1
|
Xu Z, He S, Begum MM, Han X. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Antioxid Redox Signal 2024; 41:1073-1099. [PMID: 39575748 PMCID: PMC11971557 DOI: 10.1089/ars.2024.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Significance: Lipids, which constitute the highest portion (over 50%) of brain dry mass, are crucial for brain integrity, energy homeostasis, and signaling regulation. Emerging evidence revealed that lipid profile alterations and abnormal lipid metabolism occur during normal aging and in different forms of neurodegenerative diseases. Moreover, increasing genome-wide association studies have validated new targets on lipid-associated pathways involved in disease development. Myelin, the protective sheath surrounding axons, is crucial for efficient neural signaling transduction. As the primary site enriched with lipids, impairments of myelin are increasingly recognized as playing significant and complex roles in various neurodegenerative diseases, beyond simply being secondary effects of neuronal loss. Recent Advances: With advances in the lipidomics field, myelin lipid alterations and their roles in contributing to or reflecting the progression of diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others, have recently caught great attention. Critical Issues: This review summarizes recent findings of myelin lipid alterations in the five most common neurodegenerative diseases and discusses their implications in disease pathogenesis. Future Directions: By highlighting myelin lipid abnormalities in neurodegenerative diseases, this review aims to encourage further research focused on lipids and the development of new lipid-oriented therapeutic approaches in this area. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Mst Marium Begum
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Li QM, Xu T, Zha XQ, Feng XW, Zhang FY, Luo JP. Buddlejasaponin IVb ameliorates ferroptosis of dopaminergic neuron by suppressing IRP2-mediated iron overload in Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117196. [PMID: 37717841 DOI: 10.1016/j.jep.2023.117196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the second neurodegenerative disease that lacks effective treatments. Buddlejasaponin IVb (BJP-IVb) is the main bioactive component of herbs in genus Clinopodium which display antioxidative, anti-inflammatory and neuroprotective activities. However, the role of BJP-IVb in PD still remains unknown. AIM OF THE STUDY This study aimed to evaluate the effect of BJP-IVb on dopaminergic neurodegeneration in PD and clarified the underlying mechanisms from the aspect of iron overload-mediated ferroptosis. MATERIALS AND METHODS One-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD models were established in this study. Behavioral tests, cell cytotoxicity assay, tyrosine hydroxylase (TH) and Nissl staining were performed to evaluate the antiparkinsonian effect of BJP-IVb. Cellular ultrastructure, iron content and lipid peroxidation were detected to evaluate iron overload-mediated dopaminergic neuron ferroptosis. Iron regulatory protein 2 (IRP2) and iron transport-related proteins were detected by immunofluorescence and Western blot to evaluated iron transport. Finally, plasmid vector-mediated IRP2 overexpression were performed to further clarify the molecular mechanism. RESULTS BJP-IVb alleviated MPP+-induced neurotoxicity in vitro and improved MPTP-induced dopaminergic neuron loss and motor dysfunctions of PD mice, confirming an effect of BJP-IVb against dopaminergic neurodegeneration of PD. Further results revealed that BJP-IVb protected against PD by suppressing iron overload-mediated dopaminergic neuron ferroptosis, as evidenced by the attenuated lipid peroxidation, decreased iron content and changes in cellular ultrastructure. Finally, the decreased iron regulatory protein (IRP2) was confirmed to be responsible for BJP-IVb-mediated ferroptosis suppression by modulating iron transport-related proteins and alleviating iron overload. CONCLUSION BJP-IVb suppressed iron overload-mediated dopaminergic neuron ferroptosis and improved motor dysfunctions in PD, which was achieved by inhibiting IRP2-mediated iron overload. This study provided a potential drug candidate for the treatment of PD.
Collapse
Affiliation(s)
- Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Tong Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Xiao-Wen Feng
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| |
Collapse
|
3
|
Herrero MT, Yuste JE, Cuenca-Bermejo L, Almela P, Arenas-Betancur L, De Pablos V, Gonzalez-Cuello A, Del Bel E, Navarro-Zaragoza J, Fernández-Villalba E. 7-Nitroindazole reduces L-DOPA-induced dyskinesias in non-human Parkinsonian primate. Open Biol 2023; 13:220370. [PMID: 37192671 DOI: 10.1098/rsob.220370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/31/2023] [Indexed: 05/18/2023] Open
Abstract
Nitric oxide (NO) plays a pivotal role in integrating dopamine transmission in the basal ganglia and has been implicated in the pathogenesis of Parkinson disease (PD). The objective of this study was to ascertain whether the NO synthase inhibitor, 7-nitroindazole (7-NI), is able to reduce L-DOPA-induced dyskinesias (LIDs) in a non-human primate model of PD chronically intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Six Parkinsonian macaques were treated daily with L-DOPA for 3-4 months until they developed LIDs. Three animals were then co-treated with a single dose of 7-NI administered 45 min before each L-DOPA treatment. Dyskinetic MPTP-treated monkeys showed a significant decrease in LIDs compared with their scores without 7-NI treatment (p < 0.05). The anti-Parkinsonian effect of L-DOPA was similar in all three monkeys with and without 7-NI co-treatment. This improvement was significant with respect to the intensity and duration of LIDs while the beneficial effect of L-DOPA treatment was maintained and could represent a promising therapy to improve the quality of life of PD patients.
Collapse
Affiliation(s)
- M T Herrero
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - J E Yuste
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
| | - L Cuenca-Bermejo
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - P Almela
- Department of Pharmacology, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - L Arenas-Betancur
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
| | - V De Pablos
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - A Gonzalez-Cuello
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - E Del Bel
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto (FORP-USP) and Center for Research Support on Applied Neuroscience (NAPNA-USP), University of São Paulo, Ribeirão Preto, SP 14040-904, Brazil
| | - J Navarro-Zaragoza
- Department of Pharmacology, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - E Fernández-Villalba
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
4
|
de Araújo FM, Cuenca-Bermejo L, Fernández-Villalba E, Costa SL, Silva VDA, Herrero MT. Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy. Cell Mol Neurobiol 2022; 42:1283-1300. [PMID: 33387119 PMCID: PMC11421755 DOI: 10.1007/s10571-020-01027-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.
Collapse
Affiliation(s)
- Fillipe M de Araújo
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Lorena Cuenca-Bermejo
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Emiliano Fernández-Villalba
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Silvia L Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Victor Diogenes A Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Maria Trinidad Herrero
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
5
|
Gil-Martinez AL, Cuenca-Bermejo L, Gallo-Soljancic P, Sanchez-Rodrigo C, Izura V, Steinbusch HWM, Fernandez-Villalba E, Herrero MT. Study of the Link Between Neuronal Death, Glial Response, and MAPK Pathway in Old Parkinsonian Mice. Front Aging Neurosci 2020; 12:214. [PMID: 32848701 PMCID: PMC7403503 DOI: 10.3389/fnagi.2020.00214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Parkinson’s disease (PD) is described as an age-related neurodegenerative disorder. However, the vast majority of research is carried out using experimental models of young animals lacking the implications of the decline processes associated with aging. It has been suggested that several molecular pathways are involved in the perpetuation of the degeneration and the neuroinflammation in PD. Among others, mitogen-activated protein kinases (MAPKs) have been highly implicated in the development of PD, and regulating components of their activity are indicated as promising therapeutic targets. Methods: To further define how MAPKs expression is related to the glial response and neuronal cell death, Parkinsonism was induced under an acute regimen in old mice. Moreover, the sacrifice was carried out at different time points (4, 8, 24, and 48 h) after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) injections to describe the early dynamic changes over time produced by the intoxication. Results: The results revealed that neuronal death increases as glial response increases in the nigrostriatal pathway. It was observed that both processes increase from 4 h in the ventral mesencephalon (VM), and neuronal death becomes significant at 48 h. In the striatum, they were significantly increased from 48 h after the MPTP administration compared with that in the control mice. Moreover, the p-ERK levels decrease, while phospho-p38 expression increases specifically in the striatum at 48 h after MPTP intoxication. Conclusions: The importance of these data lies in the possibility of elucidating the underlying mechanisms of neurodegenerative processes under aging conditions to provide knowledge for the search of solutions that slow down the progression of PD.
