1
|
Chen S, Costil R, Leung FK, Feringa BL. Self-Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem Int Ed Engl 2021; 60:11604-11627. [PMID: 32936521 PMCID: PMC8248021 DOI: 10.1002/anie.202007693] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Amphiphilic molecules, comprising hydrophobic and hydrophilic moieties and the intrinsic propensity to self-assemble in aqueous environment, sustain a fascinating spectrum of structures and functions ranging from biological membranes to ordinary soap. Facing the challenge to design responsive, adaptive, and out-of-equilibrium systems in water, the incorporation of photoresponsive motifs in amphiphilic molecular structures offers ample opportunity to design supramolecular systems that enables functional responses in water in a non-invasive way using light. Here, we discuss the design of photoresponsive molecular amphiphiles, their self-assembled structures in aqueous media and at air-water interfaces, and various approaches to arrive at adaptive and dynamic functions in isotropic and anisotropic systems, including motion at the air-water interface, foam formation, reversible nanoscale assembly, and artificial muscle function. Controlling the delicate interplay of structural design, self-assembling conditions and external stimuli, these responsive amphiphiles open several avenues towards application such as soft adaptive materials, controlled delivery or soft actuators, bridging a gap between artificial and natural dynamic systems.
Collapse
Affiliation(s)
- Shaoyu Chen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Romain Costil
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Franco King‐Chi Leung
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
- Present address: State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongChina
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| |
Collapse
|
2
|
Chen S, Costil R, Leung FK, Feringa BL. Self‐Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shaoyu Chen
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Romain Costil
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Franco King‐Chi Leung
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
- Present address: State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hong Kong China
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| |
Collapse
|
3
|
Giuliano CB, Cvjetan N, Ayache J, Walde P. Multivesicular Vesicles: Preparation and Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Betterelli Giuliano
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Nemanja Cvjetan
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Jessica Ayache
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
| | - Peter Walde
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
4
|
Yan XY, Lin Z, Zhang W, Xu H, Guo QY, Liu Y, Luo J, Liu XY, Zhang R, Huang J, Liu T, Su Z, Zhang R, Zhang S, Liu T, Cheng SZD. Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Self-Assembly of Giant Lipids. Angew Chem Int Ed Engl 2020; 59:5226-5234. [PMID: 31957938 DOI: 10.1002/anie.201916149] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 12/24/2022]
Abstract
How biomembranes are self-organized to perform their functions remains a pivotal issue in biological and chemical science. Understanding the self-assembly principles of lipid-like molecules hence becomes crucial. Herein, we report the mesostructural evolution of amphiphilic sphere-rod conjugates (giant lipids), and study the roles of geometric parameters (head-tail ratio and cross-sectional area) during this course. As a prototype system, giant lipids resemble natural lipidic molecules by capturing their essential features. The self-assembly behavior of two categories of giant lipids (I-shape and T-shape, a total of 8 molecules) is demonstrated. A rich variety of mesostructures is constructed in solution state and their molecular packing models are rationally understood. Giant lipids recast the phase behavior of natural lipids to a certain degree and the abundant self-assembled morphologies reveal distinct physiochemical behaviors when geometric parameters deviate from natural analogues.
Collapse
Affiliation(s)
- Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Zhiwei Lin
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Xu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Qing-Yun Guo
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Yuchu Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Jiancheng Luo
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Xian-You Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiahao Huang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Tong Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Zebin Su
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Ruimeng Zhang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Shuailin Zhang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Tianbo Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| |
Collapse
|
5
|
Yan X, Lin Z, Zhang W, Xu H, Guo Q, Liu Y, Luo J, Liu X, Zhang R, Huang J, Liu T, Su Z, Zhang R, Zhang S, Liu T, Cheng SZD. Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Self‐Assembly of Giant Lipids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Yun Yan
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Zhiwei Lin
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Hui Xu
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Qing‐Yun Guo
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Yuchu Liu
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Jiancheng Luo
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Xian‐You Liu
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Jiahao Huang
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Tong Liu
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Zebin Su
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Ruimeng Zhang
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Shuailin Zhang
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Tianbo Liu
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
6
|
Guo C, Xia D, Yang Y, Zuo X. Synthesis of π-Conjugated Benzocyclotrimers. CHEM REC 2019; 19:2143-2156. [PMID: 30681252 DOI: 10.1002/tcr.201800160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 11/10/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), especially three branchphene benzocyclotrimers represent a series of molecules with intriguing physical and chemical properties. Benzocyclotrimers are also important precursors to construct fullerenes and graphenes. In this article, we review the recent progress in the preparation methods of π-conjugated benzocyclotrimers. In particular, cyclotrimerization reactions to construct varying shaped and edged benzocyclotrimers are illustrated. Various typical characterization methods for these materials, such as variable-temperature 1 H-NMR, single crystal X-ray analysis, density functional theory (DFT) calculations and atomic force microscope (AFM) measurements are included for discussion.
Collapse
Affiliation(s)
- Changding Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xia Zuo
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
7
|
Brendel JC, Schacher FH. Block Copolymer Self-Assembly in Solution-Quo Vadis? Chem Asian J 2018; 13:230-239. [DOI: 10.1002/asia.201701542] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Johannes C. Brendel
- Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich-Schiller-University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich-Schiller-University Jena; Philosophenweg 7 07743 Jena Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich-Schiller-University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich-Schiller-University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
8
|
Vigier-Carrière C, Boulmedais F, Schaaf P, Jierry L. Surface-Assisted Self-Assembly Strategies Leading to Supramolecular Hydrogels. Angew Chem Int Ed Engl 2018; 57:1448-1456. [PMID: 29044982 DOI: 10.1002/anie.201708629] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 01/15/2023]
Abstract
Localized molecular self-assembly processes leading to the growth of nanostructures exclusively from the surface of a material is one of the great challenges in surface chemistry. In the last decade, several works have been reported on the ability of modified or unmodified surfaces to manage the self-assembly of low-molecular-weight hydrogelators (LMWH) resulting in localized supramolecular hydrogel coatings mainly based on nanofiber architectures. This Minireview highlights all strategies that have emerged recently to initiate and localize LMWH supramolecular hydrogel formation, their related fundamental issues and applications.
Collapse
Affiliation(s)
- Cécile Vigier-Carrière
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Pierre Schaaf
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France.,Université de Strasbourg, INSERM, U1121, 11 rue Humann, 67000, Strasbourg, France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| |
Collapse
|
9
|
Vigier-Carrière C, Boulmedais F, Schaaf P, Jierry L. Oberflächenunterstützte Selbstorganisationsstrategien für supramolekulare Hydrogele. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cécile Vigier-Carrière
- Université de Strasbourg, CNRS; Institut Charles Sadron, UPR22; 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 Frankreich
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS; Institut Charles Sadron, UPR22; 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 Frankreich
| | - Pierre Schaaf
- Université de Strasbourg, CNRS; Institut Charles Sadron, UPR22; 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 Frankreich
- Université de Strasbourg; INSERM, U1121; 11 rue Humann 67000 Strasbourg Frankreich
| | - Loïc Jierry
- Université de Strasbourg, CNRS; Institut Charles Sadron, UPR22; 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 Frankreich
| |
Collapse
|
10
|
Mariani G, Kutz A, Di Z, Schweins R, Gröhn F. Inducing Hetero-aggregation of Different Azo Dyes through Electrostatic Self-Assembly. Chemistry 2017; 23:6249-6254. [DOI: 10.1002/chem.201605194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Giacomo Mariani
- Department of Chemistry and Pharmacy and Interdisciplinary Centre for Molecular Material (ICMM); Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
- DS/LSS; Institut Laue-Langevin; 71 avenue des Martyrs 38000 Grenoble France
| | - Anne Kutz
- Department of Chemistry and Pharmacy and Interdisciplinary Centre for Molecular Material (ICMM); Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Zhenyu Di
- Jülich Centre for Neutron Science; Outstation at MLZ; Lichtenbergstr. 1 85747 Garching Germany
| | - Ralf Schweins
- DS/LSS; Institut Laue-Langevin; 71 avenue des Martyrs 38000 Grenoble France
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy and Interdisciplinary Centre for Molecular Material (ICMM); Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| |
Collapse
|
11
|
Yang B, Jiang X, Guo Q, Lei T, Zhang LP, Chen B, Tung CH, Wu LZ. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O−O Bond Formation Pathways by Different Aggregation Patterns. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
12
|
Yang B, Jiang X, Guo Q, Lei T, Zhang LP, Chen B, Tung CH, Wu LZ. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O−O Bond Formation Pathways by Different Aggregation Patterns. Angew Chem Int Ed Engl 2016; 55:6229-34. [DOI: 10.1002/anie.201601653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
13
|
Gehl A, Dietzsch M, Mondeshki M, Bach S, Häger T, Panthöfer M, Barton B, Kolb U, Tremel W. Anhydrous Amorphous Calcium Oxalate Nanoparticles from Ionic Liquids: Stable Crystallization Intermediates in the Formation of Whewellite. Chemistry 2015; 21:18192-201. [DOI: 10.1002/chem.201502229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Indexed: 11/08/2022]
|
14
|
Schulz M, Binder WH. Mixed Hybrid Lipid/Polymer Vesicles as a Novel Membrane Platform. Macromol Rapid Commun 2015; 36:2031-41. [DOI: 10.1002/marc.201500344] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Matthias Schulz
- Martin-Luther University Halle-Wittenberg; Chair of Macromolecular Chemistry; Faculty of Natural Sciences II (Chemistry, Physics and Mathematics); Institute of Chemistry; D-06120 Halle (Saale) Germany
| | - Wolfgang H. Binder
- Martin-Luther University Halle-Wittenberg; Chair of Macromolecular Chemistry; Faculty of Natural Sciences II (Chemistry, Physics and Mathematics); Institute of Chemistry; D-06120 Halle (Saale) Germany
| |
Collapse
|
15
|
Matsui R, Ohtani M, Yamada K, Hikima T, Takata M, Nakamura T, Koshino H, Ishida Y, Aida T. Chemically Locked Bicelles with High Thermal and Kinetic Stability. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryoichi Matsui
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| | - Masataka Ohtani
- RIKEN Center for Emergent Material Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Kuniyo Yamada
- RIKEN Center for Emergent Material Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Takaaki Hikima
- RIKEN SPring‐8 Center, 1‐1‐1 Kouto, Sayo, Hyogo 679‐5148 (Japan)
| | - Masaki Takata
- RIKEN SPring‐8 Center, 1‐1‐1 Kouto, Sayo, Hyogo 679‐5148 (Japan)
| | - Takashi Nakamura
- RIKEN Center for Sustainable Resource Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Material Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Takuzo Aida
- RIKEN Center for Emergent Material Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| |
Collapse
|
16
|
Matsui R, Ohtani M, Yamada K, Hikima T, Takata M, Nakamura T, Koshino H, Ishida Y, Aida T. Chemically Locked Bicelles with High Thermal and Kinetic Stability. Angew Chem Int Ed Engl 2015; 54:13284-8. [PMID: 26373898 DOI: 10.1002/anie.201506781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 11/08/2022]
Abstract
In situ polymerization of a bicellar mixture composed of a phospholipid and polymerizable surfactants afforded unprecedented stable bicelles. The polymerized composite showed an aligned phase over a wide thermal range (25 to >90 °C) with excellent (2)H quadrupole splitting of the solvent signal, thus implying versatility as an alignment medium for NMR studies. Crosslinking of the surfactants also brought favorable effects on the kinetic stability and alignment morphology of the bicelles. This system could thus offer a new class of scaffolds for biomembrane models.
Collapse
Affiliation(s)
- Ryoichi Matsui
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
| | - Masataka Ohtani
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
| | - Kuniyo Yamada
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)
| | - Masaki Takata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)
| | - Takashi Nakamura
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan).
| | - Takuzo Aida
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan).,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
| |
Collapse
|
17
|
Yang G, O'Duill M, Gouverneur V, Krafft MP. Recruitment and Immobilization of a Fluorinated Biomarker Across an Interfacial Phospholipid Film using a Fluorocarbon Gas. Angew Chem Int Ed Engl 2015; 54:8402-6. [PMID: 26068966 DOI: 10.1002/anie.201502677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/21/2015] [Indexed: 01/02/2023]
Abstract
Perfluorohexane gas when introduced in the air atmosphere above a film of phospholipid self-supported on an aqueous solution of C2F5-labeled compounds causes the recruitment and immobilization of the latter in the interfacial film. When the phospholipid forms a liquid-condensed Gibbs monolayer, which is the case for dipalmitoylphosphatidylcholine (DPPC), the C2F5-labeled molecule remains trapped in the monolayer after removal of F-hexane. Investigations involve bubble profile analysis tensiometry (Gibbs films), Langmuir monolayers and microbubble experiments. The new phenomenon was utilized to incorporate a hypoxia biomarker, a C2F5-labeled nitrosoimidazole (EF5), in microbubble shells. This finding opens perspectives in the delivery of fluorinated therapeutic molecules and biomarkers.
Collapse
Affiliation(s)
- Guang Yang
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)
| | - Miriam O'Duill
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg (France).
| |
Collapse
|
18
|
Yang G, O'Duill M, Gouverneur V, Krafft MP. Recruitment and Immobilization of a Fluorinated Biomarker Across an Interfacial Phospholipid Film using a Fluorocarbon Gas. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Yu Y, Wu L, Zhi J. Diamant-Nanodrähte: Herstellung, Struktur, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Yu Y, Wu L, Zhi J. Diamond nanowires: fabrication, structure, properties, and applications. Angew Chem Int Ed Engl 2014; 53:14326-51. [PMID: 25376154 DOI: 10.1002/anie.201310803] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/12/2022]
Abstract
C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P.R. China)
| | | | | |
Collapse
|
21
|
Elias HG. Polymerization by Radiation or in Ordered States. Macromolecules 2014. [DOI: 10.1002/9783527627219.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Zhang S, Moussodia RO, Sun HJ, Leowanawat P, Muncan A, Nusbaum CD, Chelling KM, Heiney PA, Klein ML, André S, Roy R, Gabius HJ, Percec V. Mimicking Biological Membranes with Programmable Glycan Ligands Self-Assembled from Amphiphilic Janus Glycodendrimers. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Zhang S, Moussodia RO, Sun HJ, Leowanawat P, Muncan A, Nusbaum CD, Chelling KM, Heiney PA, Klein ML, André S, Roy R, Gabius HJ, Percec V. Mimicking biological membranes with programmable glycan ligands self-assembled from amphiphilic Janus glycodendrimers. Angew Chem Int Ed Engl 2014; 53:10899-903. [PMID: 24923471 DOI: 10.1002/anie.201403186] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/02/2014] [Indexed: 12/16/2022]
Abstract
An accelerated modular synthesis produced 18 amphiphilic Janus glycodendrimers with three different topologies formed from either two or one carbohydrate head groups or a mixed constellation with a noncarbohydrate hydrophilic arm. By simple injection of their THF solutions into water or buffer, all of the Janus compounds self-assembled into uniform, stable, and soft unilamellar vesicles, denoted glycodendrimersomes. The mixed constellation topology glycodendrimersomes were demonstrated to be most efficient in binding plant, bacterial, and human lectins. This evidence with biomedically relevant receptors offers a promising perspective for the application of such glycodendrimersomes in targeted drug delivery, vaccines, and other areas of nanomedicine.
Collapse
Affiliation(s)
- Shaodong Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 (USA) http://percec02.chem.upenn.edu/
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Li B, Jin H, Zhou Y, Lu Z, Yan D. Dissipative Particle Dynamics Simulation Study on Vesicles Self-Assembled from Amphiphilic Hyperbranched Multiarm Copolymers. Chem Asian J 2014; 9:2281-8. [DOI: 10.1002/asia.201402146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/27/2014] [Indexed: 11/06/2022]
|
25
|
Cheng M, Shi F, Li J, Lin Z, Jiang C, Xiao M, Zhang L, Yang W, Nishi T. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3009-3013. [PMID: 24453055 DOI: 10.1002/adma.201305177] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Macroscopic supramolecular assembly is a promising method for manufacturing macroscopic, ordered structures for tissue-engineering scaffolds. A flexible spacing coating is shown to overcome undesired surface and size effects and to enable assembly of macroscopic cubes with host/guest groups. The assembled pairs disassembled upon introduction of competitive guest molecules, thereby demonstrating a multivalent assembly mechanism.
Collapse
Affiliation(s)
- Mengjiao Cheng
- State Key Laboratory of Chemical Resource, Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
1,2,4-Oxadiazole-Based Bent-Core Liquid Crystals with Cybotactic Nematic Phases. Chemphyschem 2014; 15:1323-35. [DOI: 10.1002/cphc.201301070] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 11/07/2022]
|
27
|
Marchi-Artzner V, Gulik-Krzywicki T, Guedeau-Boudeville MA, Gosse C, Sanderson JM, Dedieu JC, Lehn JM. Selective adhesion, lipid exchange and membrane-fusion processes between vesicles of various sizes bearing complementary molecular recognition groups. Chemphyschem 2014; 2:367-76. [PMID: 23686958 DOI: 10.1002/1439-7641(20010618)2:6<367::aid-cphc367>3.0.co;2-#] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2000] [Revised: 01/12/2001] [Indexed: 11/10/2022]
Abstract
Equimolar mixtures of large unilamellar vesicles (LUVs) obtained from mixtures of egg lecithin and lipids containing complementary hydrogen bonding head groups (barbituric acid (BAR) and 2,4,6-triaminopyrimidine (TAP)) were shown to aggregate and fuse. These events have been studied in detail using electron microscopy and dynamic light scattering, and by fluorimetry using membrane or water-soluble fluorescence probes. It was shown that aggregation was followed by two competitive processes: a) lipid mixing leading to redispersion of the vesicles; b) fusion events generating much larger vesicles. In order to better understand the nature of the interaction, the effects of ionic strength and surface concentration of recognition lipids on the aggregation process were investigated by dynamic light scattering. Additionally, it was possible to inhibit the aggregation kinetics through addition of a soluble barbituric acid competitor. The study was extended to giant unilamellar vesicles (GUVs) to investigate the size effect and visualise the phenomena in situ. The interactions between complementary LUVs and GUVs or GUVs and GUVs were studied by optical microscopy using dual fluorescent labelling of both vesicle populations. A selective adhesion of LUVs onto GUVs was observed by electron and optical microscopies, whereas no aggregation took place in case of a GUV/GUV mixture. Furthermore, a fusion assay of GUV and LUV using the difference of size between GUV and LUV and calceine self-quenching showed that no mixing between the aqueous pools occured.
Collapse
Affiliation(s)
- V Marchi-Artzner
- Laboratoire de Chimie des Interactions Moléculaires, UPR 285, Collège de France, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang X, Görl D, Stepanenko V, Würthner F. Hierarchical Growth of Fluorescent Dye Aggregates in Water by Fusion of Segmented Nanostructures. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308963] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Zhang X, Görl D, Stepanenko V, Würthner F. Hierarchical growth of fluorescent dye aggregates in water by fusion of segmented nanostructures. Angew Chem Int Ed Engl 2013; 53:1270-4. [PMID: 24352910 DOI: 10.1002/anie.201308963] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Indexed: 12/27/2022]
Abstract
Dye aggregates are becoming increasingly attractive for diverse applications, in particular as organic electronic and sensor materials. However, the growth processes of such aggregates from molecular to small assemblies up to nanostructures is still not properly understood, limiting the design of materials' functional properties. Here we elucidate the supramolecular growth process for an outstanding class of functional dyes, perylene bisimides (PBIs), by transmission electron microscopy (TEM), cryogenic scanning electron microscopy (cryo-SEM), and atomic force microscopy (AFM). Our studies reveal a sequential growth of amphiphilic PBI dyes from nanorods into nanoribbons in water by fusion and fission processes. More intriguingly, the fluorescence observed for higher hierarchical order nanoribbons was enhanced relative to that of nanorods. Our results provide insight into the relationship between molecular, morphological, and functional properties of self-assembled organic materials.
Collapse
Affiliation(s)
- Xin Zhang
- Universität Würzburg, Center for Nanosystems Chemistry and Institut für Organische Chemie, Am Hubland, 97074 Würzburg (Germany)
| | | | | | | |
Collapse
|
30
|
Tschierske C. Entwicklung struktureller Komplexität durch Selbstorganisation in flüssigkristallinen Systemen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300872] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Tschierske C. Development of structural complexity by liquid-crystal self-assembly. Angew Chem Int Ed Engl 2013; 52:8828-78. [PMID: 23934786 DOI: 10.1002/anie.201300872] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 11/09/2022]
Abstract
Since the discovery of the liquid-crystalline state of matter 125 years ago, this field has developed into a scientific area with many facets. This Review presents recent developments in the molecular design and self-assembly of liquid crystals. The focus is on new exciting soft-matter structures distinct from the usually observed nematic, smectic, and columnar phases. These new structures have enhanced complexity, including multicompartment and cellular structures, periodic and quasiperiodic arrays of spheres, and new emergent properties, such as ferroelctricity and spontaneous achiral symmetry-breaking. Comparisons are made with developments in related fields, such as self-assembled monolayers, multiblock copolymers, and nanoparticle arrays. Measures of structural complexity used herein are the size of the lattice, the number of distinct compartments, the dimensionality, and the logic depth of the resulting supramolecular structures.
Collapse
Affiliation(s)
- Carsten Tschierske
- Institut für Chemie, Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle Saale, Germany.
| |
Collapse
|
32
|
Kuritani M, Tashiro S, Shionoya M. Organic and Organometallic Nanofibers Formed by Supramolecular Assembly of Diamond-Shaped Macrocyclic Ligands and PdIIComplexes. Chem Asian J 2013; 8:1368-71. [DOI: 10.1002/asia.201300209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Indexed: 11/12/2022]
|
33
|
|
34
|
Diederich F. 125 Years of Chemistry in the Mirror of “Angewandte”. Angew Chem Int Ed Engl 2013; 52:2714-42. [DOI: 10.1002/anie.201300056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Indexed: 01/09/2023]
|
35
|
Li L, Rosenthal M, Zhang H, Hernandez JJ, Drechsler M, Phan KH, Rütten S, Zhu X, Ivanov DA, Möller M. Light-Switchable Vesicles from Liquid-Crystalline Homopolymer-Surfactant Complexes. Angew Chem Int Ed Engl 2012; 51:11616-9. [DOI: 10.1002/anie.201205660] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/06/2012] [Indexed: 11/08/2022]
|
36
|
Li L, Rosenthal M, Zhang H, Hernandez JJ, Drechsler M, Phan KH, Rütten S, Zhu X, Ivanov DA, Möller M. Light-Switchable Vesicles from Liquid-Crystalline Homopolymer-Surfactant Complexes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Japanische Gesellschaft für Polymerwissenschaften: Internationaler Preis: E. W. Meijer, A. Persoons und D. A. Tirrell / Ehrenmitgliedschaft: H. Ringsdorf. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
SPSJ International Award: E. W. Meijer, A. Persoons, and D. A. Tirrell / SPSJ Honorary Membership: H. Ringsdorf. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/anie.201202984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Görl D, Zhang X, Würthner F. Molecular assemblies of perylene bisimide dyes in water. Angew Chem Int Ed Engl 2012; 51:6328-48. [PMID: 22573415 DOI: 10.1002/anie.201108690] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Indexed: 01/28/2023]
Abstract
Perylene bisimides are among the most valuable functional dyes and have numerous potential applications. As a result of their chemical robustness, photostability, and outstanding optical and electronic properties, these dyes have been applied as pigments, fluorescence sensors, and n-semiconductors in organic electronics and photovoltaics. Moreover, the extended quadrupolar π system of this class of dyes has facilitated the construction of numerous supramolecular architectures with fascinating photophysical properties. However, the supramolecular approach to the formation of perylene bisimide aggregates has been restricted mostly to organic media. Pleasingly, considerable progress has been made in the last few years in developing water-soluble perylene bisimides and their application in aqueous media. This Review provides an up-to-date overview on the self-assembly of perylene bisimides through π-π interactions in aqueous media. Synthetic strategies for the preparation of water-soluble perylene bisimides and the influence of water on the π-π stacking of perylene bisimides as well as the resulting applications are discussed.
Collapse
Affiliation(s)
- Daniel Görl
- Universität Würzburg, Institut für Organische Chemie and Center for Nanosystems Chemistry, Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|
40
|
Görl D, Zhang X, Würthner F. Molekülverbände von Perylenbisimid-Farbstoffen in Wasser. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108690] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Zhao P, Astruc D. Docetaxel nanotechnology in anticancer therapy. ChemMedChem 2012; 7:952-72. [PMID: 22517723 DOI: 10.1002/cmdc.201200052] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/16/2012] [Indexed: 01/05/2023]
Abstract
Taxanes have been recognized as a family of very efficient anticancer drugs, but the formulation in use for the two main taxanes-Taxol for paclitaxel and Taxotere for docetaxel-have shown dramatic side effects. Whereas several new formulations for paclitaