1
|
Sosnovtseva AO, Stepanova OV, Stepanenko AA, Voronova AD, Chadin AV, Valikhov MP, Chekhonin VP. Recombinant Adenoviruses for Delivery of Therapeutics Following Spinal Cord Injury. Front Pharmacol 2022; 12:777628. [PMID: 35082666 PMCID: PMC8784517 DOI: 10.3389/fphar.2021.777628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
The regeneration of nerve tissue after spinal cord injury is a complex and poorly understood process. Medication and surgery are not very effective treatments for patients with spinal cord injuries. Gene therapy is a popular approach for the treatment of such patients. The delivery of therapeutic genes is carried out in a variety of ways, such as direct injection of therapeutic vectors at the site of injury, retrograde delivery of vectors, and ex vivo therapy using various cells. Recombinant adenoviruses are often used as vectors for gene transfer. This review discusses the advantages, limitations and prospects of adenovectors in spinal cord injury therapy.
Collapse
Affiliation(s)
- Anastasiia O Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V Stepanova
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia D Voronova
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey V Chadin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marat P Valikhov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Milichko V, Dyachuk V. Novel Glial Cell Functions: Extensive Potency, Stem Cell-Like Properties, and Participation in Regeneration and Transdifferentiation. Front Cell Dev Biol 2020; 8:809. [PMID: 33015034 PMCID: PMC7461986 DOI: 10.3389/fcell.2020.00809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Glial cells are the most abundant cells in both the peripheral and central nervous systems. During the past decade, a subpopulation of immature peripheral glial cells, namely, embryonic Schwann cell-precursors, have been found to perform important functions related to development. These cells have properties resembling those of the neural crest and, depending on their location in the body, can transform into several different cell types in peripheral tissues, including autonomic neurons. This review describes the multipotent properties of Schwann cell-precursors and their importance, together with innervation, during early development. The heterogeneity of Schwann cells, as revealed using single-cell transcriptomics, raises a question on whether some glial cells in the adult peripheral nervous system retain their stem cell-like properties. We also discuss how a deeper insight into the biology of both embryonic and adult Schwann cells might lead to an effective treatment of the damage of both neural and non-neural tissues, including the damage caused by neurodegenerative diseases. Furthermore, understanding the potential involvement of Schwann cells in the regulation of tumor development may reveal novel targets for cancer treatment.
Collapse
Affiliation(s)
- Valentin Milichko
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia
| | - Vyacheslav Dyachuk
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia.,National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
3
|
Sargiannidou I, Kagiava A, Bashiardes S, Richter J, Christodoulou C, Scherer SS, Kleopa KA. Intraneural GJB1 gene delivery improves nerve pathology in a model of X-linked Charcot-Marie-Tooth disease. Ann Neurol 2015; 78:303-16. [PMID: 26010264 DOI: 10.1002/ana.24441] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/11/2022]
Abstract
OBJECTIVE X-linked Charcot-Marie-Tooth disease (CMT1X) is a common inherited neuropathy caused by mutations in the GJB1 gene encoding the gap junction protein connexin32 (Cx32). Clinical studies and disease models indicate that neuropathy mainly results from Schwann cell autonomous, loss-of-function mechanisms; therefore, CMT1X may be treatable by gene replacement. METHODS A lentiviral vector LV.Mpz-GJB1 carrying the GJB1 gene under the Schwann cell-specific myelin protein zero (Mpz) promoter was generated and delivered into the mouse sciatic nerve by a single injection immediately distal to the sciatic notch. Enhanced green fluorescent protein (EGFP) reporter gene expression was quantified and Cx32 expression was examined on a Cx32 knockout (KO) background. A gene therapy trial was performed in a Cx32 KO model of CMT1X. RESULTS EGFP was expressed throughout the length of the sciatic nerve in up to 50% of Schwann cells starting 2 weeks after injection and remaining stable for up to 16 weeks. Following LV.Mpz-GJB1 injection into Cx32 KO nerves, we detected Cx32 expression and correct localization in non-compact myelin areas where gap junctions are normally formed. Gene therapy trial by intraneural injection in groups of 2-month-old Cx32 KO mice, before demyelination onset, significantly reduced the ratio of abnormally myelinated fibers (p = 0.00148) and secondary inflammation (p = 0.0178) at 6 months of age compared to mock-treated animals. INTERPRETATION Gene delivery using a lentiviral vector leads to efficient gene expression specifically in Schwann cells. Restoration of Cx32 expression ameliorates nerve pathology in a disease model and provides a promising approach for future treatments of CMT1X and other inherited neuropathies.
Collapse
Affiliation(s)
| | | | - Stavros Bashiardes
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Jan Richter
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Steven S Scherer
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Kleopas A Kleopa
- Neuroscience Laboratory
- Neurology Clinics, Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
4
|
Hoyng SA, De Winter F, Gnavi S, van Egmond L, Attwell CL, Tannemaat MR, Verhaagen J, Malessy MJA. Gene delivery to rat and human Schwann cells and nerve segments: a comparison of AAV 1–9 and lentiviral vectors. Gene Ther 2015; 22:767-80. [DOI: 10.1038/gt.2015.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/29/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
|
5
|
Allodi I, Mecollari V, González-Pérez F, Eggers R, Hoyng S, Verhaagen J, Navarro X, Udina E. Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury. Glia 2014; 62:1736-46. [PMID: 24989458 DOI: 10.1002/glia.22712] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/07/2023]
Abstract
Fibroblast growth factor 2 (FGF-2) is a trophic factor expressed by glial cells and different neuronal populations. Addition of FGF-2 to spinal cord and dorsal root ganglia (DRG) explants demonstrated that FGF-2 specifically increases motor neuron axonal growth. To further explore the potential capability of FGF-2 to promote axon regeneration, we produced a lentiviral vector (LV) to overexpress FGF-2 (LV-FGF2) in the injured rat peripheral nerve. Cultured Schwann cells transduced with FGF-2 and added to collagen matrix embedding spinal cord or DRG explants significantly increased motor but not sensory neurite outgrowth. LV-FGF2 was as effective as direct addition of the trophic factor to promote motor axon growth in vitro. Direct injection of LV-FGF2 into the rat sciatic nerve resulted in increased expression of FGF-2, which was localized in the basal lamina of Schwann cells. To investigate the in vivo effect of FGF-2 overexpression on axonal regeneration after nerve injury, Schwann cells transduced with LV-FGF2 were grafted in a silicone tube used to repair the resected rat sciatic nerve. Electrophysiological tests conducted for up to 2 months after injury revealed accelerated and more marked reinnervation of hindlimb muscles in the animals treated with LV-FGF2, with an increase in the number of motor and sensory neurons that reached the distal tibial nerve at the end of follow-up.