Collapse
Affiliation(s)
- Ana Luisa Gil-Martinez
- Clinical and Experimental Neuroscience Group (NiCE), Institute for Aging Research, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain.,School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Lorena Cuenca-Bermejo
- Clinical and Experimental Neuroscience Group (NiCE), Institute for Aging Research, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Pablo Gallo-Soljancic
- Clinical and Experimental Neuroscience Group (NiCE), Institute for Aging Research, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Consuelo Sanchez-Rodrigo
- Clinical and Experimental Neuroscience Group (NiCE), Institute for Aging Research, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Virginia Izura
- Clinical and Experimental Neuroscience Group (NiCE), Institute for Aging Research, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Emiliano Fernandez-Villalba
- Clinical and Experimental Neuroscience Group (NiCE), Institute for Aging Research, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Maria Trinidad Herrero
- Clinical and Experimental Neuroscience Group (NiCE), Institute for Aging Research, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
6
|
Costa T, Fernandez-Villalba E, Izura V, Lucas-Ochoa AM, Menezes-Filho NJ, Santana RC, de Oliveira MD, Araújo FM, Estrada C, Silva V, Costa SL, Herrero MT. Combined 1-Deoxynojirimycin and Ibuprofen Treatment Decreases Microglial Activation, Phagocytosis and Dopaminergic Degeneration in MPTP-Treated Mice. J Neuroimmune Pharmacol 2020; 16:390-402. [PMID: 32564332 DOI: 10.1007/s11481-020-09925-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022]
Abstract
Inflammation is a predominant aspect of neurodegenerative diseases and experimental studies performed in animal models of Parkinson's disease (PD) suggesting that a sustained neuroinflammation exacerbates the nigrostriatal degeneration pathway. The central role of microglia in neuroinflammation has been studied as a target for potential neuroprotective drugs for PD, for example nonsteroidal anti-inflammatory drugs (NSAIDs) and matrix metalloproteinases (MMP) inhibitors that regulates microglial activation and migration. The aim of this study was to investigate the neuroprotective response of the iminosugar 1-deoxynojirimycin (1-DNJ) and compare its effect with a combined treatment with ibuprofen. MPTP-treated mice were orally dosed with ibuprofen and/or 1-DNJ 1. Open-field test was used to evaluate behavioral changes. Immunohistochemistry for dopaminergic neurons marker (TH+) and microglia markers (Iba-1+; CD68+) were used to investigate neuronal integrity and microglial activation in the substantia nigra pars compacta (SNpc). The pro-inflammatory cytokines TNF-α and IL-6 were analysed by qPCR. Treatments with either 1-DNJ or Ibuprofen alone did not reduce the damage induced by MPTP intoxication. However, combined treatment with 1-DNJ and ibuprofen prevents loss of mesencephalic dopaminergic neurons, decreases the number of CD68+/ Iba-1+ cells, the microglia/neurons interactions, and the pro-inflammatory cytokines, and improves behavioral changes when compared with MPTP-treated animals. In conclusion, these data demonstrate that the combined treatment with a MMPs inhibitor (1-DNJ) plus an anti-inflammatory drug (ibuprofen) has neuroprotective effects open for future therapeutic interventions. Graphical Abstract MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a protoxicant that, after crossing the Blood Brain Barrier, is metabolized by astrocytic MAO-B to MPDP+, a pyridinium intermediate, which undergoes further two-electron oxidation to yield the toxic metabolite MPP+ (methyl-phenyltetrahydropyridinium) that is then selectively transported into nigral neurons via the mesencephalic dopamine transporter. In this study, we demonstrated that MPTP induced death of dopaminergic neurons, microgliosis, increase of gliapses, motor impairment and neuroinflammation in mice, which were inhibited by combined 1-deoxynojirimycin and ibuprofen treatment.
Collapse
Affiliation(s)
- Tcs Costa
- Clinical & Experimental Neuroscience (NiCE). Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE). School of Medicine, University of Murcia, Murcia, Spain.,Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - E Fernandez-Villalba
- Clinical & Experimental Neuroscience (NiCE). Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE). School of Medicine, University of Murcia, Murcia, Spain
| | - V Izura
- Clinical & Experimental Neuroscience (NiCE). Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE). School of Medicine, University of Murcia, Murcia, Spain
| | - A M Lucas-Ochoa
- Clinical & Experimental Neuroscience (NiCE). Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE). School of Medicine, University of Murcia, Murcia, Spain
| | - N J Menezes-Filho
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - R C Santana
- Department of Bioregulation, Laboratory of Neuroscience, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - M D de Oliveira
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.,Faculty of Ceilandia, University of Brasilia - UnB, Brasilia, Federal District, Brazil
| | - F M Araújo
- Clinical & Experimental Neuroscience (NiCE). Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE). School of Medicine, University of Murcia, Murcia, Spain.,Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - C Estrada
- Clinical & Experimental Neuroscience (NiCE). Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE). School of Medicine, University of Murcia, Murcia, Spain
| | - Vda Silva
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - S L Costa
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - M T Herrero
- Clinical & Experimental Neuroscience (NiCE). Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE). School of Medicine, University of Murcia, Murcia, Spain.
| |
Collapse
|
7
|
Olanow CW. Levodopa is the best symptomatic therapy for PD: Nothing more, nothing less. Mov Disord 2019; 34:812-815. [DOI: 10.1002/mds.27690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022] Open
|
8
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
9
|
Dhanushkodi A, Xue Y, Roguski EE, Ding Y, Matta SG, Heck D, Fan GH, McDonald MP. Lentiviral-mediated knock-down of GD3 synthase protects against MPTP-induced motor deficits and neurodegeneration. Neurosci Lett 2018; 692:53-63. [PMID: 30391320 DOI: 10.1016/j.neulet.2018.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Converging evidence demonstrates an important role for gangliosides in brain function and neurodegenerative diseases. Exogenous GM1 is broadly neuroprotective, including in rodent, feline, and primate models of Parkinson's disease, and has shown positive effects in clinical trials. We and others have shown that inhibition of the ganglioside biosynthetic enzyme GD3 synthase (GD3S) increases endogenous levels GM1 ganglioside. We recently reported that targeted deletion of St8sia1, the gene that codes for GD3S, prevents motor impairments and significantly attenuates neurodegeneration induced by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current study investigated the effects of GD3S inhibition on the neurotoxicity and parkinsonism induced by MPTP. Mice were injected intrastriatally with a lentiviral-vector-mediated shRNA construct targeting GD3S (shGD3S) or a scrambled-sequence control (scrRNA). An MPTP regimen of 18 mg/kg x 5 days reduced tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta of scrRNA-treated mice by nearly two-thirds. In mice treated with shGD3S the MPTP-induced lesion was approximately half that size. MPTP induced bradykinesia and deficits in fine motor skills in mice treated with scrRNA. These deficits were absent in shGD3S-treated mice. These results suggest that inhibition of GD3S protects against the nigrostriatal damage, bradykinesia, and fine-motor-skill deficits associated with MPTP administration.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Yi Xue
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Emily E Roguski
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Yun Ding
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Shannon G Matta
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Detlef Heck
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Guo-Huang Fan
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States.
| |
Collapse
|
10
|
Benskey MJ, Sellnow RC, Sandoval IM, Sortwell CE, Lipton JW, Manfredsson FP. Silencing Alpha Synuclein in Mature Nigral Neurons Results in Rapid Neuroinflammation and Subsequent Toxicity. Front Mol Neurosci 2018; 11:36. [PMID: 29497361 PMCID: PMC5819572 DOI: 10.3389/fnmol.2018.00036] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Human studies and preclinical models of Parkinson’s disease implicate the involvement of both the innate and adaptive immune systems in disease progression. Further, pro-inflammatory markers are highly enriched near neurons containing pathological forms of alpha synuclein (α-syn), and α-syn overexpression recapitulates neuroinflammatory changes in models of Parkinson’s disease. These data suggest that α-syn may initiate a pathological inflammatory response, however the mechanism by which α-syn initiates neuroinflammation is poorly understood. Silencing endogenous α-syn results in a similar pattern of nigral degeneration observed following α-syn overexpression. Here we aimed to test the hypothesis that loss of α-syn function within nigrostriatal neurons results in neuronal dysfunction, which subsequently stimulates neuroinflammation. Adeno-associated virus (AAV) expressing an short hairpin RNA (shRNA) targeting endogenous α-syn was unilaterally injected into the substantia nigra pars compacta (SNc) of adult rats, after which nigrostriatal pathology and indices of neuroinflammation were examined at 7, 10, 14 and 21 days post-surgery. Removing endogenous α-syn from nigrostriatal neurons resulted in a rapid up-regulation of the major histocompatibility complex class 1 (MHC-1) within transduced nigral neurons. Nigral MHC-1 expression occurred prior to any overt cell death and coincided with the recruitment of reactive microglia and T-cells to affected neurons. Following the induction of neuroinflammation, α-syn knockdown resulted in a 50% loss of nigrostriatal neurons in the SNc and a corresponding loss of nigrostriatal terminals and dopamine (DA) concentrations within the striatum. Expression of a control shRNA did not elicit any pathological changes. Silencing α-syn within glutamatergic neurons of the cerebellum did not elicit inflammation or cell death, suggesting that toxicity initiated by α-syn silencing is specific to DA neurons. These data provide evidence that loss of α-syn function within nigrostriatal neurons initiates a neuronal-mediated neuroinflammatory cascade, involving both the innate and adaptive immune systems, which ultimately results in the death of affected neurons.
Collapse
Affiliation(s)
- Matthew J Benskey
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Rhyomi C Sellnow
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Jack W Lipton
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Mercy Health Saint Mary's, Grand Rapids, MI, United States
| |
Collapse
|
11
|
Melo-Thomas L, Gil-Martínez AL, Cuenca L, Estrada C, Gonzalez-Cuello A, Schwarting RK, Herrero MT. Electrical stimulation or MK-801 in the inferior colliculus improve motor deficits in MPTP-treated mice. Neurotoxicology 2018; 65:38-43. [PMID: 29366825 DOI: 10.1016/j.neuro.2018.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
Abstract
The inferior colliculus (IC) is an important midbrain relay station for the integration of descending and ascending auditory information. Additionally, the IC has been implicated in processing sensorimotor responses. Glutamatergic and GABAergic manipulations in the IC can improve motor deficits as demonstrated by the animal model of haloperidol-induced catalepsy. However, how the IC influences motor function remains unclear. We investigated the effects of either intracollicular deep brain stimulation (DBS) or microinjection of the glutamatergic antagonist MK-801 or the agonist NMDA in C57BL/6J mice chronically treated with saline or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). After DBS or microinjections, the mice were submitted to rotarod and open field tests, respectively. DBS in the IC was effective to increase the time spent on the rotarod in MPTP-treated mice. After unilateral microinjection of MK-801, but not NMDA, MPTP-treated mice increased the distance travelled in the open field (p < 0.05). In conclusion, intracollicular DBS or MK-801 microinjection can improve motor performance in parkinsonian mice suggesting the IC as a new and non-conventional therapeutic target in motor impairment.
Collapse
Affiliation(s)
- L Melo-Thomas
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany; Instituto de Neurociências & Comportamento - INEC, Campus USP, Ribeirão Preto, SP, 14040-901, Brazil; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany.
| | - A L Gil-Martínez
- Clinical and Experimental Neuroscience Group (NiCE-IMIB), Department of Human Anatomy and Psychobiology, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - L Cuenca
- Clinical and Experimental Neuroscience Group (NiCE-IMIB), Department of Human Anatomy and Psychobiology, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - C Estrada
- Clinical and Experimental Neuroscience Group (NiCE-IMIB), Department of Human Anatomy and Psychobiology, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - A Gonzalez-Cuello
- Clinical and Experimental Neuroscience Group (NiCE-IMIB), Department of Human Anatomy and Psychobiology, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - R K Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany; Instituto de Neurociências & Comportamento - INEC, Campus USP, Ribeirão Preto, SP, 14040-901, Brazil
| | - M T Herrero
- Clinical and Experimental Neuroscience Group (NiCE-IMIB), Department of Human Anatomy and Psychobiology, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain.
| |
Collapse
|
12
|
Alteration of the PAC1 Receptor Expression in the Basal Ganglia of MPTP-Induced Parkinsonian Macaque Monkeys. Neurotox Res 2017; 33:702-715. [PMID: 29230633 DOI: 10.1007/s12640-017-9841-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-known neuropeptide with strong neurotrophic and neuroprotective effects. PACAP exerts its protective actions via three G protein-coupled receptors: the specific Pac1 receptor (Pac1R) and the Vpac1/Vpac2 receptors, the neuroprotective effects being mainly mediated by the Pac1R. The protective role of PACAP in models of Parkinson's disease and other neurodegenerative diseases is now well-established in both in vitro and in vivo studies. PACAP and its receptors occur in the mammalian brain, including regions associated with Parkinson's disease. PACAP receptor upregulation or downregulation has been reported in several injury models or human diseases, but no data are available on alterations of receptor expression in Parkinson's disease. The model closest to the human disease is the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced macaque model. Therefore, our present aim was to evaluate changes in Pac1R expression in basal ganglia related to Parkinson's disease in a macaque model. Monkeys were rendered parkinsonian with MPTP, and striatum, pallidum, and cortex were evaluated for Pac1R immunostaining. We found that Pac1R immunosignal was markedly reduced in the caudate nucleus, putamen, and internal and external parts of the globus pallidus, while the immunoreactivity remained unchanged in the cortex of MPTP-treated parkinsonian monkey brains. This decrease was attenuated in some brain areas in monkeys treated with L-DOPA. The strong, specific decrease of the PACAP receptor immunosignal in the basal ganglia of parkinsonian macaque monkey brains suggests that the PACAP/Pac1R system may play an important role in the development/progression of the disease.
Collapse
|
13
|
Alam G, Edler M, Burchfield S, Richardson JR. Single low doses of MPTP decrease tyrosine hydroxylase expression in the absence of overt neuron loss. Neurotoxicology 2017; 60:99-106. [PMID: 28377118 DOI: 10.1016/j.neuro.2017.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a prototypical neurotoxicant used in mice to mimic primary features of PD pathology including striatal dopamine depletion and dopamine neuron loss in the substantia nigra pars compacta (SNc). In the literature, there are several experimental paradigms involving multiple doses of MPTP that are used to elicit dopamine neuron loss. However, a recent study reported that a single low dose caused significant loss of dopamine neurons. Here, we determined the effect of a single intraperitoneal injection of one of three doses of MPTP (0.1, 2 and 20mg/kg) on dopamine neurons, labeled by tyrosine hydroxylase (TH+), and total neuron number (Nissl+) in the SNc using unbiased stereological counting. Data reveal a significant loss of neurons in the SNc (TH+ and Nissl+) only in the group treated with 20mg/kg MPTP. Groups treated with lower dose of MPTP (0.1 and 2mg/kg) only showed significant loss of TH+ neurons rather than TH+ and Nissl+ neurons. Striatal dopamine levels were decreased in the groups treated with 2 and 20mg/kg MPTP and striatal terminal markers including, TH and the dopamine transporter (DAT), were only decreased in the groups treated with 20mg/kg MPTP. These data demonstrate that lower doses of MPTP likely result in loss of TH expression rather than actual dopamine neuron loss in the SN. This finding reinforces the need to measure both total neuron number along with TH+ cells in determining dopamine neuron loss.
