1
|
Slovis JC, Bach A, Beaulieu F, Zuckerberg G, Topjian A, Kirschen MP. Neuromonitoring after Pediatric Cardiac Arrest: Cerebral Physiology and Injury Stratification. Neurocrit Care 2024; 40:99-115. [PMID: 37002474 PMCID: PMC10544744 DOI: 10.1007/s12028-023-01685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/30/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Significant long-term neurologic disability occurs in survivors of pediatric cardiac arrest, primarily due to hypoxic-ischemic brain injury. Postresuscitation care focuses on preventing secondary injury and the pathophysiologic cascade that leads to neuronal cell death. These injury processes include reperfusion injury, perturbations in cerebral blood flow, disturbed oxygen metabolism, impaired autoregulation, cerebral edema, and hyperthermia. Postresuscitation care also focuses on early injury stratification to allow clinicians to identify patients who could benefit from neuroprotective interventions in clinical trials and enable targeted therapeutics. METHODS In this review, we provide an overview of postcardiac arrest pathophysiology, explore the role of neuromonitoring in understanding postcardiac arrest cerebral physiology, and summarize the evidence supporting the use of neuromonitoring devices to guide pediatric postcardiac arrest care. We provide an in-depth review of the neuromonitoring modalities that measure cerebral perfusion, oxygenation, and function, as well as neuroimaging, serum biomarkers, and the implications of targeted temperature management. RESULTS For each modality, we provide an in-depth review of its impact on treatment, its ability to stratify hypoxic-ischemic brain injury severity, and its role in neuroprognostication. CONCLUSION Potential therapeutic targets and future directions are discussed, with the hope that multimodality monitoring can shift postarrest care from a one-size-fits-all model to an individualized model that uses cerebrovascular physiology to reduce secondary brain injury, increase accuracy of neuroprognostication, and improve outcomes.
Collapse
Affiliation(s)
- Julia C Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA.
| | - Ashley Bach
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Forrest Beaulieu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Gabe Zuckerberg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Piantino JA, Ruzas CM, Press CA, Subramanian S, Balakrishnan B, Panigrahy A, Pettersson D, Maloney JA, Vossough A, Topjian A, Kirschen MP, Doughty L, Chung MG, Maloney D, Haller T, Fabio A, Fink EL. Use of Magnetic Resonance Imaging in Neuroprognostication After Pediatric Cardiac Arrest: Survey of Current Practices. Pediatr Neurol 2022; 134:45-51. [PMID: 35835025 PMCID: PMC9883065 DOI: 10.1016/j.pediatrneurol.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Use of magnetic resonance imaging (MRI) as a tool to aid in neuroprognostication after cardiac arrest (CA) has been described, yet details of specific indications, timing, and sequences are unknown. We aim to define the current practices in use of brain MRI in prognostication after pediatric CA. METHODS A survey was distributed to pediatric institutions participating in three international studies. Survey questions related to center demographics, clinical practice patterns of MRI after CA, neuroimaging resources, and details regarding MRI decision support. RESULTS Response rate was 31% (44 of 143). Thirty-four percent (15 of 44) of centers have a clinical pathway informing the use of MRI after CA. Fifty percent (22 of 44) of respondents reported that an MRI is obtained in nearly all patients with CA, and 32% (14 of 44) obtain an MRI in those who do not return to baseline neurological status. Poor neurological examination was reported as the most common factor (91% [40 of 44]) determining the timing of the MRI. Conventional sequences (T1, T2, fluid-attenuated inversion recovery, and diffusion-weighted imaging/apparent diffusion coefficient) are routinely used at greater than 97% of centers. Use of advanced imaging techniques (magnetic resonance spectroscopy, diffusion tensor imaging, and functional MRI) were reported by less than half of centers. CONCLUSIONS Conventional brain MRI is a common practice for prognostication after CA. Advanced imaging techniques are used infrequently. The lack of standardized clinical pathways and variability in reported practices support a need for higher-quality evidence regarding the indications, timing, and acquisition protocols of clinical MRI studies.
Collapse
Affiliation(s)
- Juan A Piantino
- Division of Child Neurology, Department of Pediatrics, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, Oregon
| | - Christopher M Ruzas
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Craig A Press
- Division of Neurology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Binod Balakrishnan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ashok Panigrahy
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - David Pettersson
- Division of Neuroradiology, Department of Diagnostic Radiology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon
| | - John A Maloney
- Department of Radiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lesley Doughty
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melissa G Chung
- Divisions of Critical Care Medicine and Pediatric Neurology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - David Maloney
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tamara Haller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony Fabio
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Bartnik-Olson BL, Alger JR, Babikian T, Harris AD, Holshouser B, Kirov II, Maudsley AA, Thompson PM, Dennis EL, Tate DF, Wilde EA, Lin A. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging Behav 2021; 15:504-525. [PMID: 32797399 PMCID: PMC7882010 DOI: 10.1007/s11682-020-00330-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.
Collapse
Affiliation(s)
| | - Jeffry R Alger
- Departments of Neurology and Radiology, University of California Los Angeles, Los Angeles, CA, USA
- NeuroSpectroScopics LLC, Sherman Oaks, Los Angeles, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Fink EL, Clark RSB, Panigrahy A, Berger R, Wisnowski J, Bluml S, Maloney D, Rubin P, Haller T, Bayir H, Beers SR, Kochanek PM, Fabio A. Personalising Outcomes after Child Cardiac Arrest (POCCA): design and recruitment challenges of a multicentre, observational study. BMJ Open 2020; 10:e039323. [PMID: 33109667 PMCID: PMC7592297 DOI: 10.1136/bmjopen-2020-039323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Blood and imaging biomarkers show promise in prognosticating outcomes after paediatric cardiac arrest in pilot studies. We describe the methods and early recruitment challenges and solutions for an ongoing multicentre (n=14) observational trial, Personalising Outcomes following Child Cardiac Arrest to validate clinical, blood and imaging biomarkers individually and together in a clinically relevant panel. METHODS AND ANALYSIS Children (n=164) between 48 hours and 17 years of age who receive chest compressions irrespective of provider, duration, or event location and are admitted to an intensive care unit are eligible. Blood samples will be taken on days 1-3 for the measurement of brain-focused biomarkers analysed to predict the outcome. Clinically indicated and timed brain MRI and spectroscopy biomarkers will be analysed to predict the outcome. The primary outcome for the trial is survival with favourable (Vineland Adaptive Behavioural Scale score >70) outcome at 1 year. Secondary outcomes include mortality and pre-event and postdischarge measures of emotional, cognitive, physical and family functioning and health-related quality of life. Early enrollment targets were not met due to prolonged regulatory and subcontract processes. Multiple, simultaneous interventions including modification to inclusion criteria, additional sites and site visits were implemented with successful improvement in recruitment. Study procedures including outcomes and biomarker analysis are ongoing. ETHICS AND DISSEMINATION Twelve of 14 sites will use the centralised Institutional Review Board (IRB) at the University of Pittsburgh (PRO14030712). Two sites will use individual IRBs: Children's Healthcare of Atlanta Institutional Review Board and Children's Hospital of Wisconsin IRB. Parents and/or guardians are consented and children assented (when possible) by the site Primary investigator (PI) or research coordinator for enrollment. Study findings will be disseminated through scientific conferences, peer-reviewed journal publications, public study website materials and invited lectures. TRIAL REGISTRATION NUMBER NCT02769026.