Collapse
Affiliation(s)
- Ilary Allodi
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
de Winter F, Hoyng S, Tannemaat M, Eggers R, Mason M, Malessy M, Verhaagen J. Gene therapy approaches to enhance regeneration of the injured peripheral nerve. Eur J Pharmacol 2013; 719:145-152. [DOI: 10.1016/j.ejphar.2013.04.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 01/26/2023]
|
7
|
Li BH, Kim SM, Yoo SB, Kim MJ, Jahng JW, Lee JH. Recombinant human nerve growth factor (rhNGF-β) gene transfer promotes regeneration of crush-injured mental nerve in rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:e26-34. [DOI: 10.1016/j.tripleo.2011.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/22/2011] [Accepted: 07/11/2011] [Indexed: 10/14/2022]
|
8
|
Non-viral genetic transfection of rat Schwann cells with FuGENE HD© lipofection and AMAXA© nucleofection is feasible but impairs cell viability. ACTA ACUST UNITED AC 2011; 6:225-30. [DOI: 10.1017/s1740925x11000056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Purpose:To determine transfection efficiency of FuGENE HD© lipofection and AMAXA© nucleofection on rat Schwann cells (SC).Methods:The ischiadic and median nerves of 6-8 week old Lewis rats were cultured in modified melanocyte-growth medium. SCs were genetically transfected with green fluorescent protein (GFP) as reporter gene using FuGENE HD© lipofection and AMAXA© nucleofection. Transfection rates were determined by visualization of GFP fluorescence under fluorescence microscopy and cell counting. Transfected cell to non-transfected cell relation was determined.Results:Purity of Schwann cell culture was 88% as determined by immunohistologic staining. Transfection rate of FuGENE HD© lipofection was 2%, transfection rate of AMAXA© nucleofection was 10%. With both methods, Schwann cells showed pronounced aggregation behavior which made them unfeasible for further cultivation. Settling of Schwann cells on laminin and poly-l-ornithine coated plates was compromised by either method.Conclusion:Non-viral transfection of rat SC with FuGENE HD© lipofection and AMAXA© nucleofection is basically possible with a higher transfection rate for nucleofection than for lipofection. As cell viability is compromised by either method however, viral transfection is to be considered if higher efficiency is required.
Collapse
|
9
|
Aspalter M, Vyas A, Feiner J, Griffin J, Brushart T, Redett R. Modification of Schwann cell gene expression by electroporation in vivo. J Neurosci Methods 2009; 176:96-103. [DOI: 10.1016/j.jneumeth.2008.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/21/2008] [Accepted: 08/24/2008] [Indexed: 11/29/2022]
|
10
|
Abstract
Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair.
Collapse
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, D-50937 Cologne, Germany
| | | | | |
Collapse
|
11
|
Shy ME. Therapeutic strategies for the inherited neuropathies. Neuromolecular Med 2006; 8:255-78. [PMID: 16775380 DOI: 10.1385/nmm:8:1-2:255] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/21/2005] [Accepted: 11/30/2005] [Indexed: 11/11/2022]
Abstract
More than 30 genetic causes have been identified for the inherited neuropathies collectively referred to as Charcot-Marie-Tooth (CMT) disease. Previous therapies for CMT were limited to traditional approaches such as rehabilitation medicine, ambulation aids, and pain management. Identification of the genes causing CMT has led to improved genetic counseling and assistance in family planning. Identification of these genes is beginning to delineate common molecular pathways in multiple forms of CMT that can be exploited in future molecular therapies. Scientifically based clinical trials for CMT are currently being implemented. Techniques of gene therapy are advancing to the point that they may become feasible options for patients with CMT and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael E Shy
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit MI 48201, USA.
| |
Collapse
|
12
|
MARTINI RUDOLF. P0-Deficient Knockout Mice as Tools to Understand Pathomechanisms in Charcot-Marie-Tooth 1B and P0-Related Déjérine-Sottas Syndrome. Ann N Y Acad Sci 2006; 883:273-280. [DOI: 10.1111/j.1749-6632.1999.tb08589.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
SHY MICHAELE, KAMHOLZ JOHN, LOVELACE ROBERTE. Introduction to the Third International Symposium on Charcot-Marie-Tooth Disorders. Ann N Y Acad Sci 2006; 883:xiii-xviii. [DOI: 10.1111/j.1749-6632.1999.tb08559.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
JANI AGNES, MENICHELLA DANIELA, JIANG HUIYUAN, CHBIHI TAIBI, ACSADI GYULA, KAMHOLZ JOHN, SHY MICHAELE. Overcoming Cellular Immunity to Prolong Adenoviral-Mediated Gene Expression in Sciatic Nerve. Ann N Y Acad Sci 2006; 883:397-414. [DOI: 10.1111/j.1749-6632.1999.tb08601.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
QUATTRINI ANGELO, FELTRI MARIALAURA, PREVITALI STEFANO, FASOLINI MARINA, MESSING ALBEE, WRABETZ LAWRENCE. Peripheral Nerve Dysmyelination Due to P0Glycoprotein Overexpression Is Dose-Dependent. Ann N Y Acad Sci 2006; 883:294-301. [DOI: 10.1111/j.1749-6632.1999.tb08591.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Kato N, Nemoto K, Nakanishi K, Morishita R, Kaneda Y, Uenoyama M, Ikeda T, Fujikawa K. Nonviral HVJ (hemagglutinating virus of Japan) liposome-mediated retrograde gene transfer of human hepatocyte growth factor into rat nervous system promotes functional and histological recovery of the crushed nerve. Neurosci Res 2005; 52:299-310. [PMID: 15878632 DOI: 10.1016/j.neures.2005.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 02/15/2005] [Accepted: 04/12/2005] [Indexed: 11/22/2022]
Abstract
Hepatocyte growth factor (HGF) is well known to be involved in many biological functions, such as organ regeneration and angiogenesis, and to exert neurotrophic effects on motor, sensory, and parasympathetic neurons. In this study, we gave repeated intramuscular injections of the human HGF gene, using nonviral HVJ (hemagglutinating virus of Japan) liposome method, to examine whether transfection of the rat nervous system with this gene is able to exert neurotrophic effects facilitating recovery of a crushed nerve. The expression of HGF protein and HGF mRNA indicated that gene transfer into the nervous system did occur via retrograde axonal transport. At 4 weeks after crush, electrophysiological examination of the crushed nerve showed a significantly shorter mean latency and a significantly greater mean maximum M-wave amplitude with repeated injections of HGF gene. Furthermore, histological findings showed that the mean diameter of the axons, the axon number and the axon population were significantly larger in the group with repeated injections of HGF gene. The above results show that repeated human HGF gene transfer into the rat nervous system is able to promote crushed-nerve recovery, both electrophysiologically and histologically, and suggest that HGF gene transfer has potential for the treatment of crushed nerve.
Collapse
Affiliation(s)
- Naoki Kato
- Department of Orthopaedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kato N, Nemoto K, Nakanishi K, Morishita R, Kaneda Y, Uenoyama M, Ikeda T, Fujikawa K. Nonviral gene transfer of human hepatocyte growth factor improves streptozotocin-induced diabetic neuropathy in rats. Diabetes 2005; 54:846-54. [PMID: 15734864 DOI: 10.2337/diabetes.54.3.846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peripheral neuropathy is common and ultimately accounts for significant morbidity in diabetes. Recently, several neurotrophic factors have been used to prevent progression of diabetic neuropathy. In this study, we gave repeated intramuscular injections of the human hepatocyte growth factor (HGF) gene percutaneously, using liposomes containing the hemagglutinating virus of Japan (HVJ), to examine therapeutic efficacy of nonviral gene transfer of HGF for experimental diabetic sensorimotor neuropathy in rats. Experimental diabetes induced by intraperitoneal injection of streptozotocin resulted in a marked tactile allodynia (but not in a thermal hyperalgesia), in a reduction of both the conduction velocity and the amplitude, and in a decreased laser Doppler flux of the nerve and the muscle at 6 weeks after the induction. All these changes were significantly reversed by repeated gene transfer of HGF. Furthermore, we analyzed the density of endoneurial capillaries and morphometrical changes of the nerve. The density of endoneurial capillaries, disclosing marked reduction in diabetic rats, was also reversed significantly by repeated gene transfer of HGF; however, no considerable differences were observed morphometrically in either myelinated or unmyelinated axons. These results suggest that nonviral HVJ liposome-mediated gene transfer of human HGF has potential for the safe effective treatment of diabetic sensorimotor neuropathy.
Collapse
Affiliation(s)
- Naoki Kato
- Department of Orthopaedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan 359-8513.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Eming SA, Krieg T, Davidson JM. Gene transfer in tissue repair: status, challenges and future directions. Expert Opin Biol Ther 2005; 4:1373-86. [PMID: 15335305 DOI: 10.1517/14712598.4.9.1373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wound repair involves a complex interaction of various cell types, extracellular matrix molecules and soluble mediators. Details on signals controlling wound cell activities are beginning to emerge. In recent years this knowledge has been applied to a number of therapeutic strategies in soft tissue repair. Key challenges include re-adjusting the adult repair process in order to augment diseased healing processes, and providing the basis for a regenerative rather than a reparative wound environment. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trials indicates that an important aspect of the growth factor wound-healing paradigm is the effective delivery of these polypeptides to the wound site. A molecular genetic approach in which genetically modified cells synthesise and deliver the desired growth factor in a time-regulated manner is a powerful means to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. This article summarises repair mechanisms and their failure, and gives an overview of techniques and studies applied to gene transfer in tissue repair. It also provides perspectives on potential targets for gene transfer technology.
Collapse
Affiliation(s)
- Sabine A Eming
- University of Cologne, Department of Dermatology, Cologne, Joseph-Stelzmann Str. 9, 50931 Köln, Germany.
| | | | | |
Collapse
|
19
|
Gu W, Ogose A, Kawashima H, Ito M, Ito T, Matsuba A, Kitahara H, Hotta T, Tokunaga K, Hatano H, Morita T, Urakawa S, Yoshizawa T, Kawashima H, Kuwano R, Endo N. High-level expression of the coxsackievirus and adenovirus receptor messenger RNA in osteosarcoma, Ewing's sarcoma, and benign neurogenic tumors among musculoskeletal tumors. Clin Cancer Res 2004; 10:3831-8. [PMID: 15173092 DOI: 10.1158/1078-0432.ccr-03-0345] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE The sensitivity of human tumor tissues to infection with recombinant adenoviruses correlates with the expression of the coxsackievirus and adenovirus receptor (CAR). CAR has been shown to function as the primary receptor for adenoviruses and to play a critical role in adenovirus entry into host cells. It is important for clinical gene therapy to determine the expression level of CAR in tumor tissues. EXPERIMENTAL DESIGN We analyzed the expression of CAR mRNA in 154 musculoskeletal tumor tissues from 154 patients and 10 normal mesenchymal tissues from 3 patients using reverse transcription-PCR and real-time quantitative PCR. An adenovirus infection assay was performed in two cell lines that were established from CAR-positive osteosarcoma tissue and CAR-negative malignant fibrous histiocytoma tissue. RESULTS Ninety-nine of 154 tumors were detected as CAR positive by reverse transcription-PCR. We found that the expression levels of CAR mRNA varied markedly between different tumors as determined by real-time quantitative PCR. CAR mRNA was expressed at high levels in osteosarcoma, Ewing's sarcoma, neurofibroma, and schwannoma; at intermediate levels in exostosis, giant cell tumor, liposarcoma, synovial sarcoma, malignant peripheral nerve sheath tumor, and hemangioma; and at low levels in alveolar soft part sarcoma and desmoid. Whereas the osteosarcoma cell line that expressed a high level of CAR mRNA, like its parent tumor, had a high efficiency of adenovirus infection, the malignant fibrous histiocytoma cell line with almost undetectable expression of CAR mRNA, like its parent tumor, had a low efficiency of infection. CONCLUSIONS Our data showed the great variations in CAR mRNA expression among human musculoskeletal tumors and mesenchymal tissues and implicated the potential usefulness of adenoviral vectors in gene therapy for osteosarcoma, Ewing's sarcoma, neurofibroma, and schwannoma. Efficient transduction with adenovirus for gene therapy could be realized in appropriate, sensitive tumor types.
Collapse
Affiliation(s)
- Wenguang Gu
- Divisions of Orthopedic Surgery and Cell Biology and Molecular Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kato N, Nakanishi K, Nemoto K, Morishita R, Kaneda Y, Uenoyama M, Ikeda T, Fujikawa K. Efficient gene transfer from innervated muscle into rat peripheral and central nervous systems using a non-viral haemagglutinating virus of Japan (HVJ)-liposome method. J Neurochem 2003; 85:810-5. [PMID: 12694407 DOI: 10.1046/j.1471-4159.2003.01730.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We evaluated the feasibility of gene delivery into the peripheral and central nervous systems via retrograde axonal transport following injection of a haemagglutinating virus of Japan (HVJ)-liposome-DNA complex vector into an innervated muscle. Transfection efficiency was assessed by measuring luciferase activity, and was compared statistically with that achieved using a liposome-DNA control vector. High luciferase activity was observed in the injected muscle, the ipsilateral sciatic nerve, and the ipsilateral dorsal root ganglia on day 1 after gene transfer. The spinal cord also showed luciferase activity, although this was lower than in the other tissues. However, no activity was observed in the contralateral sciatic nerve or the contralateral dorsal root ganglia. In addition, we performed gene transfer twice, with a 1-week interval, to evaluate the feasibility of repeated therapeutic gene delivery. Again, a high transfection efficiency was observed immediately, even after the second gene transfer, and transfection efficiency was significantly higher at each defined time-point using the HVJ-liposome complex vector than using a control vector. These results indicate that this method could be used for repeated therapeutic gene delivery into muscle, nerve, dorsal root ganglia, and possibly spinal cord, without the need for a surgical approach, making it well suited to clinical applications.
Collapse
Affiliation(s)
- Naoki Kato
- Department of Orthopaedic Surgery, National Defense Medical College Research Institute, Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mosahebi A, Woodward B, Wiberg M, Martin R, Terenghi G. Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia 2001; 34:8-17. [PMID: 11284015 DOI: 10.1002/glia.1035] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transplantation of Schwann cells (SCs) is a promising treatment modality to improve neuronal regeneration. Identification of the transplanted cells is an important step when studying the development of this method. Genetic labeling is the most stable and reliable method of cell identification, but it is still unclear whether it has deleterious effect on SC characteristics. Our aim was to achieve a stable population of SCs transduced with the lacZ gene at a high frequency using a retroviral vector in vitro, and to follow the labeled SC in vitro to assess their viability and phenotypic marker expression. Furthermore, we transplanted lacZ-labeled SCs in a conduit to repair peripheral nerve to investigate their effect on nerve regeneration in vivo. Rat and human SCs were cultured and transduced with an MFG lacZ nls marker gene, achieving a transduction rate of 80% and 70%, respectively. Rat SCs were kept in culture for 27 weeks and examined every 4 weeks for expression of lacZ, viability, and phenotypic marker expression of GFAP, p75, MHC I and II. Throughout this period, transduced rat SCs remained viable and continued to proliferate. The proportion of cells expressing lacZ dropped only by 10% and the expression of phenotypic markers remained stable. Transduced human SCs were followed up for 4 weeks in culture. They proliferated and continued to express the lacZ gene and phenotypic marker expression of GFAP and p75 was preserved. Primary culture of transduced rat SCs were transplanted, syngeneically, in a conduit to bridge a 10 mm gap in sciatic nerve and the grafts were examined after 3 weeks for the presence and participation of labeled SCs and for axonal regeneration distance. Transplanted transduced rat SCs were clearly identified, taking part in the regeneration process and enhancing the axonal regeneration rate by 100% (at the optimal concentration) compared to conduits without SCs. Thus, retroviral introduction of lacZ gene has no deleterious effect on SCs in vitro and these SCs take part and enhance nerve regeneration in vivo.
Collapse
Affiliation(s)
- A Mosahebi
- Blond McIndoe Laboratories, University Department of Surgery, Royal Free and University College Medical School, London, England
| | | | | | | | | |
Collapse
|
22
|
Haase G, Pettmann B, Bordet T, Villa P, Vigne E, Schmalbruch H, Kahn A. Therapeutic benefit of ciliary neurotrophic factor in progressive motor neuronopathy depends on the route of delivery. Ann Neurol 2001. [DOI: 10.1002/1531-8249(199903)45:3<296::aid-ana4>3.0.co;2-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Colby J, Nicholson R, Dickson KM, Orfali W, Naef R, Suter U, Snipes GJ. PMP22 carrying the trembler or trembler-J mutation is intracellularly retained in myelinating Schwann cells. Neurobiol Dis 2000; 7:561-73. [PMID: 11114256 DOI: 10.1006/nbdi.2000.0323] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Missense mutations in the murine peripheral myelin protein-22 gene (Pmp22) underly the neuropathies in the trembler (Tr) and trembler-J (Tr-J) mice and in some humans with Charcot-Marie-Tooth disease. We have generated replication-defective adenoviruses containing epitope-tagged, wild-type-, Tr-, or Tr-J-PMP22 bicistronic with the Lac-Z reporter gene. These viruses were microinjected into the sciatic nerves of 10-day-old Sprague-Dawley rats and, later, analyzed by immunohistochemistry to determine the distribution of mutant protein in infected myelinating Schwann cells. We found that epitope-tagged, wild-type PMP22 is successfully transported to compact myelin, whereas the Tr and the Tr-J mutant proteins are retained in cytoplasmic compartment, colocalizing with the endoplasmic reticulum. These results provide in vivo evidence that the pathogenesis of the Tr and Tr-J mutations are most likely a function of abnormal retention within the endoplasmic reticulum of myelinating Schwann cells.
Collapse
Affiliation(s)
- J Colby
- Department of Pathology, McGill University, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Wrabetz L, Feltri ML, Quattrini A, Imperiale D, Previtali S, D'Antonio M, Martini R, Yin X, Trapp BD, Zhou L, Chiu SY, Messing A. P(0) glycoprotein overexpression causes congenital hypomyelination of peripheral nerves. J Cell Biol 2000; 148:1021-34. [PMID: 10704451 PMCID: PMC2174542 DOI: 10.1083/jcb.148.5.1021] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/1999] [Accepted: 01/24/2000] [Indexed: 11/22/2022] Open
Abstract
We show that normal peripheral nerve myelination depends on strict dosage of the most abundantly expressed myelin gene, myelin protein zero (Mpz). Transgenic mice containing extra copies of Mpz manifested a dose-dependent, dysmyelinating neuropathy, ranging from transient perinatal hypomyelination to arrested myelination and impaired sorting of axons by Schwann cells. Myelination was restored by breeding the transgene into the Mpz-null background, demonstrating that dysmyelination does not result from a structural alteration or Schwann cell-extrinsic effect of the transgenic P(0) glycoprotein. Mpz mRNA overexpression ranged from 30-700%, whereas an increased level of P(0) protein was detected only in nerves of low copy-number animals. Breeding experiments placed the threshold for dysmyelination between 30 and 80% Mpz overexpression. These data reveal new points in nerve development at which Schwann cells are susceptible to increased gene dosage, and suggest a novel basis for hereditary neuropathy.
Collapse
Affiliation(s)
- L Wrabetz
- Department of Neurology and Department of Biological and Technological Research (DIBIT), San Raffaele Scientific Institute, 20132 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Blits B, Dijkhuizen PA, Hermens WT, Van Esseveldt LK, Boer GJ, Verhaagen J. The use of adenoviral vectors and ex vivo transduced neurotransplants: towards promotion of neuroregeneration. Cell Transplant 2000; 9:169-78. [PMID: 10811391 DOI: 10.1177/096368970000900204] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Regeneration of injured axons following injury depends on a delicate balance between growth-promoting and growth-inhibiting factors. Overexpression of neurotrophin genes seems a promising strategy to promote regeneration. Trophic genes can be overexpressed at the site of injury at the axonal stumps, or at the perikaryal level of the injured neuron. Transduction of the neural cells can be achieved by applying adenoviral vectors, either directly in vivo or-in the case of neurotransplantation as an ex vivo approach. In both cases it would create a more permissive environment for axonal growth and therefore in functional regeneration. In this article, the feasibility of the use of adenoviral vectors in several neuroregeneration models--in particularly in spinal cord lesion models and the biological clock transplantation model--is illustrated. The results show that the adenoviral vectors can be a powerful tool to study the effects of overexpression of genes in an in vivo paradigm of nerve regeneration or nerve outgrowth. The potential use of adenoviral vectors and ex vivo transduced neurotransplants is discussed.
Collapse
Affiliation(s)
- B Blits
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | | | | | | | | | |
Collapse
|
26
|
Kamholz J, Menichella D, Jani A, Garbern J, Lewis RA, Krajewski KM, Lilien J, Scherer SS, Shy ME. Charcot-Marie-Tooth disease type 1: molecular pathogenesis to gene therapy. Brain 2000; 123 ( Pt 2):222-33. [PMID: 10648431 DOI: 10.1093/brain/123.2.222] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1 (CMT1) is caused by mutations in the peripheral myelin protein, 22 kDa (PMP22) gene, protein zero (P0) gene, early growth response gene 2 (EGR-2) and connexin-32 gene, which are expressed in Schwann cells, the myelinating cells of the peripheral nervous system. Although the clinical and pathological phenotypes of the various forms of CMT1 are similar, including distal muscle weakness and sensory loss, their molecular pathogenesis is likely to be quite distinct. In addition, while demyelination is the hallmark of CMT1, the clinical signs and symptoms of the disease are probably produced by axonal degeneration, not demyelination itself. In this review we discuss the molecular pathogenesis of CMT1, as well as approaches to an effective gene therapy for this disease.
Collapse
Affiliation(s)
- J Kamholz
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Glatzel M, Flechsig E, Navarro B, Klein MA, Paterna JC, Büeler H, Aguzzi A. Adenoviral and adeno-associated viral transfer of genes to the peripheral nervous system. Proc Natl Acad Sci U S A 2000; 97:442-7. [PMID: 10618437 PMCID: PMC26682 DOI: 10.1073/pnas.97.1.442] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Targeted expression of foreign genes to the peripheral nervous system is interesting for many applications, including gene therapy of neuromuscular diseases, neuroanatomical studies, and elucidation of mechanisms of axonal flow. Here we describe a microneurosurgical technique for injection of replication-defective viral vectors into dorsal root ganglia (DRG). Adenovirus- and adeno-associated virus-based vectors with transcriptional competence for DRG neurons led to expression of the gene of interest throughout the first neuron of the sensory system, from the distal portions of the respective sensory nerve to the ipsilateral nucleus gracilis and cuneatus, which contains the synapses to the spinothalamic tracts. Use of Rag-1 ablated mice, which lack all B and T lymphocytes, allowed for sustained expression for periods exceeding 100 days. In immunocompetent mice, long-term (52 days) expression was achieved with similar efficiency by using adeno-associated viral vectors. DRG injection was vastly superior to intraneural injection into the sciatic nerve, which mainly transduced Schwann cells in the vicinity of the site of inoculation site but only inefficiently transduced nerve fibers, whereas i.m. injection did not lead to any significant expression of the reporter gene in nerve fibers. The versatile and efficient transduction of genes of interest should enable a wide variety of functional studies of peripheral nervous system pathophysiology.
Collapse
Affiliation(s)
- M Glatzel
- Institute of Neuropathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
28
|
Blits B, Dijkhuizen PA, Carlstedt TP, Poldervaart H, Schiemanck S, Boer GJ, Verhaagen J. Adenoviral vector-mediated expression of a foreign gene in peripheral nerve tissue bridges implanted in the injured peripheral and central nervous system. Exp Neurol 1999; 160:256-67. [PMID: 10630210 DOI: 10.1006/exnr.1999.7204] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axons of the CNS do normally not regenerate after injury, in contrast to axons of the PNS. This is due to a different microenvironment at the site of the lesion as well as a particular intrinsic program of axonal regrowth. Although transplantation of peripheral nerve tissue bridges is perhaps the most successful approach to promoting regeneration in the CNS, ingrowth of CNS nerve fibers with such transplants is limited. Genetic modification of peripheral nerve bridges to overexpress outgrowth-promoting proteins should, in principle, improve the permissive properties of peripheral nerve transplants. The present study shows that pieces of peripheral intercostal nerve, subjected to ex vivo adenoviral vector-mediated gene transfer and implanted as nerve bridges in transected sciatic nerve, avulsed ventral root, hemi-sected spinal cord and intact brain, are capable of expressing a foreign gene. In vitro studies showed expression of the reporter gene LacZ up to 30 days in Schwann cells. After implantation, LacZ expression could be detected at 7 days postimplantation, but had virtually disappeared at 14 days. Schwann cells of the transduced nerve bridges retained the capacity of guiding regenerative peripheral and central nerve fiber ingrowth. Transduction of intercostal nerve pieces prior to implantation should, in principle, enable enhanced local production of neurotrophic factors within the transplant and has the potential to improve the regeneration of injured axons into the graft.
Collapse
Affiliation(s)
- B Blits
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Franklin RM, Quick MM, Haase G. Adenoviral vectors for in vivo gene delivery to oligodendrocytes: transgene expression and cytopathic consequences. Gene Ther 1999; 6:1360-7. [PMID: 10467360 DOI: 10.1038/sj.gt.3300971] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication defective viral vectors provide a potentially useful means of gene transfer to oligodendrocytes and thus for studying the pathogenesis of white matter disease. In this study we have examined the expression pattern of E1/E3 deleted adenoviral vectors expressing the reporter gene LacZ (AdlacZ) as a means of establishing the value of these vectors for gene delivery to oligodendrocytes in adult rat white matter. Our results indicate that although such an approach can be used to induce transgene expression in oligodendrocytes, it is complicated by both immunogenic and cytopathic effects. Thus, in normal animals, injection of DeltaE1/E3 adenoviral vectors was associated with a robust immune response that led to a lack of expression by 40 days after injection. In order to overcome this complication, virus was injected into the white matter of immuno-deficient athymic rats. These experiments indi- cated that even in the absence of a T cell response high viral titres of DeltaE1/E3 adenoviral vectors had a profound cytopathic effect leading to death of oligodendrocytes and hence demyelination. A similar cytopathic effect was demonstrated using an adenoviral vector expressing the neurocytokine ciliary neurotrophic factor (AdCNTF). As the titre of injected virus was decreased there was a significant decrease in the number of transgene expressing cells. These experiments therefore indicated that in immunodeficient recipients there is a narrow window of virus titre that results in a high rate of infectivity and expression without significant cytopathic consequences. At higher viral titres the cytopathic effects include oligodendrocyte death and demyelination, while at lower titres there is a significant decrease in the efficiency of the number of cells expressing the transgene.
Collapse
Affiliation(s)
- R m Franklin
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | | |
Collapse
|
30
|
Jani A, Menichella D, Jiang H, Chbihi T, Acsadi G, Shy ME, Kamholz J. Modulation of cell-mediated immunity prolongs adenovirus-mediated transgene expression in sciatic nerve. Hum Gene Ther 1999; 10:787-800. [PMID: 10210146 DOI: 10.1089/10430349950018544] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In a previous report, we demonstrated that a first-generation (E1- and E3-deleted) recombinant adenovirus can transduce expression of the E. coli lacZ gene into Schwann cells, both in vitro and in vivo, suggesting that this method might be useful for future therapy of peripheral neuropathy, including CMT1. Adenovirus-mediated gene transfer was limited, however, by demyelination and Wallerian degeneration at the site of virus injection, as well as by attenuation of viral transgene expression over time. In our current work we have optimized adenoviral vector-mediated transgene expression after intraneural injection into sciatic nerve. Using an improved injection protocol, peak expression of lacZ occurs between 10 and 14 days after injection of 2-week-old rats, decreases thereafter, and there is minimal associated tissue injury. In contrast, few lacZ-expressing Schwann cells are found in nerve of adult animals 10 days after injection, probably owing to immune clearance of virus-infected cells. Consistent with this notion, high levels of LacZ are found in sciatic nerve 30 days after injection of adult SCID mice, which have a genetic defect in both cellular and humoral immunity, of adult beta2-microglobulin-deficient mice (beta2M4-/-), which have a genetic defect in cellular immunity, or of adult mice treated with the immunosuppressing agent FK506. In addition, adenovirus-infected Schwann cells cocultured with axons in vitro, in the absence of a host immune response, ensheathe axons and express lacZ for at least 8 weeks. These data thus demonstrate that lacZ transgene expression of first-generation recombinant adenovirus in sciatic nerve in adult mice, as in other tissues, is limited mainly by the host cellular immune response to the virus, which can be overcome by attenuation of host cell-mediated immunity. Adenoviral vectors might thus be used to modulate Schwann cell gene expression in patients with peripheral neuropathy after appropriate immunosuppression.
Collapse
Affiliation(s)
- A Jani
- Department of Neurology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Gu�nard V, Schweitzer B, Flechsig E, Hemmi S, Martini R, Suter U, Schachner M. Effective gene transfer oflacZ andP0 into Schwann cells of P0-deficient mice. Glia 1999. [DOI: 10.1002/(sici)1098-1136(19990115)25:2<165::aid-glia7>3.0.co;2-l] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Haase G, Pettmann B, Vigne E, Castelnau-Ptakhine L, Schmalbruch H, Kahn A. Adenovirus-mediated transfer of the neurotrophin-3 gene into skeletal muscle of pmn mice: therapeutic effects and mechanisms of action. J Neurol Sci 1998; 160 Suppl 1:S97-105. [PMID: 9851658 DOI: 10.1016/s0022-510x(98)00207-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several neurotrophic factors (CNTF, BDNF, IGF-1) have been suggested for the treatment of motor neuron diseases. In ALS patients, however, the repeated subcutaneous injection of these factors as recombinant proteins is complicated by their toxicity or poor bioavailability. We have constructed an adenovirus vector coding for neurotrophin-3 (AdNT-3) allowing for stable and/or targeted delivery of NT-3 to motoneurons. The intramuscular administration of this vector was tested in the mouse mutant pmn (progressive motor neuronopathy). AdNT-3-treated pmn mice showed prolonged lifespan, improved neuromuscular function, reduced motor axonal degeneration and efficient reinnervation of muscle fibres. NT-3 protein and also adenovirus vectors, when injected into muscle, can be transported by motoneurons via retrograde axonal transport to their cell bodies in the spinal cord. Using ELISA and RT-PCR analyses in muscle, spinal cord and serum of AdNT-3-treated pmn mice, we have investigated the contribution of these processes to the observed therapeutic effects. Our results suggest that most if not all therapeutic benefit was due to the continuous systemic liberation of adenoviral NT-3. Therefore, viral gene therapy vectors auch as adenoviruses, AAVs, lentiviruses and new types of gene transfer not based on viral vectors that allow for efficient in vivo liberation of neurotrophic factors have potential for the future treatment of human motor neuron diseases.
Collapse
Affiliation(s)
- G Haase
- INSERM U.129, ICGM, 24, Paris, France.
| | | | | | | | | | | |
Collapse
|
33
|
Dijkhuizen PA, Pasterkamp RJ, Hermens WT, de Winter F, Giger RJ, Verhaagen J. Adenoviral vector-mediated gene delivery to injured rat peripheral nerve. J Neurotrauma 1998; 15:387-97. [PMID: 9624624 DOI: 10.1089/neu.1998.15.387] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although much progress has been made, current treatments of peripheral nerve damage mostly result in only partial recovery. Local production of neurite outgrowth-promoting molecules, such as neurotrophins and/or cell adhesion molecules, at the site of damage may be used as a new means to promote the regeneration process. We have now explored the ability of an adenoviral vector encoding the reporter gene LacZ (Ad-LacZ) to direct the expression of a foreign gene to Schwann cells of intact and crushed rat sciatic nerves. Infusion of 8 x 10(7) PFU Ad-LacZ in the intact sciatic nerve resulted in the transduction of many Schwann cells with high levels of transgene expression lasting at least up to 12 days following viral vector administration. The efficacy of adenoviral vector delivery to a crushed nerve was investigated using three strategies. Injection of the adenoviral vector at the time of, or immediately after, a crush resulted in the transduction of only a few Schwann cells. Administration of the adenoviral vector the day after the crush resulted in the transduction of a similar number of Schwann cells 5 days after administration, as observed in uncrushed nerves. Regenerating nerve fibers were closely associated with beta-galactosidase-positive Schwann cells, indicating that the capacity of transduced Schwann cells to guide regenerating fibers was not altered. These results imply that the expression of growth-promoting proteins through adenoviral vector-mediated gene transfer may be a realistic option to promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- P A Dijkhuizen
- Graduate School for the Neurosciences, Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Sørensen J, Haase G, Krarup C, Gilgenkrantz H, Kahn A, Schmalbruch H. Gene transfer to Schwann cells after peripheral nerve injury: a delivery system for therapeutic agents. Ann Neurol 1998; 43:205-11. [PMID: 9485061 DOI: 10.1002/ana.410430210] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We transferred a reporter gene to Schwann cells to test whether they might serve as an endoneurial delivery system for therapeutic proteins. A replication-defective adenoviral vector carrying the gene for beta-galactosidase (lacZ) was injected into the distal segment of intact or crushed sciatic nerves of adult rats, and the expression of lacZ was histochemically assessed. Less than 1% of the Schwann cells became reactive in intact nerves, but up to 18% of the proliferating Schwann cells of injured nerves expressed lacZ. Gene expression decayed with time but might persist for up to 2 months. It was enhanced by immunosuppression: daily cyclosporin A injections reduced both proliferation of Schwann cells and lymphocytic infiltration of the nerve, whereas tolerance induced by a single intrathymic injection of the vector 4 days after birth abolished the inflammatory response but not the proliferation of Schwann cells. The vector itself did not impede axonal regeneration. The results indicate that adenoviral gene transfer to Schwann cells in injured nerves is possible and suggest that induced production of neurotrophic factor may represent a therapeutic supplement to surgical nerve repair.
Collapse
Affiliation(s)
- J Sørensen
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Recent progress in human genetics and neurobiology has led to the identification of various mutations in particular myelin genes as the cause for many of the known inherited demyelinating peripheral neuropathies. Mutations in 3 distinct myelin genes, PMP22, P0, and connexin 32 cause the 3 major demyelinating subtypes of Charcot-Marie-Tooth (CMT) disease, CMT1A, CMT1B and CMTX, respectively. In addition, a reduction in the gene dosage of PMP22 causes hereditary neuropathy with liability to pressure palsies (HNPP), while particular point mutations in PMP22 and P0 cause the severe Dejerine-Sottas (DS) neuropathy. A series of spontaneous and genetically engineered rodent mutants for genes for the above-mentioned myelin constituents are now available and their suitability to serve as models for these still untreatable diseases is an issue of particular interest. The spontaneous mutants Trembler-J and Trembler, with point mutations in PMP22, reflect some of the pathological alterations seen in CMT1A and DS patients, respectively. Furthermore, engineered mutants that either over or underexpress particular myelin genes are suitable models for patients who are similarly compromised in the gene dosage of the corresponding genes. In addition, engineered mutants heterozygously or homozygously deficient in the myelin component P0 show the pathology of distinct CMT1B and DS patients, respectively, while Cx32 deficient mice develop pathological abnormalities similar to those of CMTX patients. Mutants that mimic human peripheral neuropathies might allow the development of strategies to alleviate the symptoms of the diseases, and help to define environmental risk factors for aggravation of the disease. In addition, such mutants might be instrumental in the development of strategies to cure the diseases by gene therapy.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, University of Würzburg, Germany
| |
Collapse
|
36
|
Dijkhuizen PA, Hermens WT, Teunis MA, Verhaagen J. Adenoviral vector-directed expression of neurotrophin-3 in rat dorsal root ganglion explants results in a robust neurite outgrowth response. JOURNAL OF NEUROBIOLOGY 1997; 33:172-84. [PMID: 9240373 DOI: 10.1002/(sici)1097-4695(199708)33:2<172::aid-neu6>3.0.co;2-#] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The neurotrophins are a family of proteins that promote neuronal survival and neurite outgrowth during development and can also enhance the regeneration of injured adult neurons. The local and continuous delivery of these proteins at the site of injury is problematic, since this requires repeated intraparenchymal injections or the use of invasive canula-micropump devices. In the present study we report the generation and characterization of an adenoviral vector for a member of the neurotrophins, neurotrophin-3 (Ad-NT-3). Using Ad-NT-3, we examined the expression and biological activity of NT-3 in dorsal root ganglia (DRG) explant cultures. Gene transfer with Ad-NT-3 results in the synthesis of genuine NT-3 and in a dosage-dependent neurite outgrowth response in DRG explants. Transduction of DRG explants with a viral vector dosage of 5 x 10(5) to 5 x 10(6) plaque-forming units induced the formation of a dense halo of neurites comparable to outgrowth observed following the addition of 100 ng/mL exogenous NT-3. In addition, a single infection with Ad-NT-3 produced biologically active NT-3 for at least 20 days in culture, as evidenced by continued neurite extension. This indicates that adenoviral vector-mediated expression of NT-3 results in high-level production of biologically active NT-3 and could therefore be used as a strategy to promote the regeneration of injured peripheral and central nerve projections.
Collapse
Affiliation(s)
- P A Dijkhuizen
- Graduate School for Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | | | | | |
Collapse
|
37
|
Hermens WT, Giger RJ, Holtmaat AJ, Dijkhuizen PA, Houweling DA, Verhaagen J. Transient gene transfer to neurons and glia: analysis of adenoviral vector performance in the CNS and PNS. J Neurosci Methods 1997; 71:85-98. [PMID: 9125378 DOI: 10.1016/s0165-0270(96)00129-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper a detailed protocol is presented for neuroscientists planning to start work on first generation recombinant adenoviral vectors as gene transfer agents for the nervous system. The performance of a prototype adenoviral vector encoding the bacterial lacZ gene as a reporter was studied, following direct injection in several regions of the central and peripheral nervous system. The distribution of the cells expressing the transgene appears to be determined by natural anatomical boundaries and possibly by the degree of myelinization of a particular brain region. In highly myelinated areas with a compact cellular structure (e.g. the cortex and olfactory bulb) the spread of the viral vector is limited to the region close to the injection needle, while in areas with a laminar structure (e.g. the hippocampus and the eye) more widespread transgene expression is observed. Retrograde transport of the viral vector may serve as an attractive alternative route of transgene delivery. A time course of expression of beta-galactosidase in neural cells in the facial nucleus revealed high expression during the first week after AdLacZ injection. However, a significant decline in transgene expression during the second and third week was observed. This may be caused by an immune response against the transduced cells or by silencing of the cytomegalovirus promoter used to drive transgene expression. Taken together, the data underscore that for each application of adenoviral vectors as gene transfer agents in the nervous system it is important to examine vector spread in and infectability of the neural structure that is subject to genetic modification.
Collapse
Affiliation(s)
- W T Hermens
- Graduate School Neurosciences, Netherlands Institute for Brain Research, Amsterdam
| | | | | | | | | | | |
Collapse
|
38
|
Hitt MM, Addison CL, Graham FL. Human adenovirus vectors for gene transfer into mammalian cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 40:137-206. [PMID: 9217926 DOI: 10.1016/s1054-3589(08)60140-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M M Hitt
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|