1
|
Buonocore A, Cafaro C, De Luca C, Vermiglio G, Sepe G, Rocco G, Aiello M, Soricelli A, Papa M, Cavaliere C, Cirillo G. Lack of pre-movement facilitation as neurophysiological hallmark of fatigue in patients with Parkinson's disease: A single pulse TMS study. Neurobiol Dis 2025; 208:106878. [PMID: 40120830 DOI: 10.1016/j.nbd.2025.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Fatigue is a debilitating symptom in Parkinson's disease (PD), significantly affecting quality of life. Despite its prevalence, the underlying neurophysiological mechanisms remain poorly understood. Recent evidence suggests that deficits in cortical motor preparation processes may contribute to PD-related fatigue. METHODS This study investigated premovement facilitation (PMF), a marker of corticospinal excitability during motor preparation, in 20 healthy subjects (HS) and 28 PD patients, subdivided into those with fatigue (PDwF, n = 14) and without fatigue (PDwoF, n = 14). Participants performed a reaction time (RT) task involving thumb abduction following a visual go signal, while transcranial magnetic stimulation (TMS) was applied over the primary motor cortex (M1) at intervals of 50, 100, and 150 ms before movement onset. Motor-evoked potentials (MEPs) were recorded from the abductor pollicis brevis (APB) and the task-irrelevant abductor digiti minimi (ADM). RESULTS In HS and PDwoF, MEP APB amplitude increased progressively when TMS was applied at 150, 100, and 50 ms before movement onset, reflecting intact PMF, with the greater MEP APB amplitude at the shorter interval (50 ms). However, in PDwF patients, PMF was absent on the most affected side, while it remained preserved on the less affected side. Furthermore, the absence of PMF correlated with fatigue severity (FSS scores) and rigidity subscores, highlighting a link between impaired motor preparation and clinical symptoms. CONCLUSION These findings suggest that cortical dysfunction in motor preparation contributes to PD-related fatigue, particularly in the most affected hemisphere. The observed PMF deficits provide a potential neurophysiological marker for fatigue in PD, supporting future investigations into targeted therapeutic interventions to restore motor excitability and alleviate fatigue symptoms.
Collapse
Affiliation(s)
- Antimo Buonocore
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, 80135 Naples, Italy
| | - Celeste Cafaro
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, 80135 Naples, Italy
| | - Ciro De Luca
- Division of Human Anatomy - Neuronal Networks Morphology and Systems Biology Lab, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanna Vermiglio
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| | - Giovanna Sepe
- Division of Human Anatomy - Neuronal Networks Morphology and Systems Biology Lab, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giuseppe Rocco
- Division of Human Anatomy - Neuronal Networks Morphology and Systems Biology Lab, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Michele Papa
- Division of Human Anatomy - Neuronal Networks Morphology and Systems Biology Lab, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | - Giovanni Cirillo
- Division of Human Anatomy - Neuronal Networks Morphology and Systems Biology Lab, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
2
|
Emadi Andani M, Braga M, Da Dalt F, Piedimonte A, Carlino E, Fiorio M. Premovement activity in the corticospinal tract is amplified by the placebo effect: an active inference account. Soc Cogn Affect Neurosci 2025; 20:nsaf014. [PMID: 39891393 PMCID: PMC11799862 DOI: 10.1093/scan/nsaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/03/2024] [Accepted: 01/31/2025] [Indexed: 02/03/2025] Open
Abstract
The aim of this study is to investigate whether expectancy, induced through a placebo procedure, favors the activation of the corticospinal tract before movement initiation. By adopting the premovement facilitation paradigm, we applied transcranial magnetic stimulation over the left or right primary motor cortex at rest and 100 ms or 50 ms before movement onset while healthy volunteers performed a reaction time (RT) motor task consisting of abductions of the right or left thumb after a go signal. Participants in the placebo group received an inert electrical device applied on the right forearm along with information on its speed-enhancing properties. A control group received the same device with overt information about its inert nature, while another control group underwent no intervention. Along with RT, we measured the amplitude of the motor evoked potential (MEP) before and after the procedure. Compared to the control groups, the placebo group had faster RT and greater MEP amplitude before movement initiation. This study demonstrates that the placebo effect can boost the activity of the corticospinal tract before movement onset, and this modulation positively impacts motor performance. These results give experimental support to the active inference account.
Collapse
Affiliation(s)
- Mehran Emadi Andani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37131, Italy
| | - Miriam Braga
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37131, Italy
| | - Francesco Da Dalt
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37131, Italy
| | | | - Elisa Carlino
- Department of Neuroscience, University of Turin, Turin 10125, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37131, Italy
| |
Collapse
|
3
|
Takemi M, Tia B, Kosugi A, Castagnola E, Ansaldo A, Ricci D, Fadiga L, Ushiba J, Iriki A. Posture-dependent modulation of marmoset cortical motor maps detected via rapid multichannel epidural stimulation. Neuroscience 2024; 560:263-271. [PMID: 39368606 DOI: 10.1016/j.neuroscience.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Recent neuroimaging and electrophysiological studies have suggested substantial short-term plasticity in the topographic maps of the primary motor cortex (M1). However, previous methods lack the temporal resolution to detect rapid modulation of these maps, particularly in naturalistic conditions. To address this limitation, we previously developed a rapid stimulation mapping procedure with implanted cortical surface electrodes. In this study, employing our previously established procedure, we examined rapid topographical changes in forelimb M1 motor maps in three awake male marmoset monkeys. The results revealed that although the hotspot (the location in M1 that elicited a forelimb muscle twitch with the lowest stimulus intensity) remained constant across postures, the stimulus intensity required to elicit the forelimb muscle twitch in the perihotspot region and the size of motor representations were posture-dependent. Hindlimb posture was particularly effective in inducing these modulations. The angle of the body axis relative to the gravitational vertical line did not alter the motor maps. These results provide a proof of concept that a rapid stimulation mapping system with chronically implanted cortical electrodes can capture the dynamic regulation of forelimb motor maps in natural conditions. Moreover, they suggest that posture is a crucial variable to be controlled in future studies of motor control and cortical plasticity. Further exploration is warranted into the neural mechanisms regulating forelimb muscle representations in M1 by the hindlimb sensorimotor state.
Collapse
Affiliation(s)
- Mitsuaki Takemi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Japan Science and Technology Agency, PRESTO, Saitama, Japan
| | - Banty Tia
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Akito Kosugi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
4
|
Tatz JR, Carlson MO, Lovig C, Wessel JR. Examining motor evidence for the pause-then-cancel model of action-stopping: insights from motor system physiology. J Neurophysiol 2024; 132:1589-1607. [PMID: 39412561 PMCID: PMC11573278 DOI: 10.1152/jn.00048.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/16/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
Stopping initiated actions is fundamental to adaptive behavior. Longstanding, single-process accounts of action-stopping have been challenged by recent, two-process, "pause-then-cancel" models. These models propose that action-stopping involves two inhibitory processes: 1) a fast Pause process, which broadly suppresses the motor system as the result of detecting any salient event, and 2) a slower Cancel process, which involves motor suppression specific to the cancelled action. A purported signature of the Pause process is global suppression, or the reduced corticospinal excitability (CSE) of task-unrelated effectors early on in action-stopping. However, unlike the Pause process, few (if any) motor system signatures of a Cancel process have been identified. Here, we used single- and paired-pulse transcranial magnetic stimulation (TMS) methods to comprehensively measure the local physiological excitation and inhibition of both responding and task-unrelated motor effector systems during action-stopping. Specifically, we measured CSE, short-interval intracortical inhibition (SICI), and the duration of the cortical silent period (CSP). Consistent with key predictions from the pause-then-cancel model, CSE measurements at the responding effector indicated that additional suppression was necessary to counteract Go-related increases in CSE during action-stopping, particularly at later timepoints. Increases in SICI on Stop-signal trials did not differ across task-related and task-unrelated effectors, or across timepoints. This suggests SICI as a potential source of global suppression. Increases in CSP duration on Stop-signal trials were more prominent at later timepoints and were related to individual differences in CSE. Our study provides further evidence from motor system physiology that multiple inhibitory processes influence action-stopping.NEW & NOTEWORTHY Current debate surrounds whether single- or dual-process models better account for human action-stopping ability. We show that motor suppression of a successfully stopped muscle follows a distinct time course compared with when that same muscle is unrelated to the stopping task. Our results further suggest that distinct local inhibitory neuron populations contribute to these unique sources of suppression. Our study provides evidence from motor system physiology that multiple inhibitory processes influence action-stopping.
Collapse
Affiliation(s)
- Joshua R Tatz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, United States
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa, United States
| | - Madeline O Carlson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Carson Lovig
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, United States
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
5
|
Cao C, Litvak V, Zhan S, Liu W, Zhang C, Sun B, Li D, van Wijk BCM. Low-beta versus high-beta band cortico-subcortical coherence in movement inhibition and expectation. Neurobiol Dis 2024; 201:106689. [PMID: 39366457 DOI: 10.1016/j.nbd.2024.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Beta band oscillations in the sensorimotor cortex and subcortical structures, such as the subthalamic nucleus (STN) and internal pallidum (GPi), are closely linked to motor control. Recent research suggests that low-beta (14.5-23.5 Hz) and high-beta (23.5-35 Hz) cortico-STN coherence arise through distinct networks, possibly reflecting indirect and hyperdirect pathways. In this study, we sought to probe whether low- and high-beta coherence also exhibit different functional roles in facilitating and inhibiting movement. Twenty patients with Parkinson's disease who had deep brain stimulation electrodes implanted in either STN or GPi performed a classical go/nogo task while undergoing simultaneous magnetoencephalography and local field potentials recordings. Subjects' expectations were manipulated by presenting go- and nogo-trials with varying probabilities. We identified a lateral source in the sensorimotor cortex for low-beta coherence, as well as a medial source near the supplementary motor area for high-beta coherence. Task-related coherence time courses for these two sources revealed that low-beta coherence was more strongly implicated than high-beta coherence in the performance of go-trials. Accordingly, average pre-stimulus low-beta but not high-beta coherence or spectral power correlated with overall reaction time across subjects. High-beta coherence during unexpected nogo-trials was higher compared to expected nogo-trials at a relatively long latency of 3 s after stimulus presentation. Neither low- nor high-beta coherence showed a significant correlation with patients' symptom severity at baseline assessment. While low-beta cortico-subcortical coherence appears to be related to motor output, the role of high-beta coherence requires further investigation.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Shikun Zhan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bernadette C M van Wijk
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK; Department of Human Movement Sciences, Vrije Universiteit Amsterdam, 1081, BT, Amsterdam, the Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Guo F, Niu M, Hanson NJ, Guo J, Zhou K, Zhao T, Ren Y. Enhancing motor skill learning through multiple sessions of online high-definition transcranial direct current stimulation in healthy adults: insights from EEG power spectrum. Cereb Cortex 2024; 34:bhae395. [PMID: 39367728 DOI: 10.1093/cercor/bhae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024] Open
Abstract
The purpose of this study was to evaluate the influence of high-definition transcranial direct current stimulation (HD-tDCS) on finger motor skill acquisition. Thirty-one healthy adult males were randomly assigned to one of three groups: online HD-tDCS (administered during motor skill learning), offline HD-tDCS (delivered before motor skill learning), and a sham group. Participants engaged in a visual isometric pinch task for three consecutive days. Overall motor skill learning and speed-accuracy tradeoff function were used to evaluate the efficacy of tDCS. Electroencephalography was recorded and power spectral density was calculated. Both online and offline HD-tDCS total motor skill acquisition was significantly higher than the sham group (P < 0.001 and P < 0.05, respectively). Motor skill acquisition in the online group was higher than offline (P = 0.132, Cohen's d = 1.46). Speed-accuracy tradeoff function in the online group was higher than both offline and sham groups in the post-test. The online group exhibited significantly lower electroencephalography activity in the frontal, fronto-central, and centro-parietal alpha band regions compared to the sham (P < 0.05). The findings suggest that HD-tDCS application can boost finger motor skill acquisition, with online HD-tDCS displaying superior facilitation. Furthermore, online HD-tDCS reduces the power of alpha rhythms during motor skill execution, enhancing information processing and skill learning efficiency.
Collapse
Affiliation(s)
- Feng Guo
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| | - Maolin Niu
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
- Department of Rehabilitation, Shandong Rongjun General Hospital, No. 23, Jiefang Road, Lixia District, Jinan 250014, China
| | - Nicholas J Hanson
- Department of Human Performance and Health Education, College of Education and Human Development, Western Michigan University, Kalamazoo, MI 49008-5242, United States
| | - Jianrui Guo
- Laboratory Management Center, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| | - Kuo Zhou
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| | - Tan Zhao
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| | - Yinghui Ren
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| |
Collapse
|
7
|
Rhodes E, Gaetz W, Marsden J, Hall SD. Post-Movement Beta Synchrony Inhibits Cortical Excitability. Brain Sci 2024; 14:970. [PMID: 39451984 PMCID: PMC11505688 DOI: 10.3390/brainsci14100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the relationship between movement-related beta synchrony and primary motor cortex (M1) excitability, focusing on the time-dependent inhibition of movement. Voluntary movement induces beta frequency (13-30 Hz) event-related desynchronisation (B-ERD) in M1, followed by post-movement beta rebound (PMBR). Although PMBR is linked to cortical inhibition, its temporal relationship with motor cortical excitability is unclear. This study aims to determine whether PMBR acts as a marker for post-movement inhibition by assessing motor-evoked potentials (MEPs) during distinct phases of the beta synchrony profile. METHODS Twenty-five right-handed participants (mean age: 24 years) were recruited. EMG data were recorded from the first dorsal interosseous muscle, and TMS was applied to the M1 motor hotspot to evoke MEPs. A reaction time task was used to elicit beta oscillations, with TMS delivered at participant-specific time points based on EEG-derived beta power envelopes. MEP amplitudes were compared across four phases: B-ERD, early PMBR, peak PMBR, and late PMBR. RESULTS Our findings demonstrate that MEP amplitude significantly increased during B-ERD compared to rest, indicating heightened cortical excitability. In contrast, MEPs recorded during peak PMBR were significantly reduced, suggesting cortical inhibition. While all three PMBR phases exhibited reduced cortical excitability, a trend toward amplitude-dependent inhibition was observed. CONCLUSIONS This study confirms that PMBR is linked to reduced cortical excitability, validating its role as a marker of motor cortical inhibition. These results enhance the understanding of beta oscillations in motor control and suggest that further research on altered PMBR could be crucial for understanding neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Edward Rhodes
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - William Gaetz
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Marsden
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- School of Health Professions, University of Plymouth, Plymouth PL6 8BH, UK
| | - Stephen D. Hall
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
| |
Collapse
|
8
|
Vescovo E, Cardellicchio P, Tomassini A, Fadiga L, D'Ausilio A. Excitatory/inhibitory motor balance reflects individual differences during joint action coordination. Eur J Neurosci 2024; 59:3403-3421. [PMID: 38666628 DOI: 10.1111/ejn.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 06/15/2024]
Abstract
Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA). Prior knowledge was manipulated in each trial such that the participant knew (K) or not (No_K) the target bottle in advance. Online transcranial magnetic stimulation (TMS) was administered at action-relevant landmarks to explore corticospinal excitability (CSE) and inhibition (cortical silent period [cSP]). CSE was modulated early on before the action started if prior information was available. In contrast, cSP modulation emerged later during the reaching action, regardless of prior information. These two indexes could thus reflect the concurrent elaboration of contextual priors (top-down) and the online sampling of partner's kinematic cues (bottom-up). Furthermore, participants selected either one of two possible behavioural strategies, preferring early or late force exertion on the bottle. One translates into a reduced risk of motor coordination failure and the other into reduced metabolic expenditure. Each strategy was characterised by a specific excitatory/inhibitory profile. In conclusion, the study of excitatory/inhibitory balance paves the way for the neurophysiological determination of individual differences in the combination of top-down and bottom-up processing during JA coordination.
Collapse
Affiliation(s)
- Enrico Vescovo
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Coleman SC, Seedat ZA, Pakenham DO, Quinn AJ, Brookes MJ, Woolrich MW, Mullinger KJ. Post-task responses following working memory and movement are driven by transient spectral bursts with similar characteristics. Hum Brain Mapp 2024; 45:e26700. [PMID: 38726799 PMCID: PMC11082833 DOI: 10.1002/hbm.26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/09/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.
Collapse
Affiliation(s)
- Sebastian C. Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Zelekha A. Seedat
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Young EpilepsyLingfieldUK
| | - Daisie O. Pakenham
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Clinical NeurophysiologyQueen's Medical Centre, Nottingham University Hospitals NHS TrustNottinghamUK
| | - Andrew J. Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Mark W. Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| |
Collapse
|
10
|
Bardel B, Chalah MA, Bensais-Rueda R, Créange A, Lefaucheur JP, Ayache SS. Event-related desynchronization and synchronization in multiple sclerosis. Mult Scler Relat Disord 2024; 86:105601. [PMID: 38604003 DOI: 10.1016/j.msard.2024.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Motor preparation and execution can be impaired in patients with multiple sclerosis (pwMS). These neural processes can be assessed using electroencephalography (EEG). During a self-paced movement, EEG signal amplitude decreases before movement (event-related desynchronization, ERD) and increases after movement (event-related synchronization, ERS). OBJECTIVE To reappraise ERD/ERS changes in pwMS compared to healthy controls (HC). METHODS This single-center study included 13 pwMS and 10 sex/age-matched HC. 60-channel EEG was recorded during two self-paced movements of the right hand: a simple index finger extension task and a more complex finger tapping task. Clinical variables included MS type, sex, age, disease duration, disability, grip strength, fatigue and attentional performance. EEG variables included ERD and ERS onset latency, duration, and amplitude determined using two methods of signal analyses (based on visual or automated determination) in the alpha and beta frequency bands in five cortical regions: right and left frontocentral and centroparietal regions and a midline region. Neuroimaging variables included the volumes of four deep brain structures (thalamus, putamen, pallidum and caudate nucleus) and the relative lesion load. RESULTS ERD/ERS changes in pwMS compared to HC were observed only in the beta band. In pwMS, beta-ERD had a delayed onset in the midline and right parietocentral regions and a shortened duration or increased amplitude in the parietocentral region; beta-ERS had a shorter duration, delayed onset, or reduced amplitude in the left parieto/frontocentral region. In addition, pwMS with a more delayed beta-ERD in the midline region had less impaired executive functions but increased caudate nuclei volume, while pwMS with a more delayed beta-ERS in the parietocentral region contralateral to the movement had less fatigue but increased thalami volume. CONCLUSION This study confirms an alteration of movement preparation and execution in pwMS, mainly characterized by a delayed cortical activation (ERD) and a delayed and reduced post-movement inhibition (ERS) in the beta band. Compensatory mechanisms could be involved in these changes, associating more preserved clinical performance and overactivation of deep brain structures.
Collapse
Affiliation(s)
- Benjamin Bardel
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France; Department of Clinical Neurophysiology, AP-HP, Henri Mondor University Hospital, DMU FIxIT, Creteil F-94010, France.
| | - Moussa A Chalah
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France
| | - Ruben Bensais-Rueda
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France
| | - Alain Créange
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France; Centre de Ressources et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, Créteil, France; Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, Creteil F-94010, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France; Department of Clinical Neurophysiology, AP-HP, Henri Mondor University Hospital, DMU FIxIT, Creteil F-94010, France
| | - Samar S Ayache
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France; Department of Clinical Neurophysiology, AP-HP, Henri Mondor University Hospital, DMU FIxIT, Creteil F-94010, France; Centre de Ressources et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, Créteil, France; Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, Creteil F-94010, France
| |
Collapse
|
11
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Corticospinal excitability during motor preparation of upper extremity reaches reflects flexor muscle synergies: A novel principal component-based motor evoked potential analyses. Restor Neurol Neurosci 2024; 42:121-138. [PMID: 38607772 DOI: 10.3233/rnn-231367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Background Previous research has shown that noninvasive brain stimulation can be used to study how the central nervous system (CNS) prepares the execution of a motor task. However, these previous studies have been limited to a single muscle or single degree of freedom movements (e.g., wrist flexion). It is currently unclear if the findings of these studies generalize to multi-joint movements involving multiple muscles, which may be influenced by kinematic redundancy and muscle synergies. Objective The objective of this study was to characterize corticospinal excitability during motor preparation in the cortex prior to functional upper extremity reaches. Methods 20 participants without neurological impairments volunteered for this study. During the experiment, the participants reached for a cup in response to a visual "Go Cue". Prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in motor evoked potentials (MEPs) in several upper extremity muscles. We varied each participant's initial arm posture and used a novel synergy-based MEP analysis to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the Go Cue and movement onset to examine the time course of motor preparation. Results We found that synergies with strong proximal muscle (shoulder and elbow) components emerged as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated. We also found that synergies varied with arm posture in a manner that reflected the muscle coordination of the reach. Conclusions We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
Affiliation(s)
- Thomas E Augenstein
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
| | - Seonga Oh
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | - Trevor A Norris
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Amit Sethi
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Tankisi H, Versace V, Kuppuswamy A, Cole J. The role of clinical neurophysiology in the definition and assessment of fatigue and fatigability. Clin Neurophysiol Pract 2023; 9:39-50. [PMID: 38274859 PMCID: PMC10808861 DOI: 10.1016/j.cnp.2023.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Though a common symptom, fatigue is difficult to define and investigate, occurs in a wide variety of neurological and systemic disorders, with differing pathological causes. It is also often accompanied by a psychological component. As a symptom of long-term COVID-19 it has gained more attention. In this review, we begin by differentiating fatigue, a perception, from fatigability, quantifiable through biomarkers. Central and peripheral nervous system and muscle disorders associated with these are summarised. We provide a comprehensive and objective framework to help identify potential causes of fatigue and fatigability in a given disease condition. It also considers the effectiveness of neurophysiological tests as objective biomarkers for its assessment. Among these, twitch interpolation, motor cortex stimulation, electroencephalography and magnetencephalography, and readiness potentials will be described for the assessment of central fatigability, and surface and needle electromyography (EMG), single fibre EMG and nerve conduction studies for the assessment of peripheral fatigability. The purpose of this review is to guide clinicians in how to approach fatigue, and fatigability, and to suggest that neurophysiological tests may allow an understanding of their origin and interactions. In this way, their differing types and origins, and hence their possible differing treatments, may also be defined more clearly.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Denmark
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Annapoorna Kuppuswamy
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, WC1N 3BG London, UK
- Department of Biomedical Sciences, University of Leeds, UK
| | - Jonathan Cole
- Clinical Neurophysiology, University Hospitals Dorset (Poole), UK
- University of Bournemouth, Poole, UK
| |
Collapse
|
13
|
He S, Baig F, Merla A, Torrecillos F, Perera A, Wiest C, Debarros J, Benjaber M, Hart MG, Ricciardi L, Morgante F, Hasegawa H, Samuel M, Edwards M, Denison T, Pogosyan A, Ashkan K, Pereira E, Tan H. Beta-triggered adaptive deep brain stimulation during reaching movement in Parkinson's disease. Brain 2023; 146:5015-5030. [PMID: 37433037 PMCID: PMC10690014 DOI: 10.1093/brain/awad233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Subthalamic nucleus (STN) beta-triggered adaptive deep brain stimulation (ADBS) has been shown to provide clinical improvement comparable to conventional continuous DBS (CDBS) with less energy delivered to the brain and less stimulation induced side effects. However, several questions remain unanswered. First, there is a normal physiological reduction of STN beta band power just prior to and during voluntary movement. ADBS systems will therefore reduce or cease stimulation during movement in people with Parkinson's disease and could therefore compromise motor performance compared to CDBS. Second, beta power was smoothed and estimated over a time period of 400 ms in most previous ADBS studies, but a shorter smoothing period could have the advantage of being more sensitive to changes in beta power, which could enhance motor performance. In this study, we addressed these two questions by evaluating the effectiveness of STN beta-triggered ADBS using a standard 400 ms and a shorter 200 ms smoothing window during reaching movements. Results from 13 people with Parkinson's disease showed that reducing the smoothing window for quantifying beta did lead to shortened beta burst durations by increasing the number of beta bursts shorter than 200 ms and more frequent switching on/off of the stimulator but had no behavioural effects. Both ADBS and CDBS improved motor performance to an equivalent extent compared to no DBS. Secondary analysis revealed that there were independent effects of a decrease in beta power and an increase in gamma power in predicting faster movement speed, while a decrease in beta event related desynchronization (ERD) predicted quicker movement initiation. CDBS suppressed both beta and gamma more than ADBS, whereas beta ERD was reduced to a similar level during CDBS and ADBS compared with no DBS, which together explained the achieved similar performance improvement in reaching movements during CDBS and ADBS. In addition, ADBS significantly improved tremor compared with no DBS but was not as effective as CDBS. These results suggest that STN beta-triggered ADBS is effective in improving motor performance during reaching movements in people with Parkinson's disease, and that shortening of the smoothing window does not result in any additional behavioural benefit. When developing ADBS systems for Parkinson's disease, it might not be necessary to track very fast beta dynamics; combining beta, gamma, and information from motor decoding might be more beneficial with additional biomarkers needed for optimal treatment of tremor.
Collapse
Affiliation(s)
- Shenghong He
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Fahd Baig
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Anca Merla
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Flavie Torrecillos
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Andrea Perera
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Christoph Wiest
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Jean Debarros
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Michael G Hart
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Lucia Ricciardi
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Francesca Morgante
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Harutomo Hasegawa
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Michael Samuel
- Department of Neurology, King’s College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Mark Edwards
- Department of Clinical and Basic Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Erlick Pereira
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
14
|
Balsdon T, Verdonck S, Loossens T, Philiastides MG. Secondary motor integration as a final arbiter in sensorimotor decision-making. PLoS Biol 2023; 21:e3002200. [PMID: 37459392 PMCID: PMC10393169 DOI: 10.1371/journal.pbio.3002200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/01/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
Sensorimotor decision-making is believed to involve a process of accumulating sensory evidence over time. While current theories posit a single accumulation process prior to planning an overt motor response, here, we propose an active role of motor processes in decision formation via a secondary leaky motor accumulation stage. The motor leak adapts the "memory" with which this secondary accumulator reintegrates the primary accumulated sensory evidence, thus adjusting the temporal smoothing in the motor evidence and, correspondingly, the lag between the primary and motor accumulators. We compare this framework against different single accumulator variants using formal model comparison, fitting choice, and response times in a task where human observers made categorical decisions about a noisy sequence of images, under different speed-accuracy trade-off instructions. We show that, rather than boundary adjustments (controlling the amount of evidence accumulated for decision commitment), adjustment of the leak in the secondary motor accumulator provides the better description of behavior across conditions. Importantly, we derive neural correlates of these 2 integration processes from electroencephalography data recorded during the same task and show that these neural correlates adhere to the neural response profiles predicted by the model. This framework thus provides a neurobiologically plausible description of sensorimotor decision-making that captures emerging evidence of the active role of motor processes in choice behavior.
Collapse
Affiliation(s)
- Tarryn Balsdon
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Stijn Verdonck
- Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Tim Loossens
- Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Marios G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
Spampinato DA, Ibanez J, Rocchi L, Rothwell J. Motor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system. J Physiol 2023; 601:2827-2851. [PMID: 37254441 PMCID: PMC10952180 DOI: 10.1113/jp281885] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that is increasingly used to study the human brain. One of the principal outcome measures is the motor-evoked potential (MEP) elicited in a muscle following TMS over the primary motor cortex (M1), where it is used to estimate changes in corticospinal excitability. However, multiple elements play a role in MEP generation, so even apparently simple measures such as peak-to-peak amplitude have a complex interpretation. Here, we summarize what is currently known regarding the neural pathways and circuits that contribute to the MEP and discuss the factors that should be considered when interpreting MEP amplitude measured at rest in the context of motor processing and patients with neurological conditions. In the last part of this work, we also discuss how emerging technological approaches can be combined with TMS to improve our understanding of neural substrates that can influence MEPs. Overall, this review aims to highlight the capabilities and limitations of TMS that are important to recognize when attempting to disentangle sources that contribute to the physiological state-related changes in corticomotor excitability.
Collapse
Affiliation(s)
- Danny Adrian Spampinato
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Jaime Ibanez
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- BSICoS group, I3A Institute and IIS AragónUniversity of ZaragozaZaragozaSpain
- Department of Bioengineering, Centre for NeurotechnologiesImperial College LondonLondonUK
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - John Rothwell
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
| |
Collapse
|
16
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Muscle Coordination Matters: Insights into Motor Planning using Corticospinal Responses during Functional Reaching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540531. [PMID: 37292868 PMCID: PMC10245565 DOI: 10.1101/2023.05.15.540531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The central nervous system (CNS) moves the human body by forming a plan in the primary motor cortex and then executing this plan by activating the relevant muscles. It is possible to study motor planning by using noninvasive brain stimulation techniques to stimulate the motor cortex prior to a movement and examine the evoked responses. Studying the motor planning process can reveal useful information about the CNS, but previous studies have generally been limited to single degree of freedom movements ( e.g., wrist flexion). It is currently unclear if findings in these studies generalize to multi-joint movements, which may be influenced by kinematic redundancy and muscle synergies. Here, our objective was to characterize motor planning in the cortex prior to a functional reach involving the upper extremity. We asked participants to reach for a cup placed in front of them when presented with a visual "Go Cue". Following the go cue, but prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in the magnitudes of evoked responses in several upper extremity muscles (MEPs). We varied each participant's initial arm posture to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the go cue and movement onset to examine the time course of changes in the MEPs. We found that the MEPs in all proximal (shoulder and elbow) muscles increased as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated or even inhibited. We also found that facilitation varied with arm posture in a manner that reflected the coordination of the subsequent reach. We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
|
17
|
Inamoto T, Ueda M, Ueno K, Shiroma C, Morita R, Naito Y, Ishii R. Motor-Related Mu/Beta Rhythm in Older Adults: A Comprehensive Review. Brain Sci 2023; 13:brainsci13050751. [PMID: 37239223 DOI: 10.3390/brainsci13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Mu rhythm, also known as the mu wave, occurs on sensorimotor cortex activity at rest, and the frequency range is defined as 8-13Hz, the same frequency as the alpha band. Mu rhythm is a cortical oscillation that can be recorded from the scalp over the primary sensorimotor cortex by electroencephalogram (EEG) and magnetoencephalography (MEG). The subjects of previous mu/beta rhythm studies ranged widely from infants to young and older adults. Furthermore, these subjects were not only healthy people but also patients with various neurological and psychiatric diseases. However, very few studies have referred to the effect of mu/beta rhythm with aging, and there was no literature review about this theme. It is important to review the details of the characteristics of mu/beta rhythm activity in older adults compared with young adults, focusing on age-related mu rhythm changes. By comprehensive review, we found that, compared with young adults, older adults showed mu/beta activity change in four characteristics during voluntary movement, increased event-related desynchronization (ERD), earlier beginning and later end, symmetric pattern of ERD and increased recruitment of cortical areas, and substantially reduced beta event-related desynchronization (ERS). It was also found that mu/beta rhythm patterns of action observation were changing with aging. Future work is needed in order to investigate not only the localization but also the network of mu/beta rhythm in older adults.
Collapse
Affiliation(s)
- Takashi Inamoto
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka 583-8555, Japan
- Faculty of Health Sciences, Kansai University of Health Sciences, Osaka 590-0482, Japan
| | - Masaya Ueda
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Keita Ueno
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - China Shiroma
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Rin Morita
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Yasuo Naito
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Ryouhei Ishii
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
18
|
Nurmi T, Hakonen M, Bourguignon M, Piitulainen H. Proprioceptive response strength in the primary sensorimotor cortex is invariant to the range of finger movement. Neuroimage 2023; 269:119937. [PMID: 36791896 DOI: 10.1016/j.neuroimage.2023.119937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Proprioception is the sense of body position and movement that relies on afference from the proprioceptors in muscles and joints. Proprioceptive responses in the primary sensorimotor (SM1) cortex can be elicited by stimulating the proprioceptors using evoked (passive) limb movements. In magnetoencephalography (MEG), proprioceptive processing can be quantified by recording the movement evoked fields (MEFs) and movement-induced beta power modulations or by computing corticokinematic coherence (CKC) between the limb kinematics and cortical activity. We examined whether cortical proprioceptive processing quantified with MEF peak strength, relative beta suppression and rebound power and CKC strength is affected by the movement range of the finger. MEG activity was measured from 16 right-handed healthy volunteers while movements were applied to their right-index finger metacarpophalangeal joint with an actuator. Movements were either intermittent, every 3000 ± 250 ms, to estimate MEF or continuous, at 3 Hz, to estimate CKC. In both cases, 4 different ranges of motion of the stimuli were investigated: 15, 18, 22 and 26 mm for MEF and 6, 7, 9 and 13 mm for CKC. MEF amplitude, relative beta suppression and rebound as well as peak CKC strength at the movement frequency were compared between the movement ranges in the source space. Inter-individual variation was also compared between the MEF and CKC strengths. As expected, MEF and CKC responses peaked at the contralateral SM1 cortex. MEF peak, beta suppression and rebound and CKC strengths were similar across all movement ranges. Furthermore, CKC strength showed a lower degree of inter-individual variation compared with MEF strength. Our result of absent modulation by movement range in cortical responses to passive movements of the finger indicates that variability in movement range should not hinder comparability between different studies or participants. Furthermore, our data indicates that CKC is less prone to inter-individual variability than MEFs, and thus more advantageous in what pertains to statistical power.