Collapse
Affiliation(s)
- Ericka L Fink
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ashok Panigrahy
- Radiology, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Rachel Berger
- Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jessica Wisnowski
- Radiology, USC Keck School of Medicine, Los Angeles, California, USA
| | - Stefan Bluml
- Radiology, USC Keck School of Medicine, Los Angeles, California, USA
| | - David Maloney
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Pamela Rubin
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tamara Haller
- Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sue R Beers
- Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anthony Fabio
- Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Pruitt CM. MRI/MRS for prognosis in pediatric cardiac arrest: Worth a deeper dive. Resuscitation 2020; 157:259-260. [PMID: 33080370 DOI: 10.1016/j.resuscitation.2020.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022]
|
6
|
Fink EL, Wisnowski J, Clark R, Berger RP, Fabio A, Furtado A, Narayan S, Angus DC, Watson RS, Wang C, Callaway CW, Bell MJ, Kochanek PM, Bluml S, Panigrahy A. Brain MR imaging and spectroscopy for outcome prognostication after pediatric cardiac arrest. Resuscitation 2020; 157:185-194. [PMID: 32653571 DOI: 10.1016/j.resuscitation.2020.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
AIM Children surviving cardiac arrest are at high risk of neurological morbidity and mortality; however, there is a lack of validated prognostic biomarkers. We aimed to evaluate brain magnetic resonance imaging (MRI) and spectroscopy (MRS) as predictors of death and disability. Secondly, we evaluated whether MRI/S by randomized group. METHODS This single center study analyzed clinically indicated brain MRI/S data from children enrolled in a randomized controlled trial of 24 vs. 72 h of hypothermia following cardiac arrest. Two pediatric radiologists scored conventional MRIs. Lactate and N-acetyl-aspartate (NAA) concentrations (mmol/kg) were determined from spectra acquired from the basal ganglia, thalamus, parietal white matter and parietooccipital gray matter. Mortality and neurological outcomes (favorable = Pediatric Cerebral Performance Category [PCPC] 1, 2, 3 or increase < 2) were assessed at hospital discharge. Non-parametric tests were used to test for associations between MRI/S biomarkers and outcome and randomized group. RESULTS 23 children with (median [interquartile range]) age of 1.5 (0.3-4.0) years. Ten (44%) had favorable outcome. There were more T2 brain lesions in the lentiform nuclei in children with unfavorable 12 (92%) vs. favorable 3 (33%) outcome, p = 0.007. Increased lactate and decreased NAA concentrations in the parietooccipital gray matter and decreased NAA in the parietal white matter were associated with unfavorable outcome (p's < 0.05). There were no differences for any biomarker by randomized group. CONCLUSION Regional cerebral and metabolic MRI/S biomarkers are predictive of neurological outcomes at hospital discharge in pediatric cardiac arrest and should undergo validation testing in a large sample.
Collapse
Affiliation(s)
- Ericka L Fink
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA.
| | | | - Robert Clark
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Rachel P Berger
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Anthony Fabio
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andre Furtado
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Srikala Narayan
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Derek C Angus
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, USA
| | - R Scott Watson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Chunyan Wang
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | | | - Patrick M Kochanek
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Stefan Bluml
- Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Ashok Panigrahy
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Topjian AA, de Caen A, Wainwright MS, Abella BS, Abend NS, Atkins DL, Bembea MM, Fink EL, Guerguerian AM, Haskell SE, Kilgannon JH, Lasa JJ, Hazinski MF. Pediatric Post–Cardiac Arrest Care: A Scientific Statement From the American Heart Association. Circulation 2019; 140:e194-e233. [DOI: 10.1161/cir.0000000000000697] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Successful resuscitation from cardiac arrest results in a post–cardiac arrest syndrome, which can evolve in the days to weeks after return of sustained circulation. The components of post–cardiac arrest syndrome are brain injury, myocardial dysfunction, systemic ischemia/reperfusion response, and persistent precipitating pathophysiology. Pediatric post–cardiac arrest care focuses on anticipating, identifying, and treating this complex physiology to improve survival and neurological outcomes. This scientific statement on post–cardiac arrest care is the result of a consensus process that included pediatric and adult emergency medicine, critical care, cardiac critical care, cardiology, neurology, and nursing specialists who analyzed the past 20 years of pediatric cardiac arrest, adult cardiac arrest, and pediatric critical illness peer-reviewed published literature. The statement summarizes the epidemiology, pathophysiology, management, and prognostication after return of sustained circulation after cardiac arrest, and it provides consensus on the current evidence supporting elements of pediatric post–cardiac arrest care.
Collapse
|
8
|
Manchester LC, Lee V, Schmithorst V, Kochanek PM, Panigrahy A, Fink EL. Global and Regional Derangements of Cerebral Blood Flow and Diffusion Magnetic Resonance Imaging after Pediatric Cardiac Arrest. J Pediatr 2016; 169:28-35.e1. [PMID: 26561380 PMCID: PMC4729616 DOI: 10.1016/j.jpeds.2015.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To quantify and examine the relationship between global and regional cerebral blood flow (CBF) and water diffusion on brain magnetic resonance imaging (MRI) in children after cardiac arrest. STUDY DESIGN Children admitted to a tertiary care children's hospital from July 2011 to April 2013 who received a brain MRI within 2 weeks after cardiac arrest that included arterial spin labeling and apparent diffusion coefficient (ADC) sequences were studied. CBF and ADC values were calculated globally and in 19 regions of interest. Outcome variables included survival and favorable neurologic outcome, which was defined as Pediatric Cerebral Performance Category ≤3 at 6 months. We examined global and regional relationships between CBF and ADC and their association with outcome. RESULTS This sample included 14 pediatric patients (mean time to MRI 6 ± 4 days), 9 of whom survived and 6 who survived with favorable outcome. Global ADC was significantly decreased in patients with unfavorable outcome (P = .02). Increased CBF and decreased ADC often were colocalized in the same region, especially in children who had unfavorable outcomes. CONCLUSIONS In this exploratory study, global restricted water diffusion on ADC after pediatric cardiac arrest was associated with unfavorable outcome. MRI assessments of perfusion and diffusion may have prognostic value after pediatric cardiac arrest.
Collapse
Affiliation(s)
| | - Vince Lee
- Department of Radiology, Children’s Hospital of Pittsburgh
| | | | | | | | | |
Collapse
|
9
|
McKenna MC, Scafidi S, Robertson CL. Metabolic Alterations in Developing Brain After Injury: Knowns and Unknowns. Neurochem Res 2015; 40:2527-43. [PMID: 26148530 PMCID: PMC4961252 DOI: 10.1007/s11064-015-1600-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/10/2015] [Accepted: 05/02/2015] [Indexed: 12/21/2022]
Abstract
Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore St., Room 13-019, Baltimore, MD, 21201, USA.
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Harris JL, Choi IY, Brooks WM. Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain. Front Aging Neurosci 2015; 7:202. [PMID: 26578948 PMCID: PMC4623195 DOI: 10.3389/fnagi.2015.00202] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022] Open
Abstract
Following a brain injury, the mobilization of reactive astrocytes is part of a complex neuroinflammatory response that may have both harmful and beneficial effects. There is also evidence that astrocytes progressively accumulate in the normal aging brain, increasing in both number and size. These astrocyte changes in normal brain aging may, in the event of an injury, contribute to the exacerbated injury response and poorer outcomes observed in older traumatic brain injury (TBI) survivors. Here we present our view that proton magnetic resonance spectroscopy (1H-MRS), a neuroimaging approach that probes brain metabolism within a defined region of interest, is a promising technique that may provide insight into astrocyte metabolic changes in the injured and aging brain in vivo. Although 1H-MRS does not specifically differentiate between cell types, it quantifies certain metabolites that are highly enriched in astrocytes (e.g., Myo-inositol, mlns), or that are involved in metabolic shuttling between astrocytes and neurons (e.g., glutamate and glutamine). Here we focus on metabolites detectable by 1H-MRS that may serve as markers of astrocyte metabolic status. We review the physiological roles of these metabolites, discuss recent 1H-MRS findings in the injured and aging brain, and describe how an astrocyte metabolite profile approach might be useful in clinical medicine and clinical trials.