Collapse
Affiliation(s)
- Gelareh Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Melissa Edler
- Department of Pharmaceutical Sciences, College of Pharmacy, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Shelbie Burchfield
- Department of Pharmaceutical Sciences, College of Pharmacy, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, College of Pharmacy, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44272, United States.
| |
Collapse
|
14
|
Stayte S, Rentsch P, Tröscher AR, Bamberger M, Li KM, Vissel B. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo. PLoS One 2017; 12:e0167211. [PMID: 28121982 PMCID: PMC5266209 DOI: 10.1371/journal.pone.0167211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023] Open
Abstract
Parkinson’s disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson’s disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson’s disease.
Collapse
Affiliation(s)
- Sandy Stayte
- Neuroscience Department, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Peggy Rentsch
- Neuroscience Department, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | - Kong M. Li
- Pharmacology Department, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Bryce Vissel
- Neuroscience Department, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
15
|
Zhao XD, Wang FX, Cao WF, Zhang YH, Li Y. TLR4 signaling mediates AP-1 activation in an MPTP-induced mouse model of Parkinson's disease. Int Immunopharmacol 2016; 32:96-102. [PMID: 26803521 DOI: 10.1016/j.intimp.2016.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate the effects of Toll-like receptor 4 (TLR4) signaling on the activation of the transcription factor activator protein-1 (AP-1) in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease (PD). METHODS The following groups were evaluated: normal saline (NS)-treated WT mice, NS-treated TLR4-knockout (KO) mice, MPTP-treated WT mice, and MPTP-treated TLR4-KO mice. After establishing the mouse model, behavioral changes were evaluated. AP-1 expression was detected by RT-PCR, Western blotting, immunohistochemistry and immunofluorescence staining. RESULTS Compared to MPTP-treated WT mice, significantly reduced dyskinesia was observed in MPTP-treated TLR4-KO mice. AP-1 mRNA and protein levels were significantly up-regulated in the substantia nigras (SNs) of MPTP-treated WT mice relative to NS-treated mice (P<0.01); these levels were significantly reduced in MPTP-treated TLR4-KO mice relative to MPTP-treated WT mice (P<0.01). Immunohistochemical staining demonstrated that AP-1 was distributed throughout the SN in MPTP-treated mice, and immunofluorescence further showed that AP-1 was expressed in TH-positive neuronal cells and GFAP-positive astrocytes. In addition, immunofluorescence revealed that AP-1 expression was lower in TH-positive neurons and GFAP-positive astrocytes in the SNs of MPTP-treated TLR4-KO mice relative to MPTP-treated WT mice. CONCLUSIONS The TLR4 pathway may play an important role in regulating AP-1 activation.
Collapse
Affiliation(s)
- Xu-Dong Zhao
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fa-Xiang Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wen-Fu Cao
- Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yong-Hong Zhang
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
16
|
The role of parkin in the differential susceptibility of tuberoinfundibular and nigrostriatal dopamine neurons to acute toxicant exposure. Neurotoxicology 2014; 46:1-11. [PMID: 25447324 DOI: 10.1016/j.neuro.2014.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
Parkinson disease causes degeneration of nigrostriatal dopamine (DA) neurons, while tuberoinfundibular DA neurons remain unaffected. A similar pattern is observed following exposure to 1-methy-4-phenyl-1,2,3,6-tetrahydropyradine (MPTP). The mechanism of tuberoinfundibular neuronal recovery from MPTP is associated with up-regulation of parkin protein. Here we tested if parkin mediates tuberoinfundibular neuronal recovery from MPTP by knocking-down parkin in tuberoinfundibular neurons using recombinant adeno-associated virus (rAAV), expressing a short hairpin RNA (shRNA) directed toward parkin. Following knockdown, axon terminal DA and tyrosine hydroxylase (TH) concentrations were analyzed 24h post-MPTP administration. rAAV-shRNA-mediated knockdown of endogenous parkin rendered tuberoinfundibular neurons susceptible to MPTP induced terminal DA loss, but not TH loss, within 24h post-MPTP. To determine if the neuroprotective benefits of parkin up-regulation could be translated to nigrostriatal neurons, rAAV expressing human parkin was injected into the substantia nigra of mice and axon terminal DA and TH concentrations were analyzed 24h post-MPTP. Nigral parkin over-expression prevented loss of TH in the axon terminals and soma of nigrostriatal neurons, but had no effect on terminal DA loss within 24h post-MPTP. These data show that parkin is necessary for the recovery of terminal DA concentrations within tuberoinfundibular neurons following acute MPTP administration, and parkin can rescue MPTP-induced decreases in TH within nigrostriatal neurons.
Collapse
|
17
|
Jang W, Park HH, Lee KY, Lee YJ, Kim HT, Koh SH. 1,25-dyhydroxyvitamin D3 Attenuates l-DOPA-Induced Neurotoxicity in Neural Stem Cells. Mol Neurobiol 2014; 51:558-70. [DOI: 10.1007/s12035-014-8835-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
|
18
|
Aras S, Tanriover G, Aslan M, Yargicoglu P, Agar A. The role of nitric oxide on visual-evoked potentials in MPTP-induced Parkinsonism in mice. Neurochem Int 2014; 72:48-57. [DOI: 10.1016/j.neuint.2014.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 12/28/2022]
|
19
|
Allen JL, Liu X, Weston D, Conrad K, Oberdörster G, Cory-Slechta DA. Consequences of developmental exposure to concentrated ambient ultrafine particle air pollution combined with the adult paraquat and maneb model of the Parkinson's disease phenotype in male mice. Neurotoxicology 2014; 41:80-8. [PMID: 24486957 DOI: 10.1016/j.neuro.2014.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Current evidence suggests suceptibility of both the substantia nigra and striatum to exposure to components of air pollution. Further, air pollution has been associated with increased risk of PD diagnsosis in humans or PD-like pathology in animals. This study examined whether exposure of mice to concentrated ambient ultrafine particles (CAPS; <100nm diameter) during the first two weeks of life would alter susceptibility to induction of the Parkinson's disease phenyotype (PDP) in a pesticide-based paraquat and maneb (PQ+MB) model during adulthood utilizing i.p. injections of 10mg/kg PQ and 30mg/kg MB 2× per week for 6 weeks. Evidence of CAPS-induced enhancement of the PQ+MB PDP was limited primarily to delayed recovery of locomotor activity 24 post-injection of PQ+MB that could be related to alterations in striatal GABA inhibitory function. Absence of more extensive interactions might also reflect the finding that CAPS and PQ+MB appeared to differentially target the nigrostriatal dopamine and amino acid systems, with CAPS impacting striatum and PQ+MB impacting dopamine-glutamate function in midbrain; both CAPS and PQ+MB elevated glutamate levels in these specific regions, consistent with potential excitotoxicity. These findings demonstrate the ability of postnatal CAPS to produce locomotor dysfunction and dopaminergic and glutamateric changes, independent of PQ+MB, in brain regions involved in the PDP.
Collapse
Affiliation(s)
- Joshua L Allen
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Xiufang Liu
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Douglas Weston
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
20
|
Arraf Z, Khamisy-Farah R, Amit T, Youdim MBH, Farah R. Lithium's gene expression profile, relevance to neuroprotection A cDNA microarray study. Cell Mol Neurobiol 2013; 33:411-20. [PMID: 23324999 PMCID: PMC11497965 DOI: 10.1007/s10571-013-9907-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/04/2013] [Indexed: 12/28/2022]
Abstract
Lithium can prevent 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dopaminergic neurotoxicity in mice. This is attributed to induced antioxidant and antiapoptotic state, which among other factors results from induction of Bcl-2 and reduction of Bax, however, cDNA microarray reveals that this represents only one cascade of lithium targets. From analyzing the gene expression profile of lithium, we are able to point out candidate genes that might be involved in the antioxidant and neuroprotective properties of lithium. Among these are, the cAMP response element binding (CREB) protein, extracellular signal-regulated kinase (ERK), both CREB and ERK-part of the mitogen-activated kinase pathway-were upregulated by lithium, downregulated by MPTP, and maintained in mice fed with lithium chloride (LiCl) supplemented diet and treated with MPTP. Our positive control included tyrosine hydroxylase which both its mRNA and protein levels were independently measured, in addition to Bcl-2 protein levels. Other important genes which were similarly regulated are plasma glutathione peroxidase precursor (GSHPX-P), protein kinase C alpha type, insulin-like growth factor binding protein 4 precursor, and interferon regulatory factor. In addition, some genes were oppositely regulated, i.e., downregulated by lithium, upregulated by MPTP, and maintained in mice fed with LiCl supplemented diet and treated with MPTP, among these genes were basic fibroblast growth factor receptor 1 precursor, inhibin alpha subunit, glutamate receptor subunit zeta 1 precursor (NMD-R1), postsynaptic density protein-95 which together with NMD-R1 can form an apoptotic promoting complex. The discussed targets represent part of genes altered by chronic lithium. In fact lithium affected the expressions of more than 50 genes among these were basic transcription factors, transcription activators, cell signaling proteins, cell adhesion proteins, oncogenes and tumor suppressors, intracellular transducers, survival and death genes, and cyclins, here we discuss the relevance of these changes to lithium's reported neuroprotective properties.
Collapse
Affiliation(s)
- Zaher Arraf
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | | | - Tamar Amit
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | - Moussa B. H. Youdim
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | - Raymond Farah
- Department of Internal Medicine B, Ziv Medical Center, Safed, Israel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
21
|
Number and nuclear morphology of TH+ and TH- neurons in the mouse ventral midbrain using epifluorescence stereology. Exp Neurol 2010; 225:328-40. [PMID: 20637754 DOI: 10.1016/j.expneurol.2010.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 11/22/2022]
Abstract
The accurate and reliable counting of tyrosine hydroxylase positive (TH+) and tyrosine hydroxylase negative (TH-) neurons in the ventral midbrain is an important measure in studies related to Parkinson's disease and many other disorders associated with this region. Despite recent advancements, the use of stereology remains limited due to a variety of challenges for many users. We implemented a real-time fluorescence detection method and the use of an antibody to the neuron specific nuclear antigen (NeuN) to overcome some challenges for users. We found that the regional value for the two different cell types (TH+ and TH-) varied with the method of detection (chromogenic versus fluorescence) and with different nuclear markers (Nissl, DAPI, or NeuN). The number of both TH+ and TH- neurons was higher using fluorescence detection. The number of TH- neurons was higher using NeuN as a neuronal nuclear marker compared to DAPI. We identified 3 types of neuronal nuclei using NeuN staining characteristics. The method is applicable for mouse and rat. We describe a practical approach for epifluorescence-based counting of these two types of neurons that may offer significant advantages over existing methods for potential users.
Collapse
|
22
|
Shaw VE, Keay KA, Ashkan K, Benabid AL, Mitrofanis J. Dopaminergic cells in the periaqueductal grey matter of MPTP-treated monkeys and mice; patterns of survival and effect of deep brain stimulation and lesion of the subthalamic nucleus. Parkinsonism Relat Disord 2010; 16:338-44. [PMID: 20227323 DOI: 10.1016/j.parkreldis.2010.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 11/28/2022]
Abstract
In this anatomical study, we have examined the number of tyrosine hydroxylase (TH) cells in the periaqueductal grey matter (PAG) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and mice; further, we explored whether kainic acid lesion or deep brain stimulation (DBS) of the subthalamic nucleus (STN) in MPTP-treated monkeys has any impact on the number of TH(+) cells in the PAG. For monkeys, there were four groups: Normal, MPTP, STN-lesioned (+MPTP) and STN-DBS (+MPTP). For mice, BALB/c albino mice were divided into three groups, Saline, MPTP_50 (50 mg/kg), MPTP_100 (100 mg/kg). Animals were perfused transcardially with aldehyde fixative 6-12 days after their last MPTP injection. Brains were processed for immunochemistry and the number of cells was estimated using the optical fractionator method. Our results revealed significant reductions (25-30%) in TH(+) cell number in the PAG of MPTP-treated monkeys and mice compared to controls. These reductions were not as substantial as those recorded in the SNc in the same animals (40-60%). Further, in monkeys, there were significantly more TH(+) cells in the PAG of STN-lesioned and STN-DBS groups compared to the MPTP group. In fact, the number of TH(+) cells in the STN alteration cases were similar to the Normal group. In summary, our results indicated that MPTP is toxic to TH(+) cells in the PAG of monkeys and mice and that in monkeys, lesion or DBS of the STN offers neuroprotection against this toxicity.
Collapse
Affiliation(s)
- Victoria E Shaw
- Discipline of Anatomy & Histology F13, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
23
|
Tank AW, Xu L, Chen X, Radcliffe P, Sterling CR. Post-transcriptional regulation of tyrosine hydroxylase expression in adrenal medulla and brain. Ann N Y Acad Sci 2009; 1148:238-48. [PMID: 19120116 DOI: 10.1196/annals.1410.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is well established that long-term stress leads to induction of tyrosine hydroxylase (TH) mRNA and TH protein in adrenal medulla and brain. This induction is usually associated with stimulation of the TH gene transcription rate. However, a number of studies have reported major discrepancies between the stress-induced changes in TH gene transcription, TH mRNA, and TH protein. These discrepancies suggest that post-transcriptional mechanisms also play an important role in regulating TH expression in response to stress and other stimuli. In this report, we summarize some of our findings and literature reports that demonstrate these discrepancies in adrenal medulla, locus ceruleus, and midbrain dopamine neurons. We then describe our recent work investigating the molecular mechanisms that mediate this post-transcriptional regulation in adrenal medulla and midbrain. Our results suggest that trans-acting factors binding to the polypyrimidine-rich region of the 3' untranslated region of TH mRNA play a role in these post-transcriptional mechanisms. A hypothetical cellular model describing this post-transcriptional regulation is proposed.
Collapse
Affiliation(s)
- A William Tank
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
24
|
1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Does Not Elicit Long-Lasting Increases in Cyclooxygenase-2 Expression in Dopaminergic Neurons of Monkeys. J Neuropathol Exp Neurol 2009; 68:26-36. [DOI: 10.1097/nen.0b013e3181919275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Prasad K, Richfield EK. Sporadic midbrain dopamine neuron abnormalities in laboratory mice. Neurobiol Dis 2008; 32:262-72. [PMID: 18687402 DOI: 10.1016/j.nbd.2008.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/18/2008] [Accepted: 07/05/2008] [Indexed: 11/19/2022] Open
Abstract
We report an anatomical abnormality of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) in different strains of inbred and outbred mice, one mouse strain (C57BL/6, B6) from different commercial suppliers, and in B6J mice bred internally. The abnormality consisted of a sporadic and unpredictable decrease in the number of dopaminergic neurons and/or a reduction or complete loss of tyrosine hydroxylase (TH) staining in a focal subset of neurons of the SNpc and/or VTA. This abnormality had a preference for a unilateral right side location, but could affect one or both sides of each subregion independently or together. The frequency and severity were variable between and within strains and colonies. The neuronal abnormality was found in mice from the five commercial suppliers examined, 5/15 inbred strains from a single supplier, and the one outbred strain (CD1) examined. The striatal content of catecholamines was not affected by this abnormality even when there was significant asymmetric TH neuronal loss, but did vary significantly between commercial suppliers. Manipulations in housing conditions did not affect the abnormalities. The mechanism and cause of this abnormality could not be determined in this study although several potential factors were eliminated. The frequent, but not universal, occurrence of this abnormality has significant implications for the use of laboratory mice in studying the midbrain dopamine system and warrants its recognition, knowledge of their frequency, and exploration of a mechanism to address or eliminate them.
Collapse
Affiliation(s)
- Kavita Prasad
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School (RWJMS), University of Medicine and Dentistry, New Jersey (UMDNJ), USA
| | | |
Collapse
|
26
|
Chen X, Xu L, Radcliffe P, Sun B, Tank AW. Activation of tyrosine hydroxylase mRNA translation by cAMP in midbrain dopaminergic neurons. Mol Pharmacol 2008; 73:1816-28. [PMID: 18349104 PMCID: PMC2684677 DOI: 10.1124/mol.107.043968] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During prolonged stress or chronic treatment with neurotoxins, robust compensatory mechanisms occur that maintain sufficient levels of catecholamine neurotransmitters in terminal regions. One of these mechanisms is the up-regulation of tyrosine hydroxylase (TH), the enzyme that controls catecholamine biosynthesis. In neurons of the periphery and locus coeruleus, this up-regulation is associated with an initial induction of TH mRNA. In contrast, this induction either does not occur or it is nominal in mesencephalic dopamine neurons. The reasons for this lack of compensatory TH mRNA induction remain obscure, because so little is known about the regulation of TH expression in these neurons. In this study, we test whether activation of the cAMP signaling pathway regulates TH gene expression in two rodent models of midbrain dopamine neurons, ventral midbrain organotypic slice cultures and MN9D cells. Our results demonstrate that elevation of cAMP leads to induction of TH protein and TH activity in both model systems; however, TH mRNA levels are not up-regulated by cAMP. The induction of TH protein is the result of a novel post-transcriptional mechanism that activates TH mRNA translation. This translational activation is mediated by sequences within the 3' untranslated region (UTR) of TH mRNA. Our results support a model in which cAMP induces or activates trans-factors that interact with the TH mRNA 3'UTR to increase TH protein synthesis. An understanding of this novel regulatory mechanism may help to explain the control of TH gene expression and consequently dopamine biosynthesis in midbrain neurons under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiqun Chen
- Department of Pharmacology and Physiology, Box 711, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
27
|
Sanchez-Bahillo A, Bautista-Hernandez V, Barcia Gonzalez C, Bañon R, Luna A, Hirsch EC, Herrero MT. Increased mRNA expression of cytochrome oxidase in dorsal raphe nucleus of depressive suicide victims. Neuropsychiatr Dis Treat 2008; 4:413-6. [PMID: 18728743 PMCID: PMC2518385 DOI: 10.2147/ndt.s2156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Suicidal behavior is a problem with important social repercussions. Some groups of the population show a higher risk of suicide; for example, depression, alcoholism, psychosis or drug abuse frequently precedes suicidal behavior. However, the relationship between metabolic alterations in the brain and premorbid clinical symptoms of suicide remains uncertain. The serotonergic and noradrenergic systems have frequently been, implicated in suicidal behavior and the amount of serotonin in the brain and CSF of suicide victims has been found to be low compared with normal subjects. However, there are contradictory results regarding the role of noradrenergic neurons in the mediation of suicide attempts, possibly reflecting the heterogeneity of conditions that lead to a common outcome. In the present work we focus on the subgroup of suicide victims that share a common diagnosis of major depression. Based on post-mortem studies analyzing mRNA expression by in situ hybridization, serotonergic neurons from the dorsal raphe nucleus (DRN) from depressive suicide victims are seen to over-express cytochrome oxidase mRNA. However, no corresponding changes were found in the expression of tyrosine hydroxylase (TH) mRNA in the noradrenergic neurons of the Locus Coeruleus (LC). These results suggest that, despite of the low levels of serotonin described in suicide victims, the activity of DRN neurons could increase in the suicidally depressed, probably due to the over activation of serotonin re-uptake. No alteration was found in noradrenergic neurons, suggesting that they play no crucial role in the suicidal behavior of depressive patients.
Collapse
Affiliation(s)
- A Sanchez-Bahillo
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
| | | | | | | | | | | | | |
Collapse
|
28
|
Dopamine turnover is upregulated in the caudate/putamen of asymptomatic MPTP-treated rhesus monkeys. Neurochem Int 2006; 49:519-24. [DOI: 10.1016/j.neuint.2006.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 11/23/2022]
|
29
|
Waldmeier P, Bozyczko-Coyne D, Williams M, Vaught JL. Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem Pharmacol 2006; 72:1197-206. [PMID: 16901468 DOI: 10.1016/j.bcp.2006.06.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/21/2006] [Accepted: 06/21/2006] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms of neuronal death in concert with the identification of drugable molecular targets key to this process has held great promise for the development of novel chemical entities (NCEs) to halt neurodegenerative disease progression. Two key targets involved in the apoptotic process identified over the past decade include the mixed lineage kinase (MLK) family and glyceraldehyde phosphate dehydrogenase (GAPDH). Two NCEs, CEP-1347 and TCH346, directed against these respective targets have progressed to the clinic. For each, robust neuroprotective activity was demonstrated in multiple in vitro and in vivo models of neuronal cell death, but neither NCE proved effective Parkinson's disease (PD) patients. These recent clinical failures require a reassessment of both the relevance of apoptosis to neurodegenerative disease etiology and the available animal models used to prioritize NCEs for advancement to the clinic in this area.
Collapse
|
30
|
Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA. Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 2005; 20:898-906. [PMID: 16006134 DOI: 10.1016/j.nbd.2005.05.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 05/10/2005] [Accepted: 05/25/2005] [Indexed: 12/21/2022] Open
Abstract
Changes in the expression of alpha-synuclein are likely to underlie its normal function as well as its role in pathological processes. The relationship between toxic injury and alpha-synuclein expression was assessed in the substantia nigra of squirrel monkeys treated with a single injection of MPTP and sacrificed 1 week or 1 month later. At 1 week, when stereological cell counting revealed only a small decrease (-10%) in the number of dopaminergic neurons, alpha-synuclein mRNA and protein were markedly enhanced. Increased alpha-synuclein immunoreactivity was evident at the level of neuronal fibers whereas nigral cell bodies were devoid of detectable protein. At 1 month post-MPTP, neuronal loss rose to 40%. Both alpha-synuclein mRNA and protein remained elevated but, noticeably, a robust alpha-synuclein immunoreactivity characterized a significant number of cell bodies. Neuromelanin granules are hallmarks of dopaminergic neurons in primates. Therefore, the number of alpha-synuclein-positive cells that also contained neuromelanin was counted throughout the substantia nigra. At 1 month, the vast majority of alpha-synuclein-immunoreactive neurons contained neuromelanin, and approximately 80% of the dopaminergic cell bodies that survived MPTP toxicity stained positive for alpha-synuclein. The results indicate that a single toxic insult is capable of inducing a sustained alpha-synuclein up-regulation in the primate brain. They support a direct relationship between neuronal injury and enhanced alpha-synuclein expression, and suggest that protein elevation within cell bodies may be a late feature of neurons that have endured a toxic stress.
Collapse
Affiliation(s)
- Maya G Purisai
- The Parkinson's Institute, 1170 Morse Avenue, Sunnyvale, California 94089, USA
| | | | | | | | | |
Collapse
|
31
|
Zappia M, Crescibene L, Bosco D, Arabia G, Nicoletti G, Bagalà A, Bastone L, Napoli ID, Caracciolo M, Bonavita S, Di Costanzo A, Gambardella A, Quattrone A. Anti-GM1 ganglioside antibodies in Parkinson's disease. Acta Neurol Scand 2002; 106:54-7. [PMID: 12067330 DOI: 10.1034/j.1600-0404.2002.01240.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To determine whether anti-GM1 antibodies are increased in Parkinson's disease (PD). METHODS Serum immunoglobulin M (IgM) and IgG anti-GM1 antibodies were detected by enzyme-linked immunosorbent assay (ELISA) in 147 patients with PD and in 186 age-matched normal control subjects. Sera were assayed at initial dilution of 1:800 for IgM and 1:200 for IgG and were considered positive at absorbance values exceeding the value of 0.05 for IgM and 0.1 for IgG. RESULTS Forty patients with PD (27.2%) had sera positive for IgM anti-GM1 antibodies, whereas only five normal controls (2.7%) resulted positive (P < 0.0001). Most of patients (75%) with positive sera had a tremor-dominant form of PD. Only two patients with PD (1.4%) and none of normal controls had sera positive for IgG anti-GM1 antibodies. CONCLUSION A consistent portion of parkinsonians, mainly with a tremor-dominant form of PD, may have increased circulating IgM anti-GM1 antibodies.
Collapse
Affiliation(s)
- M Zappia
- Institute of Neurology, University of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rothblat DS, Schroeder JA, Schneider JS. Tyrosine hydroxylase and dopamine transporter expression in residual dopaminergic neurons: potential contributors to spontaneous recovery from experimental Parkinsonism. J Neurosci Res 2001; 65:254-66. [PMID: 11494360 DOI: 10.1002/jnr.1149] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahyrdropyridine (MPTP)-exposed cats develop severe Parkinsonism that spontaneously resolves in 4-6 weeks. The present study examined the extent to which compensatory changes in tyrosine hydroxylase (TH) and dopamine transporter (DAT) gene and protein expression may underlie this behavioral recovery. In normal cats, TH and DAT protein levels were higher in the dorsal vs. ventral striatum. Expression of DAT and TH mRNA was higher in substantia nigra pars compacta (SNc) than in the ventral tegmental area (VTA). In symptomatic parkinsonian animals, DAT and TH protein levels were significantly decreased in all striatal areas studied. TH and DAT mRNA expression in residual SNc neurons were decreased a mean 32% and 38%, respectively. DAT gene expression in residual VTA neurons in symptomatic animals was decreased 30% whereas TH gene expression was unaffected. In spontaneously recovered cats, TH protein levels were significantly higher than the levels in symptomatic cats only in the ventral striatum, whereas no increase in DAT protein levels were observed in any striatal area. Residual neurons in most ventral mesencephalic regions of recovered cats had increased TH mRNA expression but not increased DAT gene expression, compared with symptomatic animals. Thus, increased TH protein and mRNA and suppression of DAT protein and mRNA expression in the striatum and ventral mesencephalon were associated with functional recovery from MPTP-induced parkinsonism.
Collapse
Affiliation(s)
- D S Rothblat
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
33
|
Bingaman KD, Bakay RA. The primate model of Parkinson's disease: its usefulness, limitations, and importance in directing future studies. PROGRESS IN BRAIN RESEARCH 2001; 127:267-97. [PMID: 11142031 DOI: 10.1016/s0079-6123(00)27013-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- K D Bingaman
- Department of Neurological Surgery, 1365-B Clifton Road NE, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
34
|
Fran�ois C, Yelnik J, Tand� D, Agid Y, Hirsch E. Dopaminergic cell group A8 in the monkey: Anatomical organization and projections to the striatum. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991122)414:3<334::aid-cne4>3.0.co;2-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Rothblat DS, Schneider JS. The effects of L-deprenyl treatment, alone and combined with GM1 ganglioside, on striatal dopamine content and substantia nigra pars compacta neurons. Brain Res 1998; 779:226-30. [PMID: 9473679 DOI: 10.1016/s0006-8993(97)01260-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study examined the effects of GM1 ganglioside and the monoamine oxidase B (MAO-B) inhibitor L-deprenyl, alone and in combination, on striatal dopamine (DA) and DOPAC levels, and the density of tyrosine hydroxylase (TH) positive neurons in the substantia nigra pars compacta (SNc) of C57bl/6J mice following MPTP administration (20 mg/kg, s.c., twice daily for 5 days). GM1 treatment (30 mg/kg, i.p., daily for 3 weeks, beginning 24 h after the last MPTP injection) partially restored striatal DA levels and rescued SNc neurons. A high dose of L-deprenyl, inhibiting MAO-B activity, (10 mg/kg, i.p. every other day for 3 weeks beginning 3 days after the last MPTP injection) increased striatal DA content, but did not rescue TH-positive SNc neurons. A low dose of L-deprenyl (0.01 mg/kg, i.p. every other day for 3 weeks beginning 3 days after the last MPTP injection) had no effect on either striatal neurochemistry or the rescue of SNc TH-positive neurons. Co-administration of GM1 and high dose L-deprenyl caused a synergistic increase in striatal DA levels, above that obtained with either GM1 or high dose L-deprenyl alone. Co-administration of GM1 and low dose L-deprenyl was not only not synergistic, but caused GM1s effects to be antagonized. The results do not confirm previous findings that low dose L-deprenyl administration in vivo after MPTP can rescue SNc neurons. Given GM1's potential as an adjunct to present anti-parkinsonian medications which include L-deprenyl, it will be important to further investigate the interactions between these two potential therapies.
Collapse
Affiliation(s)
- D S Rothblat
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
36
|
Inoue A, Koh CS, Yanagisawa N, Taketomi T, Ishihara Y. Suppression of Theiler's murine encephalomyelitis virus induced demyelinating disease by administration of gangliosides. J Neuroimmunol 1996; 64:45-53. [PMID: 8598389 DOI: 10.1016/0165-5728(95)00149-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intracerebral (i.c.) inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in immune-mediated demyelinating disease. Gangliosides are membrane components of essentially all eukaryotic cells and are abundant in plasma membranes. Endogenous gangliosides have been implicated in cell recognition, cell adhesion, cell differentiation and neurite outgrowth. We studied the effect of gangliosides on TMEV-induced demyelinating disease (TMEV- IDD). We injected TMEV intracerebrally into susceptible SJL/J mice and induced TMEV-IDD. Gangliosides were injected subcutaneously and examined for various immunological indicators. The results show that when gangliosides were administered in the effector phase, TMEV-IDD was suppressed both clinically and histologically. Cellular immunity such as delayed-type hypersensitivity, and the proliferative response of T cells against TMEV and mitogens were decreased, and only in this group anti-TMEV IgG2a antibody was not detected. Taken together, these data suggest that administration of gangliosides suppressed the function of pathogenic Th1 cells and suppressed TMEV-IDD. Additionally, this study proposes the possibility of a new therapy in multiple sclerosis.
Collapse
Affiliation(s)
- A Inoue
- Department of Medicine (Neurology), Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | |
Collapse
|
37
|
Vander Borght TM, Sima AA, Kilbourn MR, Desmond TJ, Kuhl DE, Frey KA. [3H]methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience 1995; 68:955-62. [PMID: 8577387 DOI: 10.1016/0306-4522(95)00167-h] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The properties as well as the distribution of high specific activity alpha-[O-methyl-3H]methyoxytetrabenazine binding to the synaptic vesicular monoamine transporter were studied autoradiographically in rat brain sections. Saturation analysis revealed [3H]methoxytetrabenazine interaction with a homogeneous population of striatal sites (Hill coefficient 1.00 +/- 0.05), with an apparent equilibrium dissociation binding constant of 3.9 +/- 0.4 nM and a maximal binding capacity of 1.2 +/- 0.1 fmol/micrograms protein. Highest levels of [3H]methoxytetrabenazine binding sites were observed in regions richly innervated by the monoamine systems. In the presence of 1 microM concentrations of a variety of competing drugs, only reserpine significantly inhibited [3H]methoxytetrabenazine binding. The presynaptic nigrostriatal location of [3H]methoxytetrabenazine binding was demonstrated by unilateral lesion of the median forebrain bundle with 6-hydroxydopamine. The resulting decrease of striatal [3H]methoxytetrabenazine binding showed an excellent correlation with tyrosine hydroxylase-positive neuron density in the substantia nigra pars compacta (r2 = 0.96; P < 0.001). The present studies demonstrate that in vitro [3H]methoxytetrabenazine binding is a reliable, quantitative marker of the synaptic vesicular monoamine transporter. Further, it is indicated that [3H]methoxytetrabenazine binding provides an accurate assessment of monoamine neuronal losses and may thus be of great value in future studies of neurodegenerative diseases.