Collapse
Affiliation(s)
- Timo Nurmi
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland.
| | - Maria Hakonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland; A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Mathieu Bourguignon
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium; Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium; BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland; Aalto NeuroImaging, Aalto University, Espoo 02150, Finland
| |
Collapse
|
19
|
Nguyen AT, Tresilian JR, Lipp OV, Tavora-Vieira D, Marinovic W. Evolving changes in cortical and subcortical excitability during movement preparation: A study of brain potentials and eye-blink reflexes during loud acoustic stimulation. Psychophysiology 2023:e14267. [PMID: 36748371 DOI: 10.1111/psyp.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 02/08/2023]
Abstract
During preparation for action, the presentation of loud acoustic stimuli (LAS) can trigger movements at very short latencies in a phenomenon called the StartReact effect. It was initially proposed that a special, separate subcortical mechanism that bypasses slower cortical areas could be involved. We sought to examine the evidence for a separate mechanism against the alternative that responses to LAS can be explained by a combination of stimulus intensity effects and preparatory states. To investigate whether cortically mediated preparatory processes are involved in mediating reactions to LAS, we used an auditory reaction task where we manipulated the preparation level within each trial by altering the conditional probability of the imperative stimulus. We contrasted responses to non-intense tones and LAS and examined whether cortical activation and subcortical excitability and motor responses were influenced by preparation levels. Increases in preparation levels were marked by gradual reductions in reaction time (RT) coupled with increases in cortical activation and subcortical excitability - at both condition and trial levels. Interestingly, changes in cortical activation influenced motor and auditory but not visual areas - highlighting the widespread yet selective nature of preparation. RTs were shorter to LAS than tones, but the overall pattern of preparation level effects was the same for both stimuli. Collectively, the results demonstrate that LAS responses are indeed shaped by cortically mediated preparatory processes. The concurrent changes observed in brain and behavior with increasing preparation reinforce the notion that preparation is marked by evolving brain states which shape the motor system for action.
Collapse
Affiliation(s)
- An T Nguyen
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | | | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Welber Marinovic
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Barhoun P, Fuelscher I, Do M, He JL, Cerins A, Bekkali S, Youssef GJ, Corp D, Major BP, Meaney D, Enticott PG, Hyde C. The role of the primary motor cortex in motor imagery: A theta burst stimulation study. Psychophysiology 2022; 59:e14077. [PMID: 35503930 PMCID: PMC9540768 DOI: 10.1111/psyp.14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/06/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
While mentally simulated actions activate similar neural structures to overt movement, the role of the primary motor cortex (PMC) in motor imagery remains disputed. The aim of the study was to use continuous theta burst stimulation (cTBS) to modulate corticospinal activity to investigate the putative role of the PMC in implicit motor imagery in young adults with typical and atypical motor ability. A randomized, double blind, sham-controlled, crossover, offline cTBS protocol was applied to 35 young adults. During three separate sessions, adults with typical and low motor ability (developmental coordination disorder [DCD]), received active cTBS to the PMC and supplementary motor area (SMA), and sham stimulation to either the PMC or SMA. Following stimulation, participants completed measures of motor imagery (i.e., hand rotation task) and visual imagery (i.e., letter number rotation task). Although active cTBS significantly reduced corticospinal excitability in adults with typical motor ability, neither task performance was altered following active cTBS to the PMC or SMA, compared to performance after sham cTBS. These results did not differ across motor status (i.e., typical motor ability and DCD). These findings are not consistent with our hypothesis that the PMC (and SMA) is directly involved in motor imagery. Instead, previous motor cortical activation observed during motor imagery may be an epiphenomenon of other neurophysiological processes and/or activity within brain regions involved in motor imagery. This study highlights the need to consider multi-session theta burst stimulation application and its neural effects when probing the putative role of motor cortices in motor imagery.
Collapse
Affiliation(s)
- Pamela Barhoun
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Michael Do
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Jason L. He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational NeurodevelopmentInstitute of Psychiatry, Psychology, and Neuroscience, King’s College LondonLondonUK
| | - Andris Cerins
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Soukayna Bekkali
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - George J. Youssef
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Murdoch Children’s Research Institute, Centre for Adolescent HealthRoyal Children’s HospitalMelbourneVictoriaAustralia
| | - Daniel Corp
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Brendan P. Major
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Dwayne Meaney
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Peter G. Enticott
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
21
|
Fang Q, Fang C, Li L, Song Y. Impact of sport training on adaptations in neural functioning and behavioral performance: A scoping review with meta-analysis on EEG research. J Exerc Sci Fit 2022; 20:206-215. [PMID: 35510253 PMCID: PMC9035717 DOI: 10.1016/j.jesf.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 01/08/2023] Open
Abstract
Background/objective Investigating the neural mechanisms underlying sport performance has been a research focus in the field of sport science. The current review aims to identify distinct characteristics between athletes and non-athletes at behavioral and neural levels. Further analysis was conducted as to potential reasons that contributed to the differences. Methods Literature was searched through PubMed, ScienceDirect, Cochrane, EBSCO, and Web of Science for EEG studies that compared athletes with non-athletes or novices in behavioral performance and brain function. Results The process of literature search and selection identified 16 studies that satisfied the predetermined inclusion criteria. Theta, alpha, and beta frequency bands were employed as the primary EEG measures of cortical activities in the included studies. Athletes indicated significant advantages over controls in behavioral performance, H e d g e s ' g = 0.42 , p = 0.02 , and brain function, H e d g e s ' g = 0.49 , p = 0.03 . Moderator analysis on behavioral performance indicated a large effect size in sport-related performance, H e d g e s ' g = 0.90 , p = 0.01 , but a small, non-significant effect size in general tasks, H e d g e s ' g = 0.14 , p = 0.44 . Conclusions Superior performance in sport-related tasks mostly contributed to athletes' significant advantage in behavioral performance. Additionally, favorable profiles of brain function associated with athletes included neural efficiency, increased cortical asymmetry, greater cognitive flexibility, and precise timing of cortical activation. Applying EEG technique to sport has shown promising directions in performance improvement and talent identification for young athletes.
Collapse
Affiliation(s)
- Qun Fang
- School of Physical Education, Qingdao University, China
| | - Chao Fang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Longxi Li
- Department of Physical Education and Health Education, Springfield College, USA
| | - Ying Song
- School of Physical Education, Shandong University, China
| |
Collapse
|
22
|
Houlgreave MS, Morera Maiquez B, Brookes MJ, Jackson SR. The oscillatory effects of rhythmic median nerve stimulation. Neuroimage 2022; 251:118990. [PMID: 35158022 DOI: 10.1016/j.neuroimage.2022.118990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Entrainment of brain oscillations can be achieved using rhythmic non-invasive brain stimulation, and stimulation of the motor cortex at a frequency associated with sensorimotor inhibition can impair motor responses. Despite the potential for therapeutic application, these techniques do not lend themselves to use outside of a clinical setting. Here, the aim was to investigate whether rhythmic median nerve stimulation (MNS) could be used to entrain oscillations related to sensorimotor inhibition. MEG data were recorded from 20 participants during 400 trials, where for each trial 10 pulses of MNS were delivered either rhythmically or arrhythmically at 12 or 20 Hz. Our results demonstrate a frequency specific increase in relative amplitude in the contralateral somatosensory cortex during rhythmic but not arrhythmic stimulation. This was coupled with an increase in inter-trial phase coherence at the same frequency, suggesting that the oscillations synchronised with the pulses of MNS. The results show that 12 and 20 Hz rhythmic peripheral nerve stimulation can produce entrainment. Rhythmic MNS resulted in synchronous firing of neuronal populations within the contralateral somatosensory cortex meaning these neurons were engaged in processing of the afferent input. Therefore, MNS could prove therapeutically useful in disorders associated with hyperexcitability within the sensorimotor cortices.
Collapse
Affiliation(s)
- Mairi S Houlgreave
- School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK; School of Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | | | - Matthew J Brookes
- School of Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Stephen R Jackson
- School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK; School of Medicine, Institute of Mental Health, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
23
|
Fiori F, Ciricugno A, Rusconi ML, Slaby RJ, Cattaneo Z. How Untidiness Moves the Motor System. Percept Mot Skills 2022; 129:399-414. [PMID: 35440258 DOI: 10.1177/00315125221086254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Humans tend to prefer order to disorder. Orderly environments may provide individuals with comfort due to predictability, allowing a more efficient interaction with objects. Accordingly, a disorderly environment may elicit a tendency to restore order. This order restoration tendency may be observed physiologically as modulation within corticospinal excitability; the latter has been previously associated with motor preparation. To test these hypothesized physiological indices of order restoration, we measured possible changes in corticospinal excitability, as reflected by the amplitude of motor-evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation (TMS) over the primary motor cortex while participants viewed ordered and disordered rooms. We found that images depicting disorderly environments suppressed excitability within the corticospinal tract, in line with prior findings that motor preparation is typically associated with decreased corticospinal excitability. Interestingly, this pattern was particularly evident in individuals that displayed subclinical levels of obsessive-compulsive traits. Thus, a disorderly environment may move the motor system to restore a disorderly environment into a more orderly and predictable environment, and preparation for "order" may be observed on a sensorimotor basis.
Collapse
Affiliation(s)
- Francesca Fiori
- Department of Psychology, 9305University of Milano-Bicocca, Milano, Italy.,Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Maria Luisa Rusconi
- Department of Human and Social Sciences, 18953University of Bergamo, Bergamo, Italy
| | - Ryan J Slaby
- Department of Psychology, 9305University of Milano-Bicocca, Milano, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, Pavia, Italy.,Department of Human and Social Sciences, 18953University of Bergamo, Bergamo, Italy
| |
Collapse
|
24
|
Greenhouse I. Inhibition for gain modulation in the motor system. Exp Brain Res 2022; 240:1295-1302. [DOI: 10.1007/s00221-022-06351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023]
|
25
|
Buetler KA, Penalver-Andres J, Özen Ö, Ferriroli L, Müri RM, Cazzoli D, Marchal-Crespo L. "Tricking the Brain" Using Immersive Virtual Reality: Modifying the Self-Perception Over Embodied Avatar Influences Motor Cortical Excitability and Action Initiation. Front Hum Neurosci 2022; 15:787487. [PMID: 35221950 PMCID: PMC8863605 DOI: 10.3389/fnhum.2021.787487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 02/02/2023] Open
Abstract
To offer engaging neurorehabilitation training to neurologic patients, motor tasks are often visualized in virtual reality (VR). Recently introduced head-mounted displays (HMDs) allow to realistically mimic the body of the user from a first-person perspective (i.e., avatar) in a highly immersive VR environment. In this immersive environment, users may embody avatars with different body characteristics. Importantly, body characteristics impact how people perform actions. Therefore, alternating body perceptions using immersive VR may be a powerful tool to promote motor activity in neurologic patients. However, the ability of the brain to adapt motor commands based on a perceived modified reality has not yet been fully explored. To fill this gap, we "tricked the brain" using immersive VR and investigated if multisensory feedback modulating the physical properties of an embodied avatar influences motor brain networks and control. Ten healthy participants were immersed in a virtual environment using an HMD, where they saw an avatar from first-person perspective. We slowly transformed the surface of the avatar (i.e., the "skin material") from human to stone. We enforced this visual change by repetitively touching the real arm of the participant and the arm of the avatar with a (virtual) hammer, while progressively replacing the sound of the hammer against skin with stone hitting sound via loudspeaker. We applied single-pulse transcranial magnetic simulation (TMS) to evaluate changes in motor cortical excitability associated with the illusion. Further, to investigate if the "stone illusion" affected motor control, participants performed a reaching task with the human and stone avatar. Questionnaires assessed the subjectively reported strength of embodiment and illusion. Our results show that participants experienced the "stone arm illusion." Particularly, they rated their arm as heavier, colder, stiffer, and more insensitive when immersed with the stone than human avatar, without the illusion affecting their experienced feeling of body ownership. Further, the reported illusion strength was associated with enhanced motor cortical excitability and faster movement initiations, indicating that participants may have physically mirrored and compensated for the embodied body characteristics of the stone avatar. Together, immersive VR has the potential to influence motor brain networks by subtly modifying the perception of reality, opening new perspectives for the motor recovery of patients.
Collapse
Affiliation(s)
- Karin A. Buetler
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Joaquin Penalver-Andres
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Psychosomatic Medicine, Department of Neurology, University Hospital of Bern (Inselspital), Bern, Switzerland
| | - Özhan Özen
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Luca Ferriroli
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - René M. Müri
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital of Bern (Inselspital), University of Bern, Bern, Switzerland
| | - Dario Cazzoli
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital of Bern (Inselspital), University of Bern, Bern, Switzerland
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Laura Marchal-Crespo
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
26
|
Matsumoto A, Liang N, Ueda H, Irie K. Corticospinal Excitability of the Lower Limb Muscles During the Anticipatory Postural Adjustments: A TMS Study During Dart Throwing. Front Hum Neurosci 2021; 15:703377. [PMID: 34776899 PMCID: PMC8580880 DOI: 10.3389/fnhum.2021.703377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: To investigate whether the changes in the corticospinal excitability contribute to the anticipatory postural adjustments (APAs) in the lower limb muscles when performing the ballistic upper limb movement of the dart throwing. Methods: We examined the primary motor cortex (M1) excitability of the lower limb muscles [tibialis anterior (TA) and soleus (SOL) muscles] during the APA phase by using transcranial magnetic stimulation (TMS) in the healthy volunteers. The surface electromyography (EMG) of anterior deltoid, triceps brachii, biceps brachii, TA, and SOL muscles was recorded and the motor evoked potential (MEP) to TMS was recorded in the TA muscle along with the SOL muscle. TMS at the hotspot of the TA muscle was applied at the timings immediately prior to the TA onset. The kinematic parameters including the three-dimensional motion analysis and center of pressure (COP) during the dart throwing were also assessed. Results: The changes in COP and EMG of the TA muscle occurred preceding the dart throwing, which involved a slight elbow flexion followed by an extension. The correlation analysis revealed that the onset of the TA muscle was related to the COP change and the elbow joint flexion. The MEP amplitude in the TA muscle, but not that in the SOL muscle, significantly increased immediately prior to the EMG burst (100, 50, and 0 ms prior to the TA onset). Conclusion: Our findings demonstrate that the corticospinal excitability of the TA muscle increases prior to the ballistic upper limb movement of the dart throwing, suggesting that the corticospinal pathway contributes to the APA in the lower limb in a muscle-specific manner.
Collapse
Affiliation(s)
- Amiri Matsumoto
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Ueda
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Irie
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Canepa P, Papaxanthis C, Bisio A, Biggio M, Paizis C, Faelli E, Avanzino L, Bove M. Motor Cortical Excitability Changes in Preparation to Concentric and Eccentric Movements. Neuroscience 2021; 475:73-82. [PMID: 34425159 DOI: 10.1016/j.neuroscience.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Specific neural mechanisms operate at corticospinal levels during eccentric and concentric contractions. Here, we investigated the difference in corticospinal excitability (CSE) when preparing these two types of contraction. In this study we enrolled 16 healthy participants. They were asked to perform an instructed-delay reaction time (RT) task involving a concentric or an eccentric contraction of the right first dorsal interosseus muscle, as a response to a proprioceptive cue (Go signal) presented 1 s after a warning signal. We tested CSE at different time points ranging from 300 ms before up to 40 ms after a Go signal. CSE increased 300-150 ms before the Go signal for both contractions. Interestingly, significant changes in CSE in the time interval around the Go signal (from -150 ms to +40 ms) were only revealed in eccentric contraction. We observed a significant decrease in excitability immediately before the Go cue (Pre_50) and a significant increase 40 ms after it (Post_40) with respect to the MEPs recorded at Pre_150. Finally, CSE in eccentric contraction was lower before the Go cue (Pre_50) and greater after it (Post_40) compared to the concentric contraction. A similar result was also found in NoMov paradigm, used to disentangle the effects induced by movement preparation from those induced by the movement preparation linked to the proprioceptive cue. We could conclude that different neural mechanisms observed during concentric and eccentric contractions are mirrored with a different time-specific modulation of CSE in the preparatory phase to the movement.
Collapse
Affiliation(s)
- Patrizio Canepa
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy; INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Christos Paizis
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France; Centre for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne Franche-Comté, Faculty of Sport Sciences, Dijon, France
| | - Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.
| |
Collapse
|
28
|
Wilhelm RA, Threadgill AH, Gable PA. Motor Preparation and Execution for Performance Difficulty: Centroparietal Beta Activation during the Effort Expenditure for Rewards Task as a Function of Motivation. Brain Sci 2021; 11:brainsci11111442. [PMID: 34827441 PMCID: PMC8615645 DOI: 10.3390/brainsci11111442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Debate exists as to the effects of anxiety in performance-based studies. However, no studies have examined the influence of motivation both in preparation of a motor movement and during movement performance. The present study measured beta activation in preparation for and during execution of the effort expenditure for rewards task (EEfRT), a button-pressing task consisting of easy and hard trials. Results indicated that motor preparation (i.e., reduced beta activation) was greater in preparation for hard trials than for easy trials. Additionally, motor preparation decreased (i.e., beta activation increased) over the course of hard trial execution. These results suggest that motor preparation is enhanced prior to more challenging tasks but that motor preparation declines as participants become closer to completing their goal in each challenging trial. These results provide insight into how beta activation facilitates effort expenditure for motor tasks varying in difficulty and motivation. The impact of these results on models of anxiety and performance is discussed.
Collapse
Affiliation(s)
- Ricardo A. Wilhelm
- Department of Psychology, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - A. Hunter Threadgill
- Departments of Biomedical Sciences and Psychology, Florida State University, Tallahassee, FL 32306, USA;
| | - Philip A. Gable
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| |
Collapse
|
29
|
Kirk EA, Gilmore KJ, Rice CL. Anconeus motor unit firing rates during isometric and muscle-shortening contractions comparing young and very old adults. J Neurophysiol 2021; 126:1122-1136. [PMID: 34495770 DOI: 10.1152/jn.00219.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With effects of aging, voluntary neural drive to the muscle, measured as motor unit (MU) firing rate, is lower in older adults during sustained isometric contractions compared with young adults, but differences remain unknown during limb movements. Therefore, our purpose was to compare MU firing rates during both isometric and shortening contractions between two adult age groups. We analyzed intramuscular electromyography of single-MU recordings in the anconeus muscle of young (n = 8, 19-33 yr) and very old (n = 13, 78-93 yr) male adults during maximal voluntary contractions (MVCs). In sustained isometric and muscle-shortening contractions during limb movement, MU trains were linked with elbow joint kinematic parameters throughout the contraction time course. The older group was 33% weaker and 10% slower during movements than the young group (P < 0.01). In isometric contractions, median firing rates were 42% lower (P < 0.01) in the older group (18 Hz) compared with the young group (31 Hz), but during shortening contractions firing rates were higher for both age groups and not statistically different between groups. As a function of contraction time, firing rates at MU recruitment threshold were 39% lower in the older group, but the firing rate decrease was attenuated threefold throughout shortening contraction compared with the young group. At the single-MU level, age-related differences during isometric contractions (i.e., pre-movement initiation) do not remain constant throughout movement that comprises greater effects of muscle shortening. Results indicate that neural drive is task dependent and during movement in older adults it is decreased minimally.NEW & NOTEWORTHY Changes of neural drive to the muscle with adult aging, measured as motor unit firing rates during limb movements, are unknown. Throughout maximal voluntary efforts we found that, in comparison with young adults, firing rates were lower during isometric contraction in older adults but not different during elbow extension movements. Despite the older group being ∼33% weaker across contractions, their muscles can receive neural drive during movements that are similar to that of younger adults.
Collapse
Affiliation(s)
- Eric A Kirk
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Kevin J Gilmore
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Reader AT, Trifonova VS, Ehrsson HH. Little evidence for an effect of the rubber hand illusion on basic movement. Eur J Neurosci 2021; 54:6463-6486. [PMID: 34486767 DOI: 10.1111/ejn.15444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
Body ownership refers to the distinct sensation that our observed body belongs to us, which is believed to stem from multisensory integration. This is commonly shown through the rubber hand illusion (RHI), which induces a sense of ownership over a false limb. Whilst the RHI may interfere with object-directed action and alter motor cortical activity, it is not yet clear whether a sense of ownership over an artificial hand has functional consequences for movement production per se. As such, we performed two motion-tracking experiments (n = 117) to examine the effects of the RHI on the reaction time, acceleration, and velocity of rapid index finger abduction. We observed little convincing evidence that the induction of the RHI altered these kinematic variables. Moreover, the subjective sensations of rubber hand ownership, referral of touch, and agency did not convincingly correlate with kinematic variables, and nor did proprioceptive drift, suggesting that changes in body representation elicited by the RHI may not influence basic movement. Whilst experiment 1 suggested that individuals reporting a greater sensation of the real hand disappearing performed movements with smaller acceleration and velocity following illusion induction, we did not replicate this effect in a second experiment, suggesting that these effects may be small or not particularly robust. Overall, these results indicate that manipulating the conscious experience of body ownership has little impact on basic motor control, at least in the RHI with healthy participants.
Collapse
Affiliation(s)
- Arran T Reader
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Rowland RS, Jenkinson N, Chiou SY. Age-Related Differences in Corticospinal Excitability and Anticipatory Postural Adjustments of the Trunk. Front Aging Neurosci 2021; 13:718784. [PMID: 34483887 PMCID: PMC8416077 DOI: 10.3389/fnagi.2021.718784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Anticipatory postural adjustments (APAs) are a feedforward mechanism for the maintenance of postural stability and are delayed in old adults. We previously showed in young adults that APAs of the trunk induced by a fast shoulder movement were mediated, at least in part, by a cortical mechanism. However, it remains unclear the relationship between delayed APAs and motor cortical excitability in ageing. Using transcranial magnetic stimulation we examined motor evoked potentials (MEPs) of the erector spinae (ES) muscles in healthy young and old adults prior to a fast shoulder flexion task. A recognition reaction time (RRT) paradigm was used where participants responded to a visual stimulus by flexing their shoulders bilaterally as fast as possible. The activity of bilateral anterior deltoid (AD) and ES muscles was recorded using electromyography (EMG). The onset of AD and ES EMG was measured to represent RRT and APAs, respectively. We found increases in amplitudes of ES MEPs at 40 ms than 50 ms prior to the EMG onset of the AD in both groups. The amplitude of ES MEPs at 40 ms prior to the onset of AD EMG correlated with the onset of ES activity counterbalancing the perturbation induced by the shoulder task in the elderly participants only. Our findings suggest that timing of increasing corticospinal excitability prior to a self-paced perturbation becomes more relevant with ageing in modulating postural control of the trunk.
Collapse
Affiliation(s)
- Rebecca S Rowland
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ned Jenkinson
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom.,Medical Research Council 'Versus' Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Shin-Yi Chiou
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom.,Medical Research Council 'Versus' Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
32
|
Tatti E, Ferraioli F, Peter J, Alalade T, Nelson AB, Ricci S, Quartarone A, Ghilardi MF. Frontal increase of beta modulation during the practice of a motor task is enhanced by visuomotor learning. Sci Rep 2021; 11:17441. [PMID: 34465846 PMCID: PMC8408223 DOI: 10.1038/s41598-021-97004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Movement is accompanied by beta power changes over frontal and sensorimotor regions: a decrease during movement (event-related desynchronization, ERD), followed by an increase (event-related synchronization, ERS) after the movement end. We previously found that enhancements of beta modulation (from ERD to ERS) during a reaching test (mov) occur over frontal and left sensorimotor regions after practice in a visuo-motor adaptation task (ROT) but not after visual learning practice. Thus, these enhancements may reflect local cumulative effects of motor learning. Here we verified whether they are triggered by the learning component inherent in ROT or simply by motor practice in a reaching task without such learning (MOT). We found that beta modulation during mov increased over frontal and left areas after three-hour practice of either ROT or MOT. However, the frontal increase was greater after ROT, while the increase over the left area was similar after the two tasks. These findings confirm that motor practice leaves local traces in beta power during a subsequent motor test. As they occur after motor tasks with and without learning, these traces likely express the cost of processes necessary for both usage and engagement of long-term potentiation mechanisms necessary for the learning required by ROT.
Collapse
Affiliation(s)
- E Tatti
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA.
| | - F Ferraioli
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA
| | - J Peter
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA
| | - T Alalade
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA
| | - A B Nelson
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA
| | - S Ricci
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA.,DIBRIS University of Genova, 16145, Genoa, Italy
| | - A Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy
| | - M F Ghilardi
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA.
| |
Collapse
|
33
|
McInnes AN, Lipp OV, Tresilian JR, Vallence AM, Marinovic W. Premovement inhibition can protect motor actions from interference by response-irrelevant sensory stimulation. J Physiol 2021; 599:4389-4406. [PMID: 34339524 DOI: 10.1113/jp281849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Suppression of corticospinal excitability is reliably observed during preparation for a range of motor actions, leading to the belief that this preparatory inhibition is a physiologically obligatory component of motor preparation. The neurophysiological function of this suppression is uncertain. We restricted the time available for participants to engage in preparation and found no evidence for preparatory inhibition. The function of preparatory inhibition can be inferred from our findings that sensory stimulation can disrupt motor output in the absence of preparatory inhibition, but enhance motor output when inhibition is present. These findings suggest preparatory inhibition may be a strategic process which acts to protect prepared actions from external interference. Our findings have significant theoretical implications for preparatory processes. Findings may also have a pragmatic benefit in that acoustic stimulation could be used therapeutically to facilitate movement, but only if the action can be prepared well in advance. ABSTRACT Shortly before movement initiation, the corticospinal system undergoes a transient suppression. This phenomenon has been observed across a range of motor tasks, suggesting that it may be an obligatory component of movement preparation. We probed whether this was also the case when the urgency to perform a motor action was high, in a situation where little time was available to engage in preparatory processes. We controlled the urgency of an impending motor action by increasing or decreasing the foreperiod duration in an anticipatory timing task. Transcranial magnetic stimulation (TMS; experiment 1) or a loud acoustic stimulus (LAS; experiment 2) were used to examine how corticospinal and subcortical excitability were modulated during motor preparation. Preparatory inhibition of the corticospinal tract was absent when movement urgency was high, though motor actions were initiated on time. In contrast, subcortical circuits were progressively inhibited as the time to prepare increased. Interestingly, movement force and vigour were reduced by both TMS and the LAS when movement urgency was high, and enhanced when movement urgency was low. These findings indicate that preparatory inhibition may not be an obligatory component of motor preparation. The behavioural effects we observed in the absence of preparatory inhibition were induced by both TMS and the LAS, suggesting that accessory sensory stimulation may disrupt motor output when such stimulation is presented in the absence of preparatory inhibition. We conclude that preparatory inhibition may be an adaptive strategy which can serve to protect the prepared motor action from external interference.
Collapse
Affiliation(s)
- Aaron N McInnes
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Western Australia, Australia
| | - Ottmar V Lipp
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Western Australia, Australia.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Ann-Maree Vallence
- School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, Australia
| | - Welber Marinovic
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
34
|
Neige C, Rannaud Monany D, Lebon F. Exploring cortico-cortical interactions during action preparation by means of dual-coil transcranial magnetic stimulation: A systematic review. Neurosci Biobehav Rev 2021; 128:678-692. [PMID: 34274404 DOI: 10.1016/j.neubiorev.2021.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Action preparation is characterized by a set of complex and distributed processes that occur in multiple brain areas. Interestingly, dual-coil transcranial magnetic stimulation (TMS) is a relevant technique to probe effective connectivity between cortical areas, with a high temporal resolution. In the current systematic review, we aimed at providing a detailed picture of the cortico-cortical interactions underlying action preparation focusing on dual-coil TMS studies. We considered four theoretical processes (impulse control, action selection, movement initiation and action reprogramming) and one task modulator (movement complexity). The main findings highlight 1) the interplay between primary motor cortex (M1) and premotor, prefrontal and parietal cortices during action preparation, 2) the varying (facilitatory or inhibitory) cortico-cortical influence depending on the theoretical processes and the TMS timing, and 3) the key role of the supplementary motor area-M1 interactions that shape the preparation of simple and complex movements. These findings are of particular interest for clinical perspectives, with a need to better characterize functional connectivity deficiency in clinical population with altered action preparation.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Dylan Rannaud Monany
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France.
| |
Collapse
|
35
|
The relationship of agonist muscle single motor unit firing rates and elbow extension limb movement kinematics. Exp Brain Res 2021; 239:2755-2766. [PMID: 34240233 DOI: 10.1007/s00221-021-06168-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
This study explored the relationship between single motor unit (MU) firing rates (FRs) and limb movement velocity during voluntary shortening contractions when accounting for the effects of time course variability between different kinematic comparisons. Single MU trains recorded by intramuscular electromyography in agonist muscles of the anconeus (n = 15 participants) and lateral head of the triceps brachii (n = 6) were measured during each voluntary shortening contraction. Elbow extension movements consisted of a targeted velocity occurring along the sagittal plane at 25, 50, 75 and 100% of maximum velocity. To account for the effect of differences in contraction time course between parameters, each MU potential was time locked throughout the shortening muscle contraction and linked with separated kinematic parameters of the elbow joint. Across targeted movement velocities, instantaneous FRs were significantly correlated with elbow extension rate of torque development (r = 0.45) and torque (r = 0.40), but FRs were not correlated with velocity (r = 0.03, p = n.s.). Instead, FRs had a weak indirect relationship with limb movement velocity and position assessed through multiple correlation of the stepwise kinematic progression. Results show that voluntary descending synaptic inputs correspond to a more direct relationship between agonist muscle FRs and torque during shortening contractions, but not velocity. Instead, FRs were indirectly correlated to preparing the magnitude of imminent movement velocity of the lagging limb through torque.
Collapse
|
36
|
Ewen JB, Puts NA, Mostofsky SH, Horn PS, Gilbert DL. Associations between Task-Related Modulation of Motor-Evoked Potentials and EEG Event-Related Desynchronization in Children with ADHD. Cereb Cortex 2021; 31:5526-5535. [PMID: 34231840 PMCID: PMC8568000 DOI: 10.1093/cercor/bhab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) have previously shown a decreased magnitude of event-related desynchronization (ERD) during a finger-tapping task, with a large between-group effect. Because the neurobiology underlying several transcranial magnetic stimulation (TMS) measures have been studied in multiple contexts, we compared ERD and 3 TMS measures (resting motor threshold [RMT], short-interval cortical inhibition [SICI], and task-related up-modulation [TRUM]) within 14 participants with ADHD (ages 8-12 years) and 17 control children. The typically developing (TD) group showed a correlation between greater RMT and greater magnitude of alpha (10-13 Hz, here) ERD, and there was no diagnostic interaction effect, consistent with a rudimentary model of greater needed energy input to stimulate movement. Similarly, inhibition measured by SICI was also greater in the TD group when the magnitude of movement-related ERD was higher; there was a miniscule diagnostic interaction effect. Finally, TRUM during a response-inhibition task showed an unanticipated pattern: in TD children, the greater TMS task modulation (TRUM) was associated with a smaller magnitude of ERD during finger-tapping. The ADHD group showed the opposite direction of association: Greater TRUM was associated with larger magnitude of ERD. Prior EEG results have demonstrated specific alterations of task-related modulation of cortical physiology, and the current results provide a fulcrum for multimodal study.
Collapse
Affiliation(s)
- Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolaas A Puts
- Neurodevelopmental Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Stewart H Mostofsky
- Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul S Horn
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Donald L Gilbert
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Illman M, Laaksonen K, Liljeström M, Piitulainen H, Forss N. The effect of alertness and attention on the modulation of the beta rhythm to tactile stimulation. Physiol Rep 2021; 9:e14818. [PMID: 34173721 PMCID: PMC8234481 DOI: 10.14814/phy2.14818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/03/2023] Open
Abstract
Beta rhythm modulation has been used as a biomarker to reflect the functional state of the sensorimotor cortex in both healthy subjects and patients. Here, the effect of reduced alertness and active attention to the stimulus on beta rhythm modulation was investigated. Beta rhythm modulation to tactile stimulation of the index finger was recorded simultaneously with MEG and EEG in 23 healthy subjects (mean 23, range 19–35 years). The temporal spectral evolution method was used to obtain the peak amplitudes of beta suppression and rebound in three different conditions (neutral, snooze, and attention). Neither snooze nor attention to the stimulus affected significantly the strength of beta suppression nor rebound, although a decrease in suppression and rebound strength was observed in some subjects with a more pronounced decrease of alertness. The reduction of alertness correlated with the decrease of suppression strength both in MEG (left hemisphere r = 0.49; right hemisphere r = 0.49, *p < 0.05) and EEG (left hemisphere r = 0.43; right hemisphere r = 0.72, **p < 0.01). The results indicate that primary sensorimotor cortex beta suppression and rebound are not sensitive to slightly reduced alertness nor active attention to the stimulus at a group level. Hence, tactile stimulus‐induced beta modulation is a suitable tool for assessing the sensorimotor cortex function at a group level. However, subjects’ alertness should be maintained high during recordings to minimize individual variability.
Collapse
Affiliation(s)
- Mia Illman
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Kristina Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Mia Liljeström
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Nina Forss
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Cirillo G, Di Vico IA, Emadi Andani M, Morgante F, Sepe G, Tessitore A, Bologna M, Tinazzi M. Changes in Corticospinal Circuits During Premovement Facilitation in Physiological Conditions. Front Hum Neurosci 2021; 15:684013. [PMID: 34234660 PMCID: PMC8255790 DOI: 10.3389/fnhum.2021.684013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
Changes in corticospinal excitability have been well documented in the preparatory period before movement, however, their mechanisms and physiological role have not been entirely elucidated. We aimed to investigate the functional changes of excitatory corticospinal circuits during a reaction time (RT) motor task (thumb abduction) in healthy subjects (HS). 26 HS received single pulse transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). After a visual go signal, we calculated RT and delivered TMS at three intervals (50, 100, and 150 ms) within RT and before movement onset, recording motor evoked potentials (MEP) from the abductor pollicis brevis (APB) and the task-irrelevant abductor digiti minimi (ADM). We found that TMS increased MEPAPB amplitude when delivered at 150, 100, and 50 ms before movement onset, demonstrating the occurrence of premovement facilitation (PMF). MEP increase was greater at the shorter interval (MEP50) and restricted to APB (no significant effects were detected recording from ADM). We also reported time-dependent changes of the RT and a TMS side-dependent effect on MEP amplitude (greater on the dominant side). In conclusion, we here report changes of RT and side-dependent, selective and facilitatory effects on the MEPAPB amplitude when TMS is delivered before movement onset (PMF), supporting the role of excitatory corticospinal mechanisms at the basis of the selective PMF of the target muscle during the RT protocol.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Laboratory of Morphology of Neuronal Network, Division of Human Anatomy, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Movement Disorders Division, Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Antonella Di Vico
- Movement Disorders Division, Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mehran Emadi Andani
- Movement Disorders Division, Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom.,Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| | - Giovanna Sepe
- Laboratory of Morphology of Neuronal Network, Division of Human Anatomy, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Division of Neurology and Neurophysiopathology, Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Michele Tinazzi
- Movement Disorders Division, Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
39
|
Lockyer EJ, Compton CT, Forman DA, Pearcey GE, Button DC, Power KE. Moving forward: methodological considerations for assessing corticospinal excitability during rhythmic motor output in humans. J Neurophysiol 2021; 126:181-194. [PMID: 34133230 DOI: 10.1152/jn.00027.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of transcranial magnetic stimulation to assess the excitability of the central nervous system to further understand the neural control of human movement is expansive. The majority of the work performed to-date has assessed corticospinal excitability either at rest or during relatively simple isometric contractions. The results from this work are not easily extrapolated to rhythmic, dynamic motor outputs, given that corticospinal excitability is task-, phase-, intensity-, direction-, and muscle-dependent (Power KE, Lockyer EJ, Forman DA, Button DC. Appl Physiol Nutr Metab 43: 1176-1185, 2018). Assessing corticospinal excitability during rhythmic motor output, however, involves technical challenges that are to be overcome, or at the minimum considered, when attempting to design experiments and interpret the physiological relevance of the results. The purpose of this narrative review is to highlight the research examining corticospinal excitability during a rhythmic motor output and, importantly, to provide recommendations regarding the many factors that must be considered when designing and interpreting findings from studies that involve limb movement. To do so, the majority of work described herein refers to work performed using arm cycling (arm pedaling or arm cranking) as a model of a rhythmic motor output used to examine the neural control of human locomotion.
Collapse
Affiliation(s)
- Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Chris T Compton
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Davis A Forman
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gregory E Pearcey
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Shirley Ryan Ability Lab, Chicago, Illinois
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
40
|
Morera Maiquez B, Jackson GM, Jackson SR. Examining the neural antecedents of tics in Tourette syndrome using electroencephalography. J Neuropsychol 2021; 16:1-20. [PMID: 33949779 DOI: 10.1111/jnp.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterized by the occurrence of motor and vocal tics. TS is associated with cortical-striatal-thalamic-cortical circuit dysfunction and hyper-excitability of cortical limbic and motor regions that lead to the occurrence of tics. Importantly, individuals with TS often report that their tics are preceded by premonitory sensory/urge phenomena (PU) that are described as uncomfortable bodily sensations that precede the execution of a tic and are experienced as an urge for motor discharge. While tics are most often referred to as involuntary movements, it has been argued by some that tics should be viewed as voluntary movements that are executed in response to the presence of PU. To investigate this issue further, we conducted a study using electroencephalography (EEG). We recorded movement-related EEG (mu- and beta-band oscillations) during (1) the immediate period leading up to the execution of voluntary movements by a group of individuals with TS and a group of matched healthy control participants, and (2) the immediate period leading up to the execution of a tic in a group of individuals with TS. We demonstrate that movement-related mu and beta oscillations are not reliably observed prior to tics in individuals with TS. We interpret this effect as reflecting the greater involvement of a network of brain areas, including the insular and cingulate cortices, the basal ganglia and the cerebellum, in the generation of tics in TS. We also show that beta-band desynchronization does occur when individuals with TS initiate voluntary movements, but, in contrast to healthy controls, desynchronization of mu-band oscillations is not observed during the execution of voluntary movements for individuals with TS. We interpret this finding as reflecting a dysfunction of physiological inhibition in TS, thereby contributing to an impaired ability to suppress neuronal populations that may compete with movement preparation processes.
Collapse
Affiliation(s)
| | - Georgina M Jackson
- Institute of Mental Health, School of Medicine, University of Nottingham, UK
| | - Stephen R Jackson
- School of Psychology, University of Nottingham, UK.,Institute of Mental Health, School of Medicine, University of Nottingham, UK
| |
Collapse
|
41
|
Detrick JA, Zink C, Rosch KS, Horn PS, Huddleston DA, Crocetti D, Wu SW, Pedapati EV, Wassermann EM, Mostofsky SH, Gilbert DL. Motor cortex modulation and reward in children with attention-deficit/hyperactivity disorder. Brain Commun 2021; 3:fcab093. [PMID: 34041478 PMCID: PMC8134834 DOI: 10.1093/braincomms/fcab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 12/04/2022] Open
Abstract
Attention-deficit/hyperactivity disorder, the most prevalent developmental disorder in childhood, is a biologically heterogenous condition characterized by impaired attention and impulse control as well as motoric hyperactivity and anomalous motor skill development. Neuropsychological testing often demonstrates impairments in motivation and reward-related decision making in attention-deficit/hyperactivity disorder, believed to indicate dysfunction of the dopamine reward pathway. Development of reliable, non-invasive, easily obtained and quantitative biomarkers correlating with the presence and severity of clinical symptoms and impaired domains of function could aid in identifying meaningful attention-deficit/hyperactivity disorder subgroups and targeting appropriate treatments. To this end, 55 (37 male) 8–12-year-old children with attention-deficit/hyperactivity disorder and 50 (32 male) age-matched, typically-developing controls were enrolled in a transcranial magnetic stimulation protocol—used previously to quantify cortical disinhibition in both attention-deficit/hyperactivity disorder and Parkinson’s Disease—with a child-friendly reward motivation task. The primary outcomes were reward task-induced changes in short interval cortical inhibition and up-modulation of motor evoked potential amplitudes, evaluated using mixed model, repeated measure regression. Our results show that both reward cues and reward receipt reduce short-interval cortical inhibition, and that baseline differences by diagnosis (less inhibition in attention-deficit/hyperactivity disorder) were no longer present when reward was cued or received. Similarly, both reward cues and reward receipt up-modulated motor evoked potential amplitudes, but, differentiating the two groups, this Task-Related-Up-Modulation was decreased in children with attention-deficit/hyperactivity disorder. Furthermore, more severe hyperactive/impulsive symptoms correlated significantly with less up-modulation with success in obtaining reward. These results suggest that in children with attention-deficit/hyperactivity disorder, short interval cortical inhibition may reflect baseline deficiencies as well as processes that normalize performance under rewarded conditions. Task-Related-Up-Modulation may reflect general hypo-responsiveness in attention-deficit/hyperactivity disorder to both reward cue and, especially in more hyperactive/impulsive children, to successful reward receipt. These findings support transcranial magnetic stimulation evoked cortical inhibition and task-induced excitability as biomarkers of clinically relevant domains of dysfunction in childhood attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Jordan A Detrick
- University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caroline Zink
- Baltimore Research and Education Foundation, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Keri Shiels Rosch
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuropsychology, Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Paul S Horn
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David A Huddleston
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Deana Crocetti
- Department of Neuropsychology, Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Steve W Wu
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Stewart H Mostofsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuropsychology, Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald L Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
42
|
Schurger A, Hu P'B, Pak J, Roskies AL. What Is the Readiness Potential? Trends Cogn Sci 2021; 25:558-570. [PMID: 33931306 PMCID: PMC8192467 DOI: 10.1016/j.tics.2021.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
The readiness potential (RP), a slow buildup of electrical potential recorded at the scalp using electroencephalography, has been associated with neural activity involved in movement preparation. It became famous thanks to Benjamin Libet (Brain 1983;106:623-642), who used the time difference between the RP and self-reported time of conscious intention to move to argue that we lack free will. The RP's informativeness about self-generated action and derivatively about free will has prompted continued research on this neural phenomenon. Here, we argue that recent advances in our understanding of the RP, including computational modeling of the phenomenon, call for a reassessment of its relevance for understanding volition and the philosophical problem of free will.
Collapse
Affiliation(s)
- Aaron Schurger
- Department of Psychology, Crean College of Health and Behavioral Sciences, Chapman University, One University Drive, Orange, CA 92867, USA; Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, 14725 Alton Parkway, Irvine, CA 92618, USA; INSERM, Cognitive Neuroimaging Unit, NeuroSpin Center, Gif sur Yvette 91191, France; Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, I2BM, NeuroSpin Center, Gif sur Yvette 91191, France.
| | - Pengbo 'Ben' Hu
- Department of Linguistics and Cognitive Science, Pomona College, Claremont, CA 91711, USA
| | - Joanna Pak
- Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, 14725 Alton Parkway, Irvine, CA 92618, USA
| | - Adina L Roskies
- Department of Philosophy and Program in Cognitive Science, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
43
|
Stimulation of Different Sectors of the Human Dorsal Premotor Cortex Induces a Shift from Reactive to Predictive Action Strategies and Changes in Motor Inhibition: A Dense Transcranial Magnetic Stimulation (TMS) Mapping Study. Brain Sci 2021; 11:brainsci11050534. [PMID: 33923217 PMCID: PMC8146001 DOI: 10.3390/brainsci11050534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Delayed motor tasks require timely interaction between immobility and action. The neural substrates of these processes probably reside in the premotor and motor circuits; however, fine-grained anatomical/functional information is still lacking. Participants performed a delayed simple reaction task, structured as a ready-set-go sequence, with a fixed, predictable, SET-period. Responses were given with lip movements. During the SET-period, we performed a systematic dense-mapping of the bilateral dorsal premotor region (dPM) by means of single transcranial magnetic stimulation (TMS) pulses on an 18-spot mapping grid, interleaved with sham TMS which served as a baseline. Reaction times (RTs) in TMS trials over each grid spot were compared to RTs in sham trials to build a statistical parametric z-map. The results reveal a rostro-caudal functional gradient in the dPM. TMS of the rostral dPM induced a shift from reactive towards predictive response strategies. TMS of the caudal dPM interfered with the SET-period duration. By means of dense TMS mapping, we have drawn a putative functional map of the role of the dPM during the SET-period. A higher-order rostral component is involved in setting action strategies and a caudal, lower-order, part is probably involved in the inhibitory control of motor output.