Collapse
Affiliation(s)
- Janna L Harris
- Hoglund Brain Imaging Center, University of Kansas Medical Center Kansas City, KS, USA ; Department of Anatomy and Cell Biology, University of Kansas Medical Center Kansas City, KS, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, University of Kansas Medical Center Kansas City, KS, USA ; Department of Neurology, University of Kansas Medical Center Kansas City, KS, USA ; Department of Molecular and Integrative Physiology, University of Kansas Medical Center Kansas City, KS, USA
| | - William M Brooks
- Hoglund Brain Imaging Center, University of Kansas Medical Center Kansas City, KS, USA ; Department of Neurology, University of Kansas Medical Center Kansas City, KS, USA ; Department of Molecular and Integrative Physiology, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
11
|
McKenna MC, Scafidi S, Robertson CL. Metabolic Alterations in Developing Brain After Injury: Knowns and Unknowns. Neurochem Res 2015. [PMID: 26148530 DOI: 10.1007/s11064‐015‐1600‐7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore St., Room 13-019, Baltimore, MD, 21201, USA.
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Corbo ET, Bartnik-Olson BL, Machado S, Merritt TA, Peverini R, Wycliffe N, Ashwal S. The effect of whole-body cooling on brain metabolism following perinatal hypoxic-ischemic injury. Pediatr Res 2012; 71:85-92. [PMID: 22289855 DOI: 10.1038/pr.2011.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) and spectroscopy (MRS) have proven valuable in evaluating neonatal hypoxic-ischemic injury (HII). RESULTS MRI scores in the basal ganglia of HII/HT(+) neonates were significantly lower than HII/HT(-) neonates, indicating less severe injury and were associated with lower discharge encephalopathy severity scores in the HII/HT(+) group (P = 0.01). Lactate (Lac) was detected in the occipital gray matter (OGM) and thalamus (TH) of significantly more HII/HT(-) neonates (31.6 and 35.3%) as compared to the HII/HT(+) group (10.5 and 15.8%). In contrast, the -N-acetylaspartate (NAA)-based ratios in the OGM and TH did not differ between the HII groups. DISCUSSION Our data show that the HT was associated with a decrease in the number of HII neonates with detectable cortical and subcortical Lac as well as a decrease in the number of MRI-detectable subcortical lesions. METHODS We retrospectively compared the medical and neuroimaging data of 19 HII neonates who received 72 h of whole-body cooling (HII/HT(+)) with those of 19 noncooled HII neonates (HII/HT(-)) to determine whether hypothermia was associated with improved recovery from the injury as measured by MRI and MRS within the first 14 days of life. MRI scores and metabolite ratios of HII/HT(+) and HII/HT(-) neonates were also compared with nine healthy, nonasphyxiated "control" neonates.
Collapse
Affiliation(s)
- Elizabeth T Corbo
- Department of Pediatric Neurology, Loma Linda University Medical Center, Loma Linda, California, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Kirkham F. Cardiac arrest and post resuscitation of the brain. Eur J Paediatr Neurol 2011; 15:379-89. [PMID: 21640621 DOI: 10.1016/j.ejpn.2011.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
Primary out-of-hospital cardiac arrest in childhood is rare but survival is a little better for children than for adults, although the prognosis for infants is very poor. Hypoxic-ischaemic encephalopathy after in-hospital cardiac arrest in children undergoing complicated treatment for previously untreatable conditions is now a common problem and is probably increasing. An additional ischaemic insult worsens the prognosis for other encephalopathies, such as that occurring after accidental or non-accidental head injury. For near-drowning, the prognosis is often good, provided that cardiopulmonary resuscitation (CPR) is commenced immediately, and the child gasps within 40 minutes of rescue and regains consciousness soon afterwards. The prognosis is much worse for the nearly drowned child admitted to casualty or the emergency room deeply unconscious with fixed dilated pupils, requiring continuing CPR and with an arterial pH <7, especially if there is little recovery by the time of admission to the intensive care unit. The use of adrenaline, sodium bicarbonate and calcium appears to worsen prognosis. Neurophysiology, specifically serial electroencephalography and evoked potentials, is the most useful tool prognostically, although neuroimaging and biomarkers may play a role. In a series of 89 patients studied after cardiac arrest in three London centres between 1982 and 1985, 39% recovered consciousness within one month. Twenty seven percent died a cardiac death whilst in coma, and the outcome in the remainder was either brain death or vegetative state. EEG and initial pH were the best predictors of outcome in this study. Seizures affected one third and were associated with deterioration and worse outcome. The advent of extracorporeal membrane oxygenation (ECMO) and the positive results of hypothermia trials in neonates and adults have rekindled interest in timely management of this important group of patients.
Collapse
|
14
|
Ashwal S, Wycliffe ND, Holshouser BA. Advanced neuroimaging in children with nonaccidental trauma. Dev Neurosci 2010; 32:343-60. [PMID: 20938158 DOI: 10.1159/000316801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/21/2010] [Indexed: 12/24/2022] Open
Abstract
Physical abuse associated with nonaccidental trauma (NAT) affects approximately 144,000 children per year in the USA and, frequently, these injuries affect the developing brain. Most infants with suspected NAT are initially evaluated by skull X-rays and computed tomography to determine whether fractures are present, the severity of the acute injury and the need for urgent neurosurgical intervention. Increasingly, magnetic resonance imaging (MRI) is conducted as it provides additional diagnostic and prognostic information about the extent and nature of the injury. In this review, we examine 4 MRI techniques as they apply to children who present acutely after NAT. Susceptibility-weighted imaging is a 3-D high-resolution MRI technique that is more sensitive than conventional imaging in detecting hemorrhagic lesions that are often associated with diffuse axonal injury (DAI). Magnetic resonance spectroscopy acquires metabolite information reflecting neuronal integrity and function from multiple brain regions and provides a sensitive, noninvasive assessment of neurochemical alterations that offers early prognostic information regarding outcome. Diffusion-weighted imaging (DWI) is based on differences in the diffusion of water molecules within the brain and has been shown to be very sensitive in the early detection of ischemic injury. It is now being used to study the direct effects of traumatic injury as well as those due to secondary ischemia. Diffusion tensor imaging is a form of DWI and allows better evaluation of white matter fiber tracts by taking advantage of the intrinsic directionality (anisotropy) of water diffusion in the human brain. It has been shown to be useful in identifying white matter abnormalities after DAI when conventional imaging appears normal. Although these imaging methods have been studied primarily in adults and children with accidental traumatic brain injury, it is clear that they have the potential to provide additional value in the imaging and clinical evaluation of children with NAT.
Collapse
Affiliation(s)
- Stephen Ashwal
- Department of Pediatrics, Division of Child Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | | | | |
Collapse
|
15
|
Abstract
Brain injury is the leading cause of death in our pediatric ICU [Au et al. Crit Care Med 36:A128, 2008]. Clinical care for brain injury remains largely supportive. Therapeutic hypothermia has been shown to be effective in improving neurological outcome after adult ventricular-arrhythmia-induced cardiac arrest and neonatal asphyxia, and is under investigation as a neuroprotectant after cardiac arrest and traumatic brain injury in children in our ICU and other centers. To induce hypothermia in children comatose after cardiac arrest we target 32-34 degrees C using cooling blankets and intravenous iced saline as primary methods for induction, for 24-72 h duration with vigilant re-warming. The objective of this article is to share our hypothermia protocol for cooling children with acute brain injury.
Collapse
Affiliation(s)
- Ericka L Fink
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
| | | | | | | |
Collapse
|
16
|
Casey PA, McKenna MC, Fiskum G, Saraswati M, Robertson CL. Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats. J Neurotrauma 2008; 25:603-14. [PMID: 18454682 DOI: 10.1089/neu.2007.0481] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although studies have shown alterations in cerebral metabolism after traumatic brain injury (TBI), clinical data in the developing brain is limited. We hypothesized that post-traumatic metabolic changes occur early (<24 h) and persist for up to 1 week. Immature rats underwent TBI to the left parietal cortex. Brains were removed at 4 h, 24 h, and 7 days after injury, and separated into ipsilateral (injured) and contralateral (control) hemispheres. Proton nuclear magnetic resonance (NMR) spectra were obtained, and spectra were analyzed for N-acetyl-aspartate (NAA), lactate (Lac), creatine (Cr), choline, and alanine, with metabolite ratios determined (NAA/Cr, Lac/Cr). There were no metabolic differences at any time in sham controls between cerebral hemispheres. At 4 and 24 h, there was an increase in Lac/Cr, reflecting increased glycolysis and/or decreased oxidative metabolism. At 24 h and 7 days, there was a decrease in NAA/Cr, indicating loss of neuronal integrity. The NAA/Lac ratio was decreased ( approximately 15-20%) at all times (4 h, 24 h, 7 days) in the injured hemisphere of TBI rats. In conclusion, metabolic derangements begin early (<24 h) after TBI in the immature rat and are sustained for up to 7 days. Evaluation of early metabolic alterations after TBI could identify novel targets for neuroprotection in the developing brain.