Collapse
Affiliation(s)
- T M Vander Borght
- Department of Internal Medicine (Division of Nuclear Medicine), University of Michigan, Ann Arbor 48109-0028, USA
| | | | | | | | | | | |
Collapse
|
38
|
Faucheux BA, Herrero MT, Villares J, Levy R, Javoy-Agid F, Obeso JA, Hauw JJ, Agid Y, Hirsch EC. Autoradiographic localization and density of [125I]ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson's disease and MPTP-lesioned monkeys. Brain Res 1995; 691:115-24. [PMID: 8590043 DOI: 10.1016/0006-8993(95)00629-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Degeneration of the nigro-striatal dopaminergic neurons occurring in Parkinson's disease is associated with an increase in iron concentrations in the substantia nigra. As this metal catalyzes the production of free radicals, and oxidative stress may participate in the cascade of events ending in cell death, this increase in iron content may be involved in dopaminergic neuronal death. The localization and number of receptors for transferrin were investigated postmortem by quantitative autoradiography of iodinated-ferrotransferrin binding in the basal ganglia from controls, parkinsonian patients and MPTP-lesioned monkeys. In human controls, specific [125i] ferrotransferrin binding-site density was highest in the putamen and the caudate nucleus, and lowest in the globus pallidus. In parkinsonian patients, it was increased in the putamen and caudate nucleus, while in MPTP-intoxicated monkeys, there was a tendency for levels to decrease in these two regions. An inverse relationship between binding density and iron content reported in the studied regions supports the assumption of a possible capture of iron at the level of dopaminergic terminals and, in parkinsonian patients, on other cellular elements as well. These results suggest an involvement of transferrin receptors in iron uptake in the striatum of patients with Parkinson's disease, with differences between the 'acute' nigro-striatal MPTP-induced degeneration syndrome and the chronic long lasting human disease.
Collapse
Affiliation(s)
- B A Faucheux
- Laboratoire de Médecine Expérimentale, Physiopathologie et Pathogenèse des Maladies Dégénératives du Système Nerveux, INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. NEURODEGENERATION : A JOURNAL FOR NEURODEGENERATIVE DISORDERS, NEUROPROTECTION, AND NEUROREGENERATION 1995; 4:257-69. [PMID: 8581558 DOI: 10.1016/1055-8330(95)90015-2] [Citation(s) in RCA: 461] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mechanisms responsible for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine (DA) neuronal death remain unknown and in mice it is even unclear whether neuronal death does occur. In vitro studies suggest that 1-methyl-4-phenylpyridinium ion (MPP+), the active metabolite of MPTP, kills neurons by apoptosis. Herein, we investigated whether MPTP induces DA neuronal death in vivo in mice and whether the mechanism is that of apoptosis. C57/bl Mice received different doses of MPTP administered in four intraperitoneal injections every 2 hours and were sacrificed at different time points for analyses of tyrosine hydroxylase (TH) immunohistochemistry, silver staining, and Nissl staining within the mesencephalon. We found that MPTP induces neuronal destruction in the substantia nigra pars compacta (SNpc) and the ventral tegmental area (VTA). The active phase of degeneration began at 12 h postinjection and continued up to 4 days. During this period, there was a greater decrease in TH-defined neurons than in Nissl-stained neurons suggesting that MPTP can cause a loss in TH without necessarily destroying the neuron. Thereafter, neuronal counts by both techniques equalized and there was no further loss of DA neurons. Dying neurons showed shrunken eosinophilic cytoplasm and shrunken darkly stained nuclei. Double staining revealed degenerating neurons solely among TH positive neurons of SNpc and VTA. At no time point and at no dose of MPTP was apoptosis observed. In addition, in situ labelling revealed no evidence of DNA fragmentation. This study demonstrates that the MPTP mouse model replicates several key features of neurodegeneration of DA neurons in PD and provides no in vivo evidence that, using this specific paradigm of injection, MPTP kills DA neurons by apoptosis.
Collapse
Affiliation(s)
- V Jackson-Lewis
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
40
|
Schneider JS, Kean A, DiStefano L. GM1 ganglioside rescues substantia nigra pars compacta neurons and increases dopamine synthesis in residual nigrostriatal dopaminergic neurons in MPTP-treated mice. J Neurosci Res 1995; 42:117-23. [PMID: 8531220 DOI: 10.1002/jnr.490420113] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GM1 ganglioside has been shown to stimulate recovery of the damaged dopamine system under a number of different circumstances. In addition to rescue of damaged dopamine neurons, the present study assessed the ability of GM1 to enhance the synthesis of dopamine in remaining nigrostriatal neurons following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure. There was a significantly greater accumulation of L-dopa 30 min after aromatic amino acid decarboxylase inhibition with NSD-1015 (100 mg/kg) and an increase in the ratio of L-dopa to dopamine in MPTP+GM1-treated mice than in mice that received only MPTP. This effect of GM1 on dopamine synthesis was dependent upon the degree of initial damage to the nigrostriatal dopamine system. That is, the GM1 effect on dopamine synthesis could not be demonstrated in mice with greater than 95% striatal dopamine loss and 75% substantia nigra dopamine neuron loss. These results suggest that in addition to previously reported effects of GM1 on rescue and repair of dopaminergic neurons, GM1 may also have the ability to enhance dopamine synthesis in residual dopaminergic neurons. Direct effects on dopamine neurochemistry may contribute to functional improvement seen after GM1 treatment in various models of parkinsonism.
Collapse
Affiliation(s)
- J S Schneider
- Center for Neurological Research of the Department of Neurology, Hahnemann University, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
41
|
Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 1995; 67:631-47. [PMID: 7675192 DOI: 10.1016/0306-4522(95)00066-r] [Citation(s) in RCA: 326] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Animal models with partial lesions of the dopaminergic nigrostriatal pathway may be useful for developing neuroprotective and neurotrophic therapies for Parkinson's disease. To develop such a model, different doses of 6-hydroxydopamine (0.0, 0.625, 1.25, 2.5 and 5.0 micrograms/microliters in 3.5 microliters of saline) were unilaterally injected into the striatum of rats. Animals that received 1.25 to 5.0 micrograms/microliters 6-hydroxydopamine displayed dose-dependent amphetamine and apomorphine-induced circling. 6-Hydroxydopamine also caused dose-dependent reductions in [3H]mazindol-labeled dopamine uptake sites in the lesioned striatum and ipsilateral substantia nigra pars compacta (up to 93% versus contralateral binding), with smaller losses in the nucleus accumbens, olfactory tubercle and ventral tegmental area. In the substantia nigra pars compacta and the ventral tegmental area, the number of Nissl-stained neurons decreases in parallel with the reduction in [3H]mazindol binding. The reduction in [3H]mazindol binding in the striatum and the nucleus accumbens, and the reduction in [3H]mazindol binding and in the number of Nissl-stained neurons in the substantia nigra pars compacta and the ventral tegmental area is stable for up to 12 weeks after the lesion. Macroscopically, forebrain coronal sections showed normal morphology, except for rats receiving 5.0 micrograms/microliters 6-hydroxydopamine in which striatal cross-sectional area was reduced, suggesting that this high dose non-specifically damages intrinsic striatal neurons. Nissl-stained sections revealed an area of neuronal loss and intense gliosis centered around the needle track, which increased in size with the dose of neurotoxin. Striatal [3H]sulpiride binding was increased by 2.5 micrograms/microliters and 5.0 micrograms/microliters 6-hydroxydopamine, suggesting up-regulation of dopamine D2 receptors. Striatal binding of [3H]CGS 21680-labeled adenosine A2a receptors, but not of [3H]SCH 23390-labeled dopamine D1 receptors, was reduced at the highest dose, suggesting preservation of the striatal intrinsic neurons with the lower doses. This study indicates that intrastriatal injection of different doses of 6-hydroxydopamine can be used to cause increasing amounts of dopamine denervation, which could model Parkinson's disease of varying degrees of severity. Injecting 3.5 microliters of 2.5 micrograms/microliters 6-hydroxydopamine appears to be particularly useful as a general model of early Parkinson's disease, since it induces a lesion characterized by robust drug-induced rotation, changes in binding consistent with approximately 70% dopamine denervation, approximately 19% dopamine D22 receptor up-regulation, negligible intrinsic striatal damage and stability for at least 12 weeks. This study outlines a technique for inducing partial lesions of the nigrostriatal dopamine pathway in rats.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Przedborski
- Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|