Collapse
|
44
|
MacDonald HJ, Laksanaphuk C, Day A, Byblow WD, Jenkinson N. The role of interhemispheric communication during complete and partial cancellation of bimanual responses. J Neurophysiol 2021; 125:875-886. [PMID: 33567982 DOI: 10.1152/jn.00688.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precise control of upper limb movements in response to external stimuli is vital to effectively interact with the environment. Accurate execution of bimanual movement is known to rely on finely orchestrated interhemispheric communication between the primary motor cortices (M1s). However, relatively little is known about the role of interhemispheric communication during sudden cancellation of prepared bimanual movement. The current study investigated the role of interhemispheric interactions during complete and partial cancellation of bimanual movement. In two experiments, healthy young human participants received transcranial magnetic stimulation to both M1s during a bimanual response inhibition task. The increased corticomotor excitability in anticipation of bimanual movement was accompanied by a release of inhibition from both M1s. After a stop cue, inhibition was reengaged onto both hemispheres to successfully cancel the complete bimanual response. However, when the stop cue signaled partial cancellation (stopping of one digit only), inhibition was reengaged with regard to the cancelled digit, but the responding digit representation was facilitated. This bifurcation in interhemispheric communication between M1s occurred 75 ms later in the more difficult condition when the nondominant, as opposed to dominant, hand was still responding. Our results demonstrate that interhemispheric communication is integral to response inhibition once a bimanual response has been prepared. Interestingly, M1-M1 interhemispheric circuitry does not appear to be responsible for the nonselective suppression of all movement components that has been observed during partial cancellation. Instead such interhemispheric communication enables uncoupling of bimanual response components and facilitates the selective initiation of just the required unimanual movement.NEW & NOTEWORTHY We provide the first evidence that interhemispheric communication plays an important role during sudden movement cancellation of two-handed responses. Simultaneously increased inhibition onto both hemispheres assists with two-handed movement cancellation. However, this network is not responsible for the widespread suppression of motor activity observed when only one of the two hands is cancelled. Instead, communication between hemispheres enables the separation of motor activity for the two hands and helps to execute the required one-handed response.
Collapse
Affiliation(s)
- Hayley J MacDonald
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Chotica Laksanaphuk
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathumthani, Thailand
| | - Alice Day
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Winston D Byblow
- Department of Exercise Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
45
|
Baudry S, Duchateau J. Changes in corticospinal excitability during the preparation phase of ballistic and ramp contractions. J Physiol 2021; 599:1551-1566. [PMID: 33481277 DOI: 10.1113/jp281093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/20/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Changes in corticospinal excitability prior to a contraction may depend on its characteristics, including the rate of torque development. This study compared the specific modulation of cortical and spinal excitability during the preparation phase (last 500 ms before contraction) of fast (ballistic) and ramp contractions of ankle dorsiflexors, using transcranial magnetic stimulation and peripheral nerve stimulation. The results indicate earlier changes at the cortical than at the spinal level during the preparation phase of both contraction types. However, these adjustments are delayed prior to ballistic relative to ramp contractions. This study suggests that the time course of change in cortical and spinal excitability during the preparation phase of a voluntary action is specific to the intended rate of torque development of the upcoming contraction. ABSTRACT The present study investigated cortical and spinal excitability during the preparation phase of ballistic (BAL) and ramp (RAMP) isometric contractions. To this end, young adults performed BAL and RAMP (1500 ms torque rise time) contractions, reaching a similar torque level, with the ankle dorsiflexor muscles. Transcranial magnetic stimulation of the motor cortex was randomly applied to record motor evoked potentials (MEP) in the tibialis anterior during the last 500 ms preceding the contraction (n = 16). Short-interval intracortical inhibition (SICI; n = 10) and spinal motor neurone excitability (F-wave occurrence; n = 8) were also assessed during this period. Data were averaged over 100 ms time windows beginning 500 ms prior to the onset of contractions. An increase in MEP amplitude and a decrease in SICI were observed from the 200-100 ms and 300-200 ms time windows prior to BAL and RAMP contractions (P < 0.05), respectively, with greater changes prior to RAMP than to BAL within the 300-200 ms time window (P < 0.05). F-wave occurrence, used to assess spinal motor neurone excitability, increased prior to RAMP (200-100 ms, P < 0.05) but not BAL contractions. Data obtained in a few participants during the last 100 ms confirmed a delayed and steeper rise in corticospinal excitability prior to BAL contractions. These results indicate earlier changes at the cortical than at the spinal level, with delayed changes prior to BAL contractions. This study suggests that the time course of change in cortical and spinal excitability during the preparation phase of a voluntary action is specific to the intended rate of torque development of the upcoming contraction.
Collapse
Affiliation(s)
- Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology, ULB-Neurosciences Institute (UNI), Faculty for Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacques Duchateau
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology, ULB-Neurosciences Institute (UNI), Faculty for Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
46
|
Nguyen AT, Jacobs LA, Tresilian JR, Lipp OV, Marinovic W. Preparatory suppression and facilitation of voluntary and involuntary responses to loud acoustic stimuli in an anticipatory timing task. Psychophysiology 2020; 58:e13730. [PMID: 33244760 DOI: 10.1111/psyp.13730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
In this study, we sought to characterize the effects of intense sensory stimulation on voluntary and involuntary behaviors at different stages of preparation for an anticipated action. We presented unexpected loud acoustic stimuli (LAS) at-rest and at three critical times during active movement preparation (-1,192, -392, and 0 ms relative to expected voluntary movement onset) to probe the state of the nervous system, and measured their effect on voluntary and involuntary motor actions (finger-press and eye-blink startle reflex, respectively). Voluntary responses were facilitated by LAS presented during active preparation, leading to earlier and more forceful responses compared to control and LAS at-rest. Notably, voluntary responses were significantly facilitated on trials where the LAS was presented early during preparation (-1,192 ms). Eye-blink reflexes to the LAS at -392 ms were significantly reduced and delayed compared to blinks elicited at other time-points, indicating suppression of sub-cortical excitability. However, voluntary responses on these trials were still facilitated by the LAS. The results provide insight into the mechanisms involved in preparing anticipatory actions. Induced activation can persist in the nervous system and can modulate subsequent actions for a longer time-period than previously thought, highlighting that movement preparation is a continuously evolving process that is susceptible to external influence throughout the preparation period. Suppression of sub-cortical excitability shortly before movement onset is consistent with previous work showing corticospinal suppression which may be a necessary step before the execution of any voluntary response.
Collapse
Affiliation(s)
- An T Nguyen
- School of Psychology, Curtin University, Perth, WA, Australia
| | - Le-Anne Jacobs
- School of Psychology, Curtin University, Perth, WA, Australia
| | | | - Ottmar V Lipp
- School of Psychology, Curtin University, Perth, WA, Australia
| | | |
Collapse
|
47
|
Xia X, Wang D, Song Y, Zhu M, Li Y, Chen R, Zhang J. Involvement of the primary motor cortex in the early processing stage of the affective stimulus-response compatibility effect in a manikin task. Neuroimage 2020; 225:117485. [PMID: 33132186 DOI: 10.1016/j.neuroimage.2020.117485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 11/18/2022] Open
Abstract
Compatible (positive approaching and negative avoiding) and incompatible (positive avoiding and negative approaching) behavior are of great significance for biological adaptation and survival. Previous research has found that reaction times of compatible behavior are shorter than the incompatible behavior, which is termed the stimulus-response compatibility (SRC) effect. However, the underlying neurophysiological mechanisms of the SRC effect applied to affective stimuli is still unclear. Here, we investigated preparatory activities in both the left and right primary motor cortex (M1) before the execution of an approaching-avoiding behavior using the right index finger in a manikin task based on self-identity. The results showed significantly shorter reaction times for compatible than incompatible behavior. Most importantly, motor-evoked potential (MEP) amplitudes from left M1 stimulation were significantly higher during compatible behavior than incompatible behavior at 150 and 200 ms after stimulus presentation, whereas the reversed was observed for right M1 stimulation with lower MEP amplitude in compatible compared to incompatible behavior at 150 ms. The current findings revealed the compatibility effect at both behavioral and neurophysiological levels, indicating that the affective SRC effect occurs early in the motor cortices during stimulus processing, and MEP modulation at this early processing stage could be a physiological marker of the affective SRC effect.
Collapse
Affiliation(s)
- Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Dandan Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuyu Song
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Mengyan Zhu
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yansong Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
48
|
Hussain SJ, Claudino L, Bönstrup M, Norato G, Cruciani G, Thompson R, Zrenner C, Ziemann U, Buch E, Cohen LG. Sensorimotor Oscillatory Phase-Power Interaction Gates Resting Human Corticospinal Output. Cereb Cortex 2020; 29:3766-3777. [PMID: 30496352 DOI: 10.1093/cercor/bhy255] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Oscillatory activity within sensorimotor networks is characterized by time-varying changes in phase and power. The influence of interactions between sensorimotor oscillatory phase and power on human motor function, like corticospinal output, is unknown. We addressed this gap in knowledge by delivering transcranial magnetic stimulation (TMS) to the human motor cortex during electroencephalography recordings in 20 healthy participants. Motor evoked potentials, a measure of corticospinal excitability, were categorized offline based on the mu (8-12 Hz) and beta (13-30 Hz) oscillatory phase and power at the time of TMS. Phase-dependency of corticospinal excitability was evaluated across a continuous range of power levels using trial-by-trial linear mixed-effects models. For mu, there was no effect of PHASE or POWER (P > 0.51), but a significant PHASE × POWER interaction (P = 0.002). The direction of phase-dependency reversed with changing mu power levels: corticospinal output was higher during mu troughs versus peaks when mu power was high while the opposite was true when mu power was low. A similar PHASE × POWER interaction was not present for beta oscillations (P > 0.11). We conclude that the interaction between sensorimotor oscillatory phase and power gates human corticospinal output to an extent unexplained by sensorimotor oscillatory phase or power alone.
Collapse
Affiliation(s)
- Sara J Hussain
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leonardo Claudino
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Marlene Bönstrup
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Cruciani
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Thompson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Zrenner
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str 3, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str 3, Tübingen, Germany
| | - Ethan Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Watanabe T, Nojima I, Mima T, Sugiura H, Kirimoto H. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults. Neuroimage 2020; 220:117089. [DOI: 10.1016/j.neuroimage.2020.117089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022] Open
|
50
|
Cardellicchio P, Hilt PM, Dolfini E, Fadiga L, D'Ausilio A. Beta Rebound as an Index of Temporal Integration of Somatosensory and Motor Signals. Front Syst Neurosci 2020; 14:63. [PMID: 32982705 PMCID: PMC7492746 DOI: 10.3389/fnsys.2020.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Modulation of cortical beta rhythm (15–30 Hz) is present during preparation for and execution of voluntary movements as well as during somatosensory stimulation. A rebound in beta synchronization is observed after the end of voluntary movements as well as after somatosensory stimulation and is believed to describe the return to baseline of sensorimotor networks. However, the contribution of efferent and afferent signals to the beta rebound remains poorly understood. Here, we applied electrical median nerve stimulation (MNS) to the right side followed by transcranial magnetic stimulation (TMS) on the left primary motor cortex after either 15 or 25 ms. Because the afferent volley reaches the somatosensory cortex after about 20 ms, TMS on the motor cortex was either anticipating or following the cortical arrival of the peripheral stimulus. We show modulations in different beta sub-bands and in both hemispheres, following a pattern of greater resynchronization when motor signals are paired with a peripheral one. The beta rebound in the left hemisphere (stimulated) is modulated in its lower frequency range when TMS precedes the cortical arrival of the afferent volley. In the right hemisphere (unstimulated), instead, the increase is limited to higher beta frequencies when TMS is delivered after the arrival of the afferent signal. In general, we demonstrate that the temporal integration of afferent and efferent signals plays a key role in the genesis of the beta rebound and that these signals may be carried in parallel by different beta sub-bands.
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Pauline M Hilt
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|