Collapse
Affiliation(s)
- Paula A Casey
- Department of Pediatrics, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
17
|
Meyer-Witte S, Brissaud O, Brun M, Lamireau D, Bordessoules M, Chateil JF. [Prognostic value of MR in term neonates with neonatal hypoxic-ischemic encephalopath: MRI score and spectroscopy. About 26 cases]. Arch Pediatr 2007; 15:9-23. [PMID: 18164915 DOI: 10.1016/j.arcped.2007.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 07/20/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED Neonatal hypoxic-ischemic encephalopathy remains a major cause of chronic disability in childhood. Early diagnosis and prognosis are necessary for the clinician to adapt the treatment. However, there is yet no reliable test to predict the patient's evolution. OBJECTIVE The aim of our study was to evaluate the predictive value of a personal magnetic resonance imaging (MRI) scoring system and of magnetic resonance spectroscopy (MRS). MATERIAL AND METHODS We included 26 term newborns in condition of neonatal brain suffering. MR examination was performed during the first week of life for all patients and MRI and MRS data were collected. Standardised follow-up visits were made for all patients. Finally, prognostic value of the different criteria was evaluated with statistical tests. RESULTS Our MRI scoring system proved to be linked to prognosis. A high MRI score, abnormal signal in the internal capsule, white matter or basal ganglia abnormalities with diffusion imaging were associated with unfavourable outcome. These results confirmed the data of the literature concerning the MRI predictive value. Our study also confirmed prognostic interest of MR: particularly, ratios using lactate were significantly linked to prognosis in our study. Specificity of the elevation of these ratios was interesting but sensibility was less optimal. CONCLUSION We suggest using our MRI scoring system which associates standard MRI and diffusion imaging, which is significantly related to outcome. We confirm the prognostic value of MRS in this pathological situation. MR with diffusion sequence and spectroscopy, performed three to four days after birth appears to be an essential tool to manage these patients.
Collapse
Affiliation(s)
- S Meyer-Witte
- Service de neuropédiatrie, hôpital Pellegrin, 33076 Bordeaux, France.
| | | | | | | | | | | |
Collapse
|
18
|
Angeles DM, Ashwal S, Wycliffe ND, Ebner C, Fayard E, Sowers L, Holshouser BA. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates. Pediatr Res 2007; 61:614-21. [PMID: 17413864 DOI: 10.1203/pdr.0b013e318045bde9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To examine the effects of opioid and tissue-damaging procedures (TDPs) [i.e. procedures performed in the neonatal intensive care unit (NICU) known to result in pain, stress, and tissue damage] on brain metabolites, we reviewed the medical records of 28 asphyxiated term neonates (eight opioid-treated, 20 non-opioid treated) who had undergone magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) within the first month of life as well as eight newborns with no clinical findings of asphyxial injury. We found that lower creatine (Cr), myoinositol (Ins), and N-acetylaspartate (NAA)/choline (Cho) (p < or = 0.03) and higher Cho/Cr and glutamate/glutamine (Glx) Cr (p < or = 0.02) correlated with increased TDP incidence in the first 2 d of life (DOL). We also found that occipital gray matter (OGM) NAA/Cr was decreased (p = 0.03) and lactate (Lac) was present in a significantly higher amount (40%; p = 0.03) in non-opioid-treated neonates compared with opioid-treated neonates. Compared with controls, untreated neonates showed larger changes in more metabolites in basal ganglia (BG), thalami (TH), and OGM with greater significance than treated neonates. Our data suggest that TDPs affect spectral metabolites and that opioids do not cause harm in asphyxiated term neonates exposed to repetitive TDPs in the first 2-4 DOL and may provide a degree of neuroprotection.
Collapse
Affiliation(s)
- Danilyn M Angeles
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
MRI can demonstrate and differentiate the various insults and anomalies that can be responsible for cerebral palsy. Recent advances have resulted in techniques and sequences that allow prompt detection of cytotoxic edema and evaluation of brain perfusion. MRI precisely demonstrates the various patterns of injury, distinguishing insults owing to profound asphyxia, partial prolonged asphyxia, and mixed partial prolonged and profound asphyxia. Infants and children can be studied with MRI, and ultrafast MRI permits evaluation of the fetal central nervous system. In the fetus, the cause of ventriculomegaly can be determined, such as cerebrospinal fluid flow obstruction, brain malformation, or brain destruction with or without hemorrhage. Results from fetal MRI have led to better understanding of many brain abnormalities.
Collapse
Affiliation(s)
- Robert A Zimmerman
- Department of Radiology, The Children's Hospital of Philadelphia, PA 19104, USA.
| | | |
Collapse
|
20
|
Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ. Immunopathogenesis of cerebral malaria. Int J Parasitol 2006; 36:569-82. [PMID: 16678181 DOI: 10.1016/j.ijpara.2006.02.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 02/09/2006] [Accepted: 02/17/2006] [Indexed: 01/20/2023]
Abstract
Malaria is one of the most important global health problems, potentially affecting more than one third of the world's population. Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, yet its pathogenesis remains incompletely understood. In this review, we discuss some of the principal pathogenic events that have been described in murine models of the disease and relate them to the human condition. One of the earliest events in CM pathogenesis appears to be a mild increase in the permeability to protein of the blood-brain barrier. Recent studies have shown a role for CD8+T cells in mediating damage to the microvascular endothelium and this damage can result in the leakage of cytokines, malaria antigens and other potentially harmful molecules across the blood-brain barrier into the cerebral parenchyma. We suggest that this, in turn, leads to the activation of microglia and the activation and apoptosis of astrocytes. The role of hypoxia in the pathogenesis of cerebral malaria is also discussed, with particular reference to the local reduction of oxygen consumption in the brain as a consequence of vascular obstruction, to cytokine-driven changes in glucose metabolism, and to cytopathic hypoxia. Interferon-gamma, a cytokine known to be produced in malaria infection, induces increased expression, by microvascular endothelial cells, of the haem enzyme indoleamine 2,3-dioxygenase, the first enzyme in the kynurenine pathway of tryptophan metabolism. Enhanced indoleamine 2,3-dioxygenase expression leads to increased production of a range of biologically active metabolites that may be part of a tissue protective response. Damage to astrocytes may result in reduced production of the neuroprotectant molecule kynurenic acid, leading to a decrease in its ratio relative to the neuroexcitotoxic molecule quinolinic acid, which might contribute to some of the neurological symptoms of cerebral malaria. Lastly, we discuss the role of other haem enzymes, cyclooxygenase-2, inducible nitric oxide synthase and haem oxygenase-1, as potentially being components of mechanisms that protect host tissue against the effects of cytokine- and leukocyte-mediated stress induced by malaria infection.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, Institute for Biomedical Research, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Checchia PA, Moynihan JA, Brown L. Cardiac troponin I as a predictor of mortality for pediatric submersion injuries requiring out-of-hospital cardiopulmonary resuscitation. Pediatr Emerg Care 2006; 22:222-5. [PMID: 16651909 DOI: 10.1097/01.pec.0000208504.21625.f5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is difficult to predict ultimate survivors to hospital discharge in children who are successfully resuscitated after a cardiorespiratory arrest associated with a submersion injury. Serum measurements of organ injury or dysfunction may serve as a surrogate marker of the degree of hypoxic injury. We designed a prospective study whose purpose was to assess the predictive value for outcome of serum cardiac troponin I measurements after submersion injury and cardiorespiratory arrest. METHODS This is a prospective, observational study of children admitted to a postintensive care unit after experiencing an out-of-hospital cardiorespiratory arrest associated with a submersion event. Cardiac troponin I measurements were examined upon admission to the postoperative intensive care unit after successful emergency department resuscitation. RESULTS Nine patients were admitted, and 2 patients (22%) survived to hospital discharge. The area under the receiver operating characteristic curve is 0.786 (95% confidence interval, 0.481-1.0). This suggests that cardiac troponin I has a moderate degree of discriminatory power in selecting children who did not survive to hospital discharge.
Collapse
Affiliation(s)
- Paul A Checchia
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St Louis Children's Hospital, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
22
|
Slaughter AF, Roddy SM, Holshouser BA, Abd-Allah SA. Magnetic resonance spectroscopy and electroencephalography in baclofen coma. Pediatr Neurol 2006; 34:151-5. [PMID: 16458831 DOI: 10.1016/j.pediatrneurol.2005.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/17/2005] [Accepted: 07/21/2005] [Indexed: 11/27/2022]
Abstract
This report describes a 14-year-old female who presented with coma and seizures. Continuous electroencephalographic monitoring revealed suppression and semiperiodic sharp waves. Magnetic resonance spectroscopy performed 1 day after admission suggested a good outcome despite her clinical examination and electroencephalogram. She was subsequently found to have elevated serum baclofen levels after an intentional overdose. At the time of her discharge from the pediatric intensive care unit, she manifested no neurologic deficits, and on telephone follow-up 2 years after the ingestion the patient had no complaints of any cognitive problems or neurologic dysfunction.
Collapse
Affiliation(s)
- Angela F Slaughter
- Department of Pediatrics, Division of Critical Care Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| | | | | | | |
Collapse
|
23
|
Lin A, Ross BD, Harris K, Wong W. Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx 2005; 2:197-214. [PMID: 15897945 PMCID: PMC1064986 DOI: 10.1602/neurorx.2.2.197] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anatomic and functional neuroimaging with magnetic resonance imaging (MRI) includes the technology more widely known as magnetic resonance spectroscopy (MRS). Now a routine automated "add-on" to all clinical magnetic resonance scanners, MRS, which assays regional neurochemical health and disease, is therefore the most accessible diagnostic tool for clinical management of neurometabolic disorders. Furthermore, the noninvasive nature of this technique makes it an ideal tool for therapeutic monitoring of disease and neurotherapeutic decision making. Among the more than 100 brain disorders that fall within this broad category, MRS contributes decisively to clinical decision making in a smaller but growing number. In this review, we will cover how MRS provides therapeutic impact in brain tumors, metabolic disorders such as adrenoleukodystrophy and Canavan's disease, Alzheimer's disease, hypoxia, secondary to trauma or ischemia, human immunodeficiency virus dementia and lesions, as well as systemic disease such as hepatic and renal failure. Together, these eight indications for MRS apply to a majority of all cases seen. This review, which examines the role of MRS in enhancing routine neurological practice and treatment concludes: 1) there is added value from MRS where MRI is positive; 2) there is unique decision-making information in MRS when MRI is negative; and 3) MRS usefully informs decision making in neurotherapeutics. Additional efficacy studies could extend the range of this capability.
Collapse
Affiliation(s)
- Alexander Lin
- Rudi Schulte Research Institute, Santa Barbara, California 93105, USA
| | | | | | | |
Collapse
|
24
|
Angeles DM, Wycliffe N, Michelson D, Holshouser BA, Deming DD, Pearce WJ, Sowers LC, Ashwal S. Use of opioids in asphyxiated term neonates: effects on neuroimaging and clinical outcome. Pediatr Res 2005; 57:873-8. [PMID: 15774841 DOI: 10.1203/01.pdr.0000157676.45088.8c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Perinatal asphyxia is a common cause of neurologic morbidity in neonates who are born at term. Asphyxiated neonates are frequently treated with analgesic medications, including opioids, for pain and discomfort associated with their care. On the basis of previous laboratory studies suggesting that opioids may have neuroprotective effects, we conducted a retrospective review of medical records of 52 neonates who were admitted to our neonatal intensive care unit between 1995 and 2002 and had undergone magnetic resonance imaging (MRI) of the brain. Our review revealed that 33% of neonates received morphine or fentanyl. The neonates who received opioids also had experienced hypoxic/ischemic insults of greater magnitude as suggested by higher plasma lactate levels and lower 5-min Apgar scores. It is interesting that the MRI studies of neonates who were treated with opioids during the first week of life demonstrated significantly less brain injury in all regions studied. More important, follow-up studies of a subgroup of opioid-treated neonates whose MRI scans were obtained in the second postnatal week had better long-term neurologic outcomes. Our results suggest that the use of opioids in the first week of life after perinatal asphyxia have no significant long-term detrimental effects and may increase the brain's resistance to hypoxic-ischemic insults.
Collapse
|
25
|
Abstract
Cerebral malaria (CM) is a major life-threatening complication of Plasmodium falciparum infection. The nature of the pathogenetic processes leading to the cerebral complications is poorly understood. Mouse models of this condition have provided insight into the key events in pathogenesis, including those that occur before clinical symptoms are seen. Some T helper 1 (Th1) cytokines (e.g. interferon-gamma, lymphotoxin and tumour necrosis factor) have been implicated in driving the immunopathological process leading to CM, whereas some Th2 cytokines (e.g. interleukin-10, transforming growth factor-beta) appear to oppose this process. Upregulation of leukocyte adhesion molecules on the cerebral microvascular endothelium appears to be an important component of the proinflammatory actions of the cytokines. Activation of platelets in the cerebral microcirculation could also be a key event in CM. Furthermore, recent evidence has emerged indicating that cytokines might influence biochemical pathways in the brain that, in turn, could determine the outcome of CM.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Department of Pathology, D06, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
26
|
Abstract
Coma following a hypoxic-ischemic event is a serious condition and common reason for admission to the pediatric intensive care unit. Because coma has a high rate of mortality and morbidity in children, and the clinician may be unsure of the outcome very early in the course, it is important to have strategies to define prognosis. Although most studies have been conducted in adults, we review factors predicting outcome from coma of nontraumatic causes in infants and children. We consider the relation between physical findings, commonly accessible laboratory tools, and outcome, and comment on some newer techniques that may become more available for clinical purposes.
Collapse
Affiliation(s)
- Hubert K Trübel
- Department of Pediatrics, Yale University Medical School, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
27
|
Kadri M, Shu S, Holshouser B, Deming D, Hopper A, Peverini R, Ashwal S. Proton magnetic resonance spectroscopy improves outcome prediction in perinatal CNS insults. J Perinatol 2003; 23:181-5. [PMID: 12732853 DOI: 10.1038/sj.jp.7210913] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Prediction of neurologic outcome is difficult in neonates with acute nervous system injury. Previous studies using proton magnetic resonance spectroscopy ((1)H-MRS) have been used to predict short-term neurologic outcome in neonates with a variety of neurologic insults. We were interested in determining the effectiveness of combining clinical evaluation and spectroscopy obtained at the time of injury in predicting neurologic outcome at 24 months. STUDY DESIGN We studied 33 neonates with acute central nervous system injury, 5.8+/-3.7 days of injury, owing to hypoxic-ischemic encephalopathy. Neonates were assessed using clinical variables (initial arterial pH, initial blood glucose, Sarnat score, electroencephalography) and spectroscopy (NAA/Cho, NAA/Cre, Cho/Cre, and lactate). Neonates were divided into two outcome groups: good/moderate and poor. Differences between the groups were assessed using chi(2) and t-test analyses. We analyzed the best predictors of outcome using discriminant analysis and calculated sensitivity, specificity, positive, and negative predictive values for each variable independently and in combination. RESULTS There were significant differences between the good/moderate and poor outcome for the Sarnat score, EEG, lactate, and NAA/Cho. Spectroscopy combined with clinical variables improved sensitivity, but not specificity for predicting outcome. The presence of lactate had the best individual predictive value. Combination of the clinical with the MRS variables had the highest predictive value. CONCLUSION Proton magnetic resonance spectroscopy done early after injury improves the ability to predict neurologic outcome at 24 months of age.
Collapse
Affiliation(s)
- Munaf Kadri
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Brenner T, Freier MC, Holshouser BA, Burley T, Ashwal S. Predicting neuropsychologic outcome after traumatic brain injury in children. Pediatr Neurol 2003; 28:104-14. [PMID: 12699860 DOI: 10.1016/s0887-8994(02)00491-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ability to predict long-term neurologic and neuropsychologic outcomes in 22 children, ages 1 week to 14 years at the time of traumatic brain injury, was investigated using proton magnetic resonance spectroscopy acquired post injury and compared with standardized neurologic, intellectual, and neuropsychologic testing done 1-7 years later. Clinical indicators of acute injury severity including age at injury, electroencephalography, spectroscopy metabolite ratio variables (N-acetyl aspartate/choline, choline/creatine) and lactate presence accurately classified children as functioning above or below the average range for most intellectual and neuropsychologic outcome measures. Combined clinical and spectroscopy variables accounted for approximately 50% of the variance in cognitive and neuropsychologic outcome confirming the validity of their predictive use. Of the injury severity indictors, presence of lactate is a particularly important prognostic marker of poor long-term intellectual and neuropsychologic functioning. Our findings indicate the potential for providing accurate estimates of long-term intellectual and neuropsychologic function after traumatic brain injury in infants and children using proton magnetic resonance spectroscopy in combination with clinical variables.
Collapse
Affiliation(s)
- Tamara Brenner
- Department of Psychology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
29
|
Zarifi MK, Astrakas LG, Poussaint TY, Plessis Ad AD, Zurakowski D, Tzika AA. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology 2002; 225:859-70. [PMID: 12461272 DOI: 10.1148/radiol.2253011797] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare the predictive value for adverse outcome of quantitative cerebral lactate level and of apparent diffusion coefficient (ADC) in infants with perinatal asphyxia in the early postnatal period. MATERIALS AND METHODS Lactate-choline ratios determined with proton magnetic resonance (MR) spectroscopy and ADC determined with diffusion MR imaging in basal ganglia and thalami in 26 full-term neonates (age range, 1-10 days) were compared with severity of acute hypoxic-ischemic encephalopathy and long-term clinical outcome. Differences in metabolites between outcome groups were evaluated with the nonparametric Kruskal-Wallis test and the Dunn test. Logistic regression was performed to examine the predictive value of each metabolite for differentiating normal from abnormal or fatal clinical outcome. The likelihood ratio test was used to assess the statistical significance of each metabolite. RESULTS Logistic regression confirmed that lactate-choline ratio could be used to differentiate normal (n = 5) from abnormal (n = 14) or fatal (n = 6) outcome (P <.001). The probability of an adverse outcome exceeded 95% for a lactate-choline ratio of 1.0. Even when analyses were restricted to the early postnatal period, lactate-choline ratio was still a significant predictor of adverse outcome (P =.001). Although ADC images were useful in clinical examination of these infants, quantitative ADCs were not predictive of outcome (P =.82). CONCLUSION Higher lactate-choline ratios in basal ganglia and thalami of infants with perinatal asphyxia were predictive of worse clinical outcomes. Absolute ADC in the same brain regions did not indicate a statistically significant relationship with clinical outcome. Cerebral lactate level is useful in identifying infants who would benefit from early therapeutic intervention.
Collapse
Affiliation(s)
- Maria K Zarifi
- Departments of Radiology, Children's Hospital, Harvard Medical School, Boston, Mass 02114, USA
| | | | | | | | | | | |
Collapse
|
30
|
Miller SP, Newton N, Ferriero DM, Partridge JC, Glidden DV, Barnwell A, Chuang NA, Vigneron DB, Barkovich AJ. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr Res 2002; 52:71-7. [PMID: 12084850 DOI: 10.1203/00006450-200207000-00014] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective was to determine in infants with perinatal depression whether the relative concentrations of N-acetylaspartate and lactate in the neonatal period are associated with (1) neurodevelopmental outcome at 30 mo of age or (2) deterioration in outcome from age 12 to 30 mo; and to determine whether socioeconomic factors are associated with deterioration in outcome. Thirty-seven term neonates were prospectively studied with single-voxel proton magnetic resonance spectroscopy of the basal nuclei and intervascular boundary zones. Thirty-month outcomes were classified as normal [if Mental Development Index of the Bayley Scales of Infant Development (MDI) >85 and neuromotor scores (NMS) <3; n = 15], abnormal [if MDI <or=85 and/or NMS >or=3 at 12 and 30 mo; n = 11], or deteriorated [if normal at 12 mo and abnormal at 30 mo (MDI <or=85 or NMS >or=3); n = 11]. Thirty percent (11/37) of our cohort deteriorated between 12 and 30 mo. N-acetylaspartate/choline decreased across the groups ordered as normal, deteriorated, and abnormal [in basal nuclei (p <or= 0.001) and intervascular boundary zones (p = 0.04)], but was not different between the normal and deteriorated groups (p = 0.08). Lactate/choline similarly increased across the groups [in basal nuclei (p = 0.01) and intervascular boundary zones (p = 0.05)]. The odds of deterioration, if normal at 12 mo, increased by a factor of 5.1 (95% confidence interval: 1.3-19.8) with each decrease in one of four household income strata. Infants with perinatal depression are at high risk of developmental deterioration between 12 and 30 mo of age, particularly if in a lower income home or with intermediate values of cerebral metabolites on neonatal proton magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Steven P Miller
- Department of Neurology, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Millichap JG. Seizure-Associated Brain Injury in Perinatal Asphyxia. Pediatr Neurol Briefs 2002. [DOI: 10.15844/pedneurbriefs-16-3-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
32
|
Brooks WM, Friedman SD, Gasparovic C. Magnetic resonance spectroscopy in traumatic brain injury. J Head Trauma Rehabil 2001; 16:149-64. [PMID: 11275576 DOI: 10.1097/00001199-200104000-00005] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Magnetic resonance spectroscopy (MRS) offers a unique non-invasive approach for assessing the metabolic status of the brain in vivo and is particularly suited to studying traumatic brain injury (TBI). In particular, MRS provides a noninvasive means for quantifying such neurochemicals as N-acetylaspartate (NAA), creatine, phosphocreatine, choline, lactate, myo-inositol, glutamine, glutamate, adenosine triphosphate (ATP), and inorganic phosphate in humans following TBI and in animal models. Many of these chemicals have been shown to be perturbed following TBI. NAA, a marker of neuronal integrity, has been shown to be reduced following TBI, reflecting diffuse axonal injury or metabolic depression, and concentrations of NAA predict cognitive outcome. Elevation of choline-containing compounds indicates membrane breakdown or inflammation or both. MRS can also detect alterations in high energy phosphates reflecting the energetic abnormalities seen after TBI. Accordingly, MRS may be useful to monitor cellular response to therapeutic interventions in TBI.
Collapse
Affiliation(s)
- W M Brooks
- Clinical and Magnetic Resonance Research Center; Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, 87131, USA.
| | | | | |
Collapse
|
33
|
Takahashi Y, Sukegawa K, Aoki M, Ito A, Suzuki K, Sakaguchi H, Watanabe M, Isogai K, Mizuno S, Hoshi H, Kuwata K, Tomatsu S, Kato S, Ito T, Kondo N, Orii T. Evaluation of accumulated mucopolysaccharides in the brain of patients with mucopolysaccharidoses by (1)H-magnetic resonance spectroscopy before and after bone marrow transplantation. Pediatr Res 2001; 49:349-55. [PMID: 11228260 DOI: 10.1203/00006450-200103000-00008] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In seven patients with mucopolysaccharidoses (1 Hurler, 1 Hurler-Scheie, 4 Hunter, 1 Sly), cranial (1)H-magnetic resonance spectroscopy was performed to evaluate the accumulation of mucopolysaccharides and biochemical changes in the CNS in vivo before and after bone marrow transplantation (BMT). In two of seven patients, (1)H-magnetic resonance spectroscopy was performed before and after BMT. Nuclear magnetic resonance spectra of dermatan sulfate and chondroitin sulfate-C and magnetic resonance spectroscopy of chondroitin sulfate-C and urine from patients with mucopolysaccharidoses showed resonance higher than the chemical shift of myoinositol in the brain (3.7 ppm). The resonance was considered to contain signals from mucopolysaccharide molecules. The resonance was measured as presumptive mucopolysaccharides (pMPS). In white matter lesions detected by magnetic resonance imaging, pMPS/creatine ratios and choline/creatine ratios were consistently higher than control ratios. In white matter without lesions, choline/creatine ratios were higher than control ratios. Patients with higher developmental quotient or intelligence quotient tended to show higher N:-acetylaspartate/creatine ratios and lower pMPS/creatine ratios in basal ganglia. After BMT, the pMPS/creatine ratio in white matter lesions of patient 3, with Hunter syndrome, was slightly decreased, but in none of the patients was the ratio ever below the control ratios, even 7 y after BMT. In white matter without lesions, the pMPS/creatine ratio in patient 3 was decreased to the control ratios after BMT, but although the choline/creatine ratios were gradually decreased, they remained higher than the control ratio, 2 y after BMT. These results suggest that evaluation of pMPS, choline, and N:-acetylaspartate by (1)H-magnetic resonance spectroscopy is an important technique that may provide useful biochemical information in vivo on the neurologic process and the efficacy of BMT in patients with mucopolysaccharidoses.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Pediatrics, Gifu University School of Medicine, 40 Tsukasa-machi, Gifu, 500-8705, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ashwal S, Holshouser BA, Shu SK, Simmons PL, Perkin RM, Tomasi LG, Knierim DS, Sheridan C, Craig K, Andrews GH, Hinshaw DB. Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol 2000; 23:114-25. [PMID: 11020636 DOI: 10.1016/s0887-8994(00)00176-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We studied 26 infants (1-18 months old) and 27 children (18 months or older) with acute nonaccidental (n = 21) or other forms (n = 32) of traumatic brain injury using clinical rating scales, a 15-point MRI scoring system, and occipital gray matter short-echo proton MRS. We compared the differences between the acutely determined variables (metabolite ratios and the presence of lactate) and 6- to 12-month outcomes. The metabolite ratios were abnormal (lower NAA/Cre or NAA/Cho; higher Cho/Cre) in patients with a poor outcome. Lactate was evident in 91% of infants and 80% of children with poor outcomes; none of the patients with a good outcome had lactate. At best, the clinical variables alone predicted the outcome in 77% of infants and 86% of children, and lactate alone predicted the outcome in 96% of infants and 96% of children. No further improvement in outcome prediction was observed when the lactate variable was combined with MRI ratios or clinical variables. The findings of spectral sampling in areas of brain not directly injured reflected the effects of global metabolic changes. Proton MRS provides objective data early after traumatic brain injury that can improve the ability to predict long-term neurologic outcome.
Collapse
Affiliation(s)
- S Ashwal
- Division of Child Neurology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Holshouser BA, Ashwal S, Shu S, Hinshaw DB. Proton MR spectroscopy in children with acute brain injury: comparison of short and long echo time acquisitions. J Magn Reson Imaging 2000; 11:9-19. [PMID: 10676615 DOI: 10.1002/(sici)1522-2586(200001)11:1<9::aid-jmri2>3.0.co;2-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to evaluate comparatively the information given by proton magnetic resonance spectroscopy (MRS) with short echo time (TE 20 msec) stimulated echo acquisition mode and long TE (270 msec) point-resolved spectroscopy in predicting long-term outcome in children suffering from acute brain injury. At 1.5 T, we performed single-voxel proton MRS with both methods in occipital gray matter of 70 children. A linear discriminant analysis used to predict outcomes based on MRS variables was compared with actual neurologic outcome assigned at least 6 months after injury by a pediatric neurologist. Using peak area metabolite ratios and lactate presence, the short and long TE methods were equally predictive in children over 1 month of age. In neonates less than 1 month of age, the long TE method produced a higher percentage of correct outcome predictions (91%) than the short TE method (79%). The long TE method detected lactate more often in all age groups.
Collapse
Affiliation(s)
- B A Holshouser
- Department of Radiology, Loma Linda University School of Medicine, California 92354, USA.
| | | | | | | |
Collapse
|
36
|
Robertson NJ, Cox IJ, Cowan FM, Counsell SJ, Azzopardi D, Edwards AD. Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr Res 1999; 46:287-96. [PMID: 10473043 DOI: 10.1203/00006450-199909000-00007] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have found that cerebral lactate can be detected later than 1 month of age after neonatal encephalopathy (NE) in infants with severe neurodevelopmental impairment at 1 y. Our hypothesis was that persisting lactate after NE is associated with alkalosis and a decreased cell phosphorylation potential. Forty-three infants with NE underwent proton and phosphorus-31 magnetic resonance spectroscopy at 0.2-56 wk postnatal age. Seventy-seven examinations were obtained: 25 aged <2 wk, 16 aged > or = 2 to < or = 4 wk, 25 aged > 4 to < or = 30 wk, and 11 aged > 30 wk. Neurodevelopmental outcome was assessed at 1 y of age: 17 infants had a normal outcome and 26 infants had an abnormal outcome. Using univariate linear regression, we determined that increased lactate/creatine plus phosphocreatine (Cr) was associated with an alkaline intracellular pH (pHi) (p < 0.001) and increased inorganic phosphate/phosphocreatine (Pi/PCr) (p < 0.001). This relationship was significant, irrespective of outcome group or age at time of study. Between outcome groups, there were significant differences for lactate/Cr measured at < 2 wk (p = 0.005) and > 4 to < or = 30 wk (p = 0.01); Pi/PCr measured at < 2 wk (p < 0.001); pHi measured at < 2 wk (p < 0.001), > or = 2 to < or = 4 wk (p = 0.02) and > 4 to < or = 30 wk (p = 0.03); and for N-acetylaspartate/Cr measured at > or = 2 to < or = 4 wk (p = 0.03) and > 4 to < or = 30 wk (p = 0.01). Possible mechanisms leading to this persisting cerebral lactic alkalosis are a prolonged change in redox state within neuronal cells, the presence of phagocytic cells, the proliferation of glial cells, or altered buffering mechanisms. These findings may have implications for therapeutic intervention.
Collapse
Affiliation(s)
- N J Robertson
- Department of Paediatrics, Imperial College School of Medicine, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Shevell MI, Ashwal S, Novotny E. Proton magnetic resonance spectroscopy: clinical applications in children with nervous system diseases. Semin Pediatr Neurol 1999; 6:68-77. [PMID: 10404561 DOI: 10.1016/s1071-9091(99)80033-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With the use of software modifications of existing magnetic resonance imaging technology, proton magnetic resonance spectroscopy yields insight noninvasively regarding brain biochemistry. Biochemical information can be obtained directly both regionally and longitudinally. This article summarizes the technological basis for magnetic resonance spectroscopy as well as its established applications to disorders of interest to the pediatric neurologist. Future directions for magnetic resonance spectroscopy study and advances to be expected in the near future are also highlighted.
Collapse
Affiliation(s)
- M I Shevell
- Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | | | | |
Collapse
|
38
|
Salvan AM, Confort-Gouny S, Chabrol B, Cozzone PJ, Vion-Dury J. Brain metabolic impairment in non-cerebral and cerebral forms of X-linked adrenoleukodystrophy by proton MRS: identification of metabolic patterns by discriminant analysis. Magn Reson Med 1999; 41:1119-26. [PMID: 10371443 DOI: 10.1002/(sici)1522-2594(199906)41:6<1119::aid-mrm7>3.0.co;2-f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cerebral metabolism in six children with X-linked adrenoleukodystrophy (X-ALD) was studied using 1H magnetic resonance spectroscopy (MRS), and the status of the patients was monitored for evaluating disease progression. Spectra were abnormal even in patients with no cerebral impairment. Four different metabolic patterns were identified, and a metabolic classification of the disease was proposed, from grade 0 to grade III. The evolution of the disease toward grade II appears to be systematic, but many patients did not evolve from this grade to grade III, which is the metabolic mark of severe progressive forms. Metabolic data of X-ALD were processed using discriminant analysis, which provides a classification accuracy of 95.2%. Proton cerebral MRS together with discriminant analysis may be useful during the follow-up in X-ALD for monitoring the evolution of the disease and the effects of therapy.
Collapse
Affiliation(s)
- A M Salvan
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | | | | | | | | |
Collapse
|
39
|
Chugani DC, Sundram BS, Behen M, Lee ML, Moore GJ. Evidence of altered energy metabolism in autistic children. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:635-41. [PMID: 10390722 DOI: 10.1016/s0278-5846(99)00022-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
1. In this pilot study, the authors investigated the hypotheses there are increased concentrations of lactate in brain and plasma and reduced brain concentrations of N-acetyl-aspartate (NAA) in autistic children. 2. NAA and lactate levels in the frontal lobe, temporal lobe and the cerebellum of 9 autistic children were compared to 5 sibling controls using MRS. Plasma lactate levels were measured in 15 autistic children compared to 15 children with epilepsy. 3. Preliminary results show lower levels of NAA cerebellum in autistic children (p = 0.043). Lactate was detected in the frontal lobe in one autistic boy, but was not detected any of the other autistic subjects or siblings. 4. Plasma lactate levels were higher in the 15 autistic children compared to 15 children with epilepsy (p = 0.0003). 5. Higher plasma lactate in the autistic group is consistent with metabolic changes in some autistic children. The findings of altered brain NAA and lactate in autistic children suggest that MRS may be useful characterizing regional neurochemical and metabolic abnormalities in autistic children.
Collapse
Affiliation(s)
- D C Chugani
- Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit, USA.
| | | | | | | | | |
Collapse
|
40
|
Scarabino T, Popolizio T, Bertolino A, Salvolini U. Proton magnetic resonance spectroscopy of the brain in pediatric patients. Eur J Radiol 1999; 30:142-53. [PMID: 10401595 DOI: 10.1016/s0720-048x(99)00055-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
H1-MRS is a non-invasive technique which provides different levels of information on brain tissue: the N-acetyl aspartate (NAA) is an indicator of neuronal development, the choline containing compound peak (Cho) provides information on myelination and on cell membrane turnover and gliosis, inositol (Ins) is considered a marker of neuronal degeneration. Lactate may be detected in presence of defective energy metabolism. In the perineonatal period, the brain is apt to be insulted by a variety of events including asphyxia, hypoxemia, hemorrhage, which may subsequently cause delay in development. It is clinically important to assess the degree of brain damage and to obtain the prognostic information in the neonatal and early infantile period. MRS has become available for clinical examinations of the brain during development and these techniques can be used to document improvement or the progression towards irreversible damage.
Collapse
Affiliation(s)
- T Scarabino
- Department of Radiology, Scientific Institute Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | | | | |
Collapse
|
41
|
Novotny E, Ashwal S, Shevell M. Proton magnetic resonance spectroscopy: an emerging technology in pediatric neurology research. Pediatr Res 1998; 44:1-10. [PMID: 9667363 DOI: 10.1203/00006450-199807000-00001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proton magnetic resonance spectroscopy (MRS) is an emerging technology that allows for the quantitative noninvasive assessment of regional brain biochemistry. The capacity to carry out MRS studies requires existing magnetic resonance imaging (MRI) technology platforms and the purchase of commercially available software modifications. In this review, the physical basis for MRS will be presented leading to an understanding of its potential applications and limitations within the clinical research milieu. Thus far, within pediatric neurology, proton MRS studies have been used to assist in the prediction of outcome in a variety of settings of acquired brain injuries (perinatal asphyxia, near drowning). In addition, proton MRS has been used to document disturbances in oxidative metabolism in neurometabolic disorders, assisting in defining phenotype and the response to therapeutic interventions. In epilepsy, spectroscopic studies have been useful in localizing the epileptogenic zone in intractable focal epilepsies. Future applications of proton MRS will also be highlighted. These include its use as a means of observing the transport and metabolism of various compounds in the brain, its concurrent application with other nuclear magnetic resonance techniques such as MRI and functional MRI, and finally its potential as a means of assessing the short-term effects of any CNS targeted pharmacologic interventions.
Collapse
Affiliation(s)
- E Novotny
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
42
|
Nyberg SL, Cerra FB, Gruetter R. Brain lactate by magnetic resonance spectroscopy during fulminant hepatic failure in the dog. LIVER TRANSPLANTATION AND SURGERY : OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASES AND THE INTERNATIONAL LIVER TRANSPLANTATION SOCIETY 1998; 4:158-65. [PMID: 9516569 DOI: 10.1002/lt.500040203] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A noninvasive test is needed to assess the severity of encephalopathy during fulminant hepatic failure. This feasibility study was designed to compare a noninvasive test, brain lactate measurement by magnetic resonance spectroscopy, with intracranial pressure monitoring in a large animal model of fulminant hepatic failure. Five dogs received an intraventricular catheter for intracranial pressure measurement. Liver injury was induced by intravenous bolus of D-galactosamine. Brain lactate concentrations were determined by magnetic resonance spectroscopy for up to 48 hours after D-galactosamine administration (t = 0 hour). A dose of D-galactosamine exceeding 1.5 g/kg resulted in fulminant hepatic failure. Brain lactate levels increased to > 10 mmol/L in the two dogs that developed severe intracranial hypertension of > 50 mm Hg and sustained cerebral perfusion pressures of < 40 mm Hg. Both dogs experienced brain death, 42 and 48 hours after the administration of D-galactosamine. Brain lactate concentrations determined by magnetic resonance spectroscopy were in agreement with brain tissue concentrations of lactate determined by high-performance liquid chromatography at necropsy. Plasma lactate concentrations were only mildly elevated (3.2 and 4.2 mmol/L) at the time of brain death. Elevated levels of brain lactate are associated with intracranial hypertension and poor neurological outcome during fulminant hepatic failure.
Collapse
Affiliation(s)
- S L Nyberg
- Department of Surgery, Mayo Medical Center, Rochester, MN 55905, USA
| | | | | |
Collapse
|
43
|
Abstract
The authors studied 37 term neonates (38-42 gestational weeks) at 1-11 days after central nervous system insult to determine whether proton magnetic resonance spectroscopy (1H-MRS) of the occipital gray/parietal white matter was useful in predicting outcomes. Etiologies included asphyxia, 18; sepsis/meningitis, 8; metabolic disorders, 5; stroke, 4; and trauma, 2. 1H-MRS data (1.5T; 8 cm3 vol, stimulated echo acquisition mode sequence, TE = 20 ms, TR = 3000 ms) were expressed as metabolite peak area ratios (NAA/Cr, NAA/Cho, Cho/Cr) and the presence or absence of lactate. Outcomes were assessed at 6 to 12 months post-insult using the Pediatric Cerebral Performance Scale and were dichotomized as follows: good/moderate outcome (good, mild or moderate disability) or poor outcome (severe disability, persistent vegetative state, death). Neonates with poor outcomes had significantly lower NAA/Cho and significantly higher Cho/Cr ratios in the occipital region, as compared with patients with good/moderate outcomes. No neonates with good/moderate outcomes had metabolite ratios that exceeded 2 standard deviations from the mean. In addition, the absence of lactate on 1H-MRS correlated with a good/moderate outcome. The study also showed that 1H-MRS metabolite ratio data, added to either the Sarnat or EEG scores, enhanced the correlation between these prognostic factors and outcomes. 1H-MRS provides additional objective data early after a wide variety of perinatal neurologic insults to enhance outcome prediction.
Collapse
Affiliation(s)
- S K Shu
- Department of Pediatrics, Loma Linda University School of Medicine, California 92354, USA
| | | | | | | | | |
Collapse
|