methods could be collectively named "molecular neurosurgery" because they are able to destroy specific types of neurons by using targeted neurotoxins. Lectins such as ricin, volkensin, or modeccin and neuropeptide- or antibody-conjugated saporin represent the most effective toxins used for neuronal lesioning. Some of these specific neurotoxins could be used to induce selective depletion of spinal motoneurons. In this review, we extensively describe two rodent models of motoneuron degeneration induced by volkensin or cholera toxin-B saporin. In particular, we focus on the possible experimental use of these models to mimic neurodegenerative diseases, to dissect the molecular mechanisms of neuroplastic changes underlying the spontaneous functional recovery after motoneuron death, and finally to test different strategies of neural repair. The potential clinical applications of these approaches are also discussed.
Collapse
|
50
|
Fujimaki N, Miura T, Nakabayashi T. The structural analysis of the pro-oxidant copper-binding site of denatured apo-H43R SOD1 and the elucidation of the origin of the acquisition of the pro-oxidant activity. Phys Chem Chem Phys 2016; 18:4468-75. [DOI: 10.1039/c5cp07729j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of the Cu2+-binding site of denatured apo-SOD1 mutant (H43R) was investigated to clarify the mechanism of the acquisition of the pro-oxidant activity.
Collapse
Affiliation(s)
- Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Takashi Miura
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | | |
Collapse
|