1
|
Protasova MS, Andreeva TV, Klyushnikov SA, Illarioshkin SN, Rogaev EI. Genetic Variant in GRM1 Underlies Congenital Cerebellar Ataxia with No Obvious Intellectual Disability. Int J Mol Sci 2023; 24:ijms24021551. [PMID: 36675067 PMCID: PMC9865416 DOI: 10.3390/ijms24021551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Metabotropic glutamate receptor 1 (mGluR1) plays a crucial role in slow excitatory postsynaptic conductance, synapse formation, synaptic plasticity, and motor control. The GRM1 gene is expressed mainly in the brain, with the highest expression in the cerebellum. Mutations in the GRM1 gene have previously been known to cause autosomal recessive and autosomal dominant spinocerebellar ataxias. In this study, whole-exome sequencing of a patient from a family of Azerbaijani origin with a diagnosis of congenital cerebellar ataxia was performed, and a new homozygous missense mutation in the GRM1 gene was identified. The mutation leads to the homozygous amino acid substitution of p.Thr824Arg in an evolutionarily highly conserved region encoding the transmembrane domain 7, which is critical for ligand binding and modulating of receptor activity. This is the first report in which a mutation has been identified in the last transmembrane domain of the mGluR1, causing a congenital autosomal recessive form of cerebellar ataxia with no obvious intellectual disability. Additionally, we summarized all known presumable pathogenic genetic variants in the GRM1 gene to date. We demonstrated that multiple rare variants in the GRM1 underlie a broad diversity of clinical neurological and behavioral phenotypes depending on the nature and protein topology of the mutation.
Collapse
Affiliation(s)
- Maria S. Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana V. Andreeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Genetics and Life Science, Department of Genetics, Sirius University of Science and Technology, 354340 Sochi, Russia
- Centre for Genetics and Genetic Technologies, Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
- Correspondence: (T.V.A.); (E.I.R.)
| | | | | | - Evgeny I. Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Genetics and Life Science, Department of Genetics, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
- Correspondence: (T.V.A.); (E.I.R.)
| |
Collapse
|
2
|
Protasova MS, Gusev FE, Andreeva TV, Klyushnikov SA, Illarioshkin SN, Rogaev EI. Novel genes bearing mutations in rare cases of early-onset ataxia with cerebellar hypoplasia. Eur J Hum Genet 2022; 30:703-711. [PMID: 35351988 DOI: 10.1038/s41431-022-01088-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
We propose an approach for the identification of mutant genes for rare diseases in single cases of unknown etiology. All genes with rare biologically significant variants sorted from individual exome data are tested further for profiling of their spatial-temporal and cell/tissue specific expression compared to that of their paralogs. We developed a simple bioinformatics tool ("Essential Paralogue by Expression" (EPbE)) for such analysis. Here, we present rare clinical forms of early ataxia with cerebellar hypoplasia. Using whole-exome sequencing and the EPbE tool, we identified two novel mutant genes previously not associated with congenital human diseases. In Family I, the unique missense mutation (p.Lys258Glu) was found in the LRCH2 gene inherited in an X-linked manner. p.Lys258Glu occurs in the evolutionarily invariant site of the leucine-rich repeat domain of LRCH2. In Family II and Family III, the identical genetic variant was found in the CSMD1 gene inherited as an autosomal-recessive trait. The variant leads to amino acid substitution p.Gly2979Ser in a highly conserved region of the complement-interacting domain of CSMD1. The LRCH2 gene for Family I patients (in which congenital cerebellar hypoplasia was associated with demyelinating polyneuropathy) is expressed in Schwann and precursor Schwann cells and predominantly over its paralogous genes in the developing cerebellar cortex. The CSMD1 gene is predominantly expressed over its paralogous genes in the cerebellum, specifically in the period of late childhood. Thus, the comparative spatial-temporal expression of the selected genes corresponds to the neurological manifestations of the disease.
Collapse
Affiliation(s)
- Maria S Protasova
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia
| | - Fedor E Gusev
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia
| | - Tatiana V Andreeva
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey A Klyushnikov
- Department of Neurogenetics, Research Center of Neurology, 123367, Moscow, Russia
| | | | - Evgeny I Rogaev
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia. .,Center for Genetics and Life Science, Sirius University of Science and Technology, 354340, Sochi, Russia. .,Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA, 01545, USA.
| |
Collapse
|
3
|
Abstract
X-linked cerebellar ataxias (XLCA) are an expanding group of genetically heterogeneous and clinically variable conditions characterized by cerebellar dysgenesis (hypoplasia, atrophy, or dysplasia) caused by gene mutations or genomic imbalances on the X chromosome. The neurologic features of XLCA include hypotonia, developmental delay, intellectual disability, ataxia, and other cerebellar signs. Normal cognitive development has also been reported. Cerebellar defects may be isolated or associated with other brain malformations or extraneurologic involvement. More than 20 genes on the X chromosome, mainly encoding for proteins involved in brain development and synaptic function that have been constantly or occasionally associated with a pathologic cerebellar phenotype, and several families with X-linked inheritance have been reported. Given the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiologic and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| |
Collapse
|
4
|
Whole-genome sequencing identifies a novel ABCB7 gene mutation for X-linked congenital cerebellar ataxia in a large family of Mongolian ancestry. Eur J Hum Genet 2015; 24:550-5. [PMID: 26242992 DOI: 10.1038/ejhg.2015.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 02/05/2023] Open
Abstract
X-linked congenital cerebellar ataxia is a heterogeneous nonprogressive neurodevelopmental disorder with onset in early childhood. We searched for a genetic cause of this condition, previously reported in a Buryat pedigree of Mongolian ancestry from southeastern Russia. Using whole-genome sequencing on Illumina HiSeq 2000 platform, we found a missense mutation in the ABCB7 (ABC-binding cassette transporter B7) gene, encoding a mitochondrial transporter, involved in heme synthesis and previously associated with sideroblastic anemia and ataxia. The mutation resulting in a substitution of a highly conserved glycine to serine in position 682 is apparently a major causative factor of the cerebellar hypoplasia/atrophy found in affected individuals of a Buryat family who had no evidence of sideroblastic anemia. Moreover, in these affected men we also found the genetic defects in two other genes closely linked to ABCB7 on chromosome X: a deletion of a genomic region harboring the second exon of copper-transporter gene (ATP7A) and a complete deletion of PGAM4 (phosphoglycerate mutase family member 4) retrogene located in the intronic region of the ATP7A gene. Despite the deletion, eliminating the first of six metal-binding domains in ATP7A, no signs for Menkes disease or occipital horn syndrome associated with ATP7A mutations were found in male carriers. The role of the PGAM4 gene has been previously implicated in human reproduction, but our data indicate that its complete loss does not disrupt male fertility. Our finding links cerebellar pathology to the genetic defect in ABCB7 and ATP7A structural variant inherited as X-linked trait, and further reveals the genetic heterogeneity of X-linked cerebellar disorders.
Collapse
|
5
|
Di Gregorio E, Bianchi FT, Schiavi A, Chiotto AMA, Rolando M, Verdun di Cantogno L, Grosso E, Cavalieri S, Calcia A, Lacerenza D, Zuffardi O, Retta SF, Stevanin G, Marelli C, Durr A, Forlani S, Chelly J, Montarolo F, Tempia F, Beggs HE, Reed R, Squadrone S, Abete MC, Brussino A, Ventura N, Di Cunto F, Brusco A. A de novo X;8 translocation creates a PTK2-THOC2 gene fusion with THOC2 expression knockdown in a patient with psychomotor retardation and congenital cerebellar hypoplasia. J Med Genet 2013; 50:543-51. [PMID: 23749989 DOI: 10.1136/jmedgenet-2013-101542] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIM We identified a balanced de novo translocation involving chromosomes Xq25 and 8q24 in an eight year-old girl with a non-progressive form of congenital ataxia, cognitive impairment and cerebellar hypoplasia. METHODS AND RESULTS Breakpoint definition showed that the promoter of the Protein Tyrosine Kinase 2 (PTK2, also known as Focal Adhesion Kinase, FAK) gene on chromosome 8q24.3 is translocated 2 kb upstream of the THO complex subunit 2 (THOC2) gene on chromosome Xq25. PTK2 is a well-known non-receptor tyrosine kinase whereas THOC2 encodes a component of the evolutionarily conserved multiprotein THO complex, involved in mRNA export from nucleus. The translocation generated a sterile fusion transcript under the control of the PTK2 promoter, affecting expression of both PTK2 and THOC2 genes. PTK2 is involved in cell adhesion and, in neurons, plays a role in axonal guidance, and neurite growth and attraction. However, PTK2 haploinsufficiency alone is unlikely to be associated with human disease. Therefore, we studied the role of THOC2 in the CNS using three models: 1) THOC2 ortholog knockout in C.elegans which produced functional defects in specific sensory neurons; 2) Thoc2 knockdown in primary rat hippocampal neurons which increased neurite extension; 3) Thoc2 knockdown in neuronal stem cells (LC1) which increased their in vitro growth rate without modifying apoptosis levels. CONCLUSION We suggest that THOC2 can play specific roles in neuronal cells and, possibly in combination with PTK2 reduction, may affect normal neural network formation, leading to cognitive impairment and cerebellar congenital hypoplasia.
Collapse
|
6
|
Zanni G, Bertini ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis 2011; 6:24. [PMID: 21569638 PMCID: PMC3115841 DOI: 10.1186/1750-1172-6-24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/15/2011] [Indexed: 12/15/2022] Open
Abstract
X-linked disorders with cerebellar dysgenesis (XLCD) are a genetically heterogeneous and clinically variable group of disorders in which the hallmark is a cerebellar defect (hypoplasia, atrophy or dysplasia) visible on brain imaging, caused by gene mutations or genomic imbalances on the X-chromosome. The neurological features of XLCD include hypotonia, developmental delay, intellectual disability, ataxia and/or other cerebellar signs. Normal cognitive development has also been reported. Cerebellar dysgenesis may be isolated or associated with other brain malformations or multiorgan involvement. There are at least 15 genes on the X-chromosome that have been constantly or occasionally associated with a pathological cerebellar phenotype. 8 XLCD loci have been mapped and several families with X-linked inheritance have been reported. Recently, two recurrent duplication syndromes in Xq28 have been associated with cerebellar hypoplasia. Given the report of several forms of XLCD and the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiological and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Molecular Medicine, Departement of Neurosciences, Bambino Gesù ediatric Research Hospital, 4 Piazza S. Onofrio, 00165 Rome, Italy.
| | | |
Collapse
|
7
|
Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain 2009; 132:3199-230. [PMID: 19933510 PMCID: PMC2792369 DOI: 10.1093/brain/awp247] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/04/2009] [Accepted: 08/21/2009] [Indexed: 01/30/2023] Open
Abstract
Advances in neuroimaging, developmental biology and molecular genetics have increased the understanding of developmental disorders affecting the midbrain and hindbrain, both as isolated anomalies and as part of larger malformation syndromes. However, the understanding of these malformations and their relationships with other malformations, within the central nervous system and in the rest of the body, remains limited. A new classification system is proposed, based wherever possible, upon embryology and genetics. Proposed categories include: (i) malformations secondary to early anteroposterior and dorsoventral patterning defects, or to misspecification of mid-hindbrain germinal zones; (ii) malformations associated with later generalized developmental disorders that significantly affect the brainstem and cerebellum (and have a pathogenesis that is at least partly understood); (iii) localized brain malformations that significantly affect the brain stem and cerebellum (pathogenesis partly or largely understood, includes local proliferation, cell specification, migration and axonal guidance); and (iv) combined hypoplasia and atrophy of putative prenatal onset degenerative disorders. Pertinent embryology is discussed and the classification is justified. This classification will prove useful for both physicians who diagnose and treat patients with these disorders and for clinical scientists who wish to understand better the perturbations of developmental processes that produce them. Importantly, both the classification and its framework remain flexible enough to be easily modified when new embryologic processes are described or new malformations discovered.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology Room L371, University of California at San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628, USA.
| | | | | |
Collapse
|
8
|
Genetics and Pathogenesis of Inherited Ataxias and Spastic Paraplegias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:263-96. [DOI: 10.1007/978-90-481-2813-6_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Zanni G, Bertini E, Bellcross C, Nedelec B, Froyen G, Neuhäuser G, Opitz JM, Chelly J. X-linked congenital ataxia: a new locus maps to Xq25-q27.1. Am J Med Genet A 2008; 146A:593-600. [PMID: 18241076 DOI: 10.1002/ajmg.a.32186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report clinical and molecular studies on a large American family of Norwegian descent with X-linked nonprogressive congenital ataxia (XCA) in six affected males over three generations. Neuroimaging showed global cerebellar hypoplasia without evidence of supratentorial anomalies. Linkage analysis resulted in a maximum LOD score Z = 3.44 for marker DXS1192 at Theta = 0.0 with flanking markers DXS1047 and DXS1227 defining a region of 12 cM in Xq25-q27.1. The clinical and neuroradiological findings in the present family are very similar to those described in two reported X-linked families [Illarioshkin et al., 1996; Bertini et al., 2000]; however, the newly identified locus does not overlap with the one defined previously, indicating that there are at least two genes responsible for this rare form of X-linked congenital cerebellar ataxia with normal intelligence.
Collapse
Affiliation(s)
- Ginevra Zanni
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104) Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Cerebral palsy refers to a collective of neurologic conditions that share in common disorders of motor function and posture. Traditionally, and still today in many circles, the term is considered almost synonymous with brain injury. Multiple lines of evidence, however, point to the fact that cerebral palsy is rarely caused by problems with perinatal management. In fact, a mounting body of evidence points to strong genetic influences on the occurrence of cerebral palsy. Like most neurogenetic conditions, cerebral palsy exhibits complex inheritance. The best descriptor of the inheritance of cerebral palsy would be that of "multifactorial inheritance." This implies etiologic and genetic heterogeneity with complex interactions with multiple environmental influences. This article reviews known genetic influences on the origin of cerebral palsy. A proposed scheme for the genetic evaluation in identifying the etiology of cerebral palsy is provided.
Collapse
Affiliation(s)
- G Bradley Schaefer
- University of Nebraska Medical Center, Munroe-Meyer Institute for Rehabilitation and Genetics Medicine, Omaha, NE 68198-5430, USA.
| |
Collapse
|
11
|
Ventura P, Presicci A, Perniola T, Campa MG, Margari L. Mental retardation and epilepsy in patients with isolated cerebellar hypoplasia. J Child Neurol 2006; 21:776-81. [PMID: 16970885 DOI: 10.1177/08830738060210091301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Congenital nonprogressive cerebellar ataxia includes a complex group of disorders with heterogeneous phenotypic and etiopathogenetic characteristics. Despite recent advances in the understanding of the role of the cerebellum in cognition and behavior, the opinion that the clinical presentation of congenital cerebellar diseases is principally linked to motor dysfunction is common. This is largely due to the lack of well-organized epidemiologic studies on the prevalence of nonmotor disturbances in cerebellar disease. The association between congenital cerebellar disease and epilepsy has rarely been described. We report clinical, neurophysiologic, neuroimaging, and neuropsychologic features in a group of 14 patients with congenital nonprogressive cerebellar ataxia associated with cerebellar hypoplasia, 5 of whom have familial disease, aiming to further a better knowledge of the prevalence of cognitive and/or emotional impairment and epilepsy. The results confirm that cerebellar hypoplasia predisposes individuals to psychomotor delay (71.4%) and cognitive impairment (85.7%). Moreover, the tendency toward abnormal electroencephalographic (EEG) findings (78.5%), associated in a minor percentage of cases with epilepsy (28.5%), is also evident in our study.
Collapse
Affiliation(s)
- Patrizia Ventura
- Department of Neurological and Psychiatric Sciences, Child Neuropsychiatric Service, University of Bari, Piazza Giulio Cesare, 70124 Bari, Italy
| | | | | | | | | |
Collapse
|
12
|
Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI. Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 2005; 63:2288-92. [PMID: 15623688 DOI: 10.1212/01.wnl.0000147299.80872.d1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Most patients with pure nonprogressive congenital cerebellar ataxia have a sporadic form of unknown heredity and etiology. Several small families have been reported with a dominantly inherited nonprogressive congenital ataxia (NPCA). METHODS The authors ascertained and clinically characterized a four-generation pedigree segregating an autosomal dominant type of congenital nonprogressive cerebellar ataxia associated with cognitive impairment. Following the exclusion of several SCA localizations (SCA-1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 17, IOSCA, and DRPLA), a genome-wide linkage study was performed. RESULTS Examination of the family showed that all affected members had gait ataxia and cognitive disability with variable features of dysarthria, dysmetria, dysdiadochokinesia, nystagmus, dystonic movements, and cerebellar hypoplasia on imaging. Clinical signs of pyramidal tract dysfunction and sensory changes were absent. A genome-wide search in this family detected linkage to chromosome 3p with a maximum two-point lod score of 4.26 at D3S3630. This localization to the pter is distal to D3S1304, as defined by a recombination event. This overlaps with the SCA15 locus, with the critical overlapping region between the microsatellite markers, D3S1304 and D3S1620 (approximately 8 cM). CONCLUSION Autosomal dominant congenital nonprogressive cerebellar ataxia with or without cerebellar hypoplasia overlaps with the SCA15 locus on chromosome 3pter.
Collapse
Affiliation(s)
- T E Dudding
- Hunter Genetics, PO Box 84, Waratah, Newcastle, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
13
|
Margari L, Ventura P, Presicci A, Buttiglione M, Perniola T. Congenital ataxia and mental retardation in three brothers. Pediatr Neurol 2004; 31:59-63. [PMID: 15246495 DOI: 10.1016/j.pediatrneurol.2004.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 01/12/2004] [Indexed: 10/26/2022]
Abstract
Nonprogressive congenital ataxia is a complex group of disorders caused by a variety of etiologic factors, both environmental and genetic. Hereditary forms represent a substantial part of congenital ataxias, which are difficult to classify because of their phenotypic and genetic polymorphism. Despite the advances in molecular genetics, for most nonprogressive congenital ataxia the etiology is still unknown. This report describes three sons of nonconsanguineous healthy parents, who manifested a syndrome characterized by nonprogressive ataxia, mental retardation, pyramidal signs, ocular and ocular motor anomalies, associated with severe hypoplasia of the cerebellar vermis and hemispheres on neuroimaging. All the patients have presented psychomotor developmental delay. As differential diagnosis, a comparison is made between the clinical features of these patients and the previously reported cases of nonprogressive congenital ataxia. This report represents a further example of the phenotypic and genetic heterogeneity of the syndromes with congenital ataxia.
Collapse
Affiliation(s)
- Lucia Margari
- Child Neurological and Psychiatric Service, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
14
|
Abstract
Posterior fossa malformations are a special group of central nervous system anomalies that present during infancy with hypotonia, developmental delay, microcephaly, or hydrocephalus. Recent discoveries of the genetic and epigenetic factors that control hindbrain ontogenesis explain some of these disturbances in cerebellar development. A comprehensive classification of posterior fossa malformations is proposed with particular attention to Dandy-Walker malformation, Joubert syndrome, and other cerebellar hypoplasias. A rare form of cerebellar hypertrophy which caused repeated obstruction at the foramen magnum is recognized. The importance of the cerebellum in language, cognition, and brain growth is stressed.
Collapse
Affiliation(s)
- Charles E Niesen
- Division of Pediatric Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
15
|
Abstract
We report a family in which two sisters had three male fetuses with isolated Dandy-Walker variant (DWV) diagnosed on antenatal ultrasound. DWV is one part of a spectrum of abnormalities related to Dandy-Walker malformation (DWM) which commonly occur in association with other anomalies with or without chromosome abnormalities. The majority of cases are sporadic but rare reports of recurrence in siblings exist. This is the second report suggesting that isolated DWM/DWV can be inherited as an X-linked recessive trait.
Collapse
Affiliation(s)
- Emma L Wakeling
- Kennedy-Galton Centre, North West London Hospitals NHS Trust, Harrow, Middlesex, UK.
| | | | | | | | | |
Collapse
|
16
|
Bertini E, des Portes V, Zanni G, Santorelli F, Dionisi-Vici C, Vicari S, Fariello G, Chelly J. X-linked congenital ataxia: A clinical and genetic study. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1096-8628(20000501)92:1<53::aid-ajmg9>3.0.co;2-f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Sossey-Alaoui K, Lyon JA, Jones L, Abidi FE, Hartung AJ, Hane B, Schwartz CE, Stevenson RE, Srivastava AK. Molecular cloning and characterization of TRPC5 (HTRP5), the human homologue of a mouse brain receptor-activated capacitative Ca2+ entry channel. Genomics 1999; 60:330-40. [PMID: 10493832 DOI: 10.1006/geno.1999.5924] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel human gene, TRPC5, was cloned from the region of Xq23 that contains loci for nonsyndromic mental retardation (MRX47 and MRX35) and two genes, DCX and HPAK3, implicated in two X-linked disorders (LISX and MRX30). Within a single YAC, we have determined the order cen-HPAK3(5'-3')-DCX(3'-5')-DXS7012E-TRPC5(3'-5' )-ter. TRPC5 encodes a 974-residue novel human protein (111.5 kDa predicted mass) and displays 99% homology with mouse TRP5, (MGD-approved symbol Trrp5) a novel member of a family of receptor-activated Ca2+ channels. It contains eight transmembrane domains, including a putative pore region. A transcript larger than 9.5 kb is observed only in fetal and adult human brain, with a relatively higher level in the adult human cerebellum. We devised an efficient method, Incorporation PCR SSCP (IPS), for detection of gene alterations. Five single-nucleotide variations in the TRPC5 gene were identified in males with mental retardation. However, these were found to be polymorphic variants. Exclusive expression of the TRPC5 gene in developing and adult brain suggests a possible role during development and provides a candidate gene for instances of mental retardation and other developmental defects.
Collapse
Affiliation(s)
- K Sossey-Alaoui
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sloan JL, Mager S. Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). J Biol Chem 1999; 274:23740-5. [PMID: 10446133 DOI: 10.1074/jbc.274.34.23740] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Na(+)-dependent neutral and cationic amino acid transport system (B(0+)) plays an important role in many cells and tissues; however, the molecular basis for this transport system is still unknown. To identify new transporters, the expressed sequence tag database was queried, and cDNA fragments with sequence similarity to the Na(+)/Cl(-)-dependent neurotransmitter transporter family were identified. Based on these sequences, rapid amplification of cDNA ends of human mammary gland cDNA was used to obtain a cDNA of 4.5 kilobases (kb). The open reading frame encodes a 642-amino acid protein named amino acid transporter B(0+). Human ATB(0+) (hATB(0+)) is a novel member of the Na(+)/Cl(-)-dependent neurotransmitter transporter family with the highest sequence similarity to the glycine and proline transporters. Northern blot analysis identified transcripts of approximately 4.5 kb and approximately 2 kb in the lung. Another tissue survey suggests expression in the trachea, salivary gland, mammary gland, stomach, and pituitary gland. Electrophysiology and radiolabeled amino acid uptake measurements were used to functionally characterize the transporter expressed in Xenopus oocytes. hATB(0+) was found to transport both neutral and cationic amino acids, with the highest affinity for hydrophobic amino acids and the lowest affinity for proline. Amino acid transport was Na(+) and Cl(-)-dependent and was attenuated in the presence of 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid, a system B(0+) inhibitor. These characteristics are consistent with system B(0+) amino acid transport. Thus, hATB(0+) is the first cloned B(0+) amino acid transporter.
Collapse
Affiliation(s)
- J L Sloan
- Department of Cell and Molecular Physiology and the Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
19
|
Steingruber HE, Dunham A, Coffey AJ, Clegg SM, Howell GR, Maslen GL, Scott CE, Gwilliam R, Hunt PJ, Sotheran EC, Huckle EJ, Hunt SE, Dhami P, Soderlund C, Leversha MA, Bentley DR, Ross MT. High-Resolution Landmark Framework for the Sequence-Ready Mapping of Xq23–q26.1. Genome Res 1999. [DOI: 10.1101/gr.9.8.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have established a landmark framework map over 20–25 Mb of the long arm of the human X chromosome using yeast artificial chromosome (YAC) clones. The map has approximately one landmark per 45 kb of DNA and stretches from DXS7531 in proximal Xq23 to DXS895 in proximal Xq26, connecting to published framework maps on its proximal and distal sides. There are three gaps in the framework map resulting from the failure to obtain clone coverage from the YAC resources available. Estimates of the maximum sizes of these gaps have been obtained. The four YAC contigs have been positioned and oriented using somatic-cell hybrids and fluorescence in situ hybridization, and the largest is estimated to cover ∼15 Mb of DNA. The framework map is being used to assemble a sequence-ready map in large-insert bacterial clones, as part of an international effort to complete the sequence of the X chromosome. PAC and BAC contigs currently cover 18 Mb of the region, and from these, 12 Mb of finished sequence is available.
Collapse
|
20
|
Srivastava AK, McMillan S, Jermak C, Shomaker M, Copeland-Yates SA, Sossey-Alaoui K, Mumm S, Schlessinger D, Nagaraja R. Integrated STS/YAC physical, genetic, and transcript map of human Xq21.3 to q23/q24 (DXS1203-DXS1059). Genomics 1999; 58:188-201. [PMID: 10366451 DOI: 10.1006/geno.1999.5820] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A map has been assembled that extends from the XY homology region in Xq21.3 to proximal Xq24, approximately 20 Mb, formatted with 200 STSs that include 25 dinucleotide repeat polymorphic markers and more than 80 expressed sequences including 30 genes. New genes HTRP5, CAPN6, STPK, 14-3-3PKR, and CALM1 and previously known genes including BTK, DDP, GLA, PLP, COL4A5, COL4A6, PAK3, and DCX are localized; candidate loci for other disorders for which genes have not yet been identified, including DFN-2, POF, megalocornea, and syndromic and nonsyndromic mental retardation, are also mapped in the region. The telomeric end of the contig overlaps a yeast artificial chromosome (YAC) contig from Xq24-q26 and with other previously published contigs provides complete sequence-tagged site (STS)/YAC-based coverage of the long arm of the X chromosome. The order of published landmark loci in genetic and radiation hybrid maps is in general agreement. Combined with high-density STS landmarks, the multiple YAC clone coverage and integrated genetic, radiation hybrid, and transcript map provide resources to further disease gene searches and sequencing.
Collapse
Affiliation(s)
- A K Srivastava
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, 29646, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Allen KM, Gleeson JG, Shoup SM, Walsh CA. A YAC contig in Xq22.3-q23, from DXS287 to DXS8088, spanning the brain-specific genes doublecortin (DCX) and PAK3. Genomics 1998; 52:214-8. [PMID: 9782089 DOI: 10.1006/geno.1998.5424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although several genes for mental retardation and epilepsy, including double cortex/X-linked lissencephaly (DC/XLIS), have been localized to Xq21.3-q23, there has been no complete physical map of this region available. We constructed a YAC/STS contig map by initiating two yeast artificial chromosome (YAC) walks from the markers that flanked the DC/XLIS candidate gene region. We report an approximately 4-Mb contig extending from DXS287 to DXS8088, encompassing DXS1072 and DXS1059, and composed of 52 YACs identified with 15 previously published STSs and 19 novel YAC-end STSs. This contig also contains two brain-specific genes, doublecortin (HGMW-approved symbol DCX), responsible for DC/XLIS, and PAK3, which may be responsible for neurological diseases localized to this region. The new contig extends and incorporates several previously published contigs, providing a total overlapping contig extending approximately 34 Mb from DXS441 in Xq13.1 to DXS8088 in Xq23.
Collapse
Affiliation(s)
- K M Allen
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | | | | | | |
Collapse
|
22
|
Allen KM, Gleeson JG, Bagrodia S, Partington MW, MacMillan JC, Cerione RA, Mulley JC, Walsh CA. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat Genet 1998; 20:25-30. [PMID: 9731525 DOI: 10.1038/1675] [Citation(s) in RCA: 366] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonsyndromic X-linked mental retardation (MRX) syndromes are clinically homogeneous but genetically heterogeneous disorders, whose genetic bases are largely unknown. Affected individuals in a multiplex pedigree with MRX (MRX30), previously mapped to Xq22, show a point mutation in the PAK3 (p21-activated kinase) gene, which encodes a serine-threonine kinase. PAK proteins are crucial effectors linking Rho GTPases to cytoskeletal reorganization and to nuclear signalling. The mutation produces premature termination, disrupting kinase function. MRI analysis showed no gross defects in brain development. Immunofluorescence analysis showed that PAK3 protein is highly expressed in postmitotic neurons of the developing and postnatal cerebral cortex and hippocampus. Signal transduction through Rho GTPases and PAK3 may be critical for human cognitive function.
Collapse
Affiliation(s)
- K M Allen
- Division of Neurogenetics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Congenital ataxias (CA) are rare, predominantly non-progressive syndromes characterized by marked hypotonia, developmental delay followed by the appearance of ataxia. Most children show marked speech and cognitive developmental problems. Non- progressive CA (NPCA) can be divided into pure CA without additional symptoms and syndromes with CA. Pure CA can be due to cerebellar malformations as (hereditary or non-hereditary) cerebellar hypoplasia, Dandy Walker syndrome, or occasionally supratentorial abnormalities. Ataxic syndromes are less frequent, but more distinctive. There are syndromes (e.g. Joubert syndrome) where ataxia is a cardinal feature and others where ataxia is only an occasional symptom. Acquired ataxias, due to congenital cytomegalovirus infection or perinatal problems, form a small third group. In about half of all cases with NPCA, aetiology and inheritance are still unknown. Diagnosis of NPCA is made by a typical history and careful clinical examination. Diagnosis of a more distinctive ataxic syndrome may be possible on clinical grounds. Neuroimaging with special attention to the posterior fossa will aid accurate clinical classification. Early progressive ataxias require careful differentiation from other types.
Collapse
Affiliation(s)
- M Steinlin
- Division of Neurology, University Children's Hospital, Zurich, Switzerland.
| |
Collapse
|
24
|
Bertini E, Sabatelli M, Di Capua M, Cilio MR, Mignogna T, Federico A, Tonali P. Familial spastic paraplegia, axonal sensory-motor polyneuropathy and bulbar amyotrophy with facial dysmorphia: new cases of Troyer-like syndrome. Eur J Paediatr Neurol 1998; 2:245-54. [PMID: 10726827 DOI: 10.1016/s1090-3798(98)80038-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied two Libyan siblings, born to healthy consanguineous parents, who had suffered from a progressive neurological disorder, characterized by facial dysmorphia, ataxia, spastic paraplegia and an axonal sensory-motor polyneuropathy, since the age of 3 years. The clinical picture progressed slowly over a 6-year period to involve also bulbar and distal limb muscles. Interestingly, we found unusual tubulofilamentous inclusions in peripheral nerves and presynaptic buttons at the neuromuscular junctions. Describing the clinical picture of this presumably new disorder, we comment on the difference from similar conditions.
Collapse
Affiliation(s)
- E Bertini
- Department of Paediatric Neurology, Bambino Gesu Hospital, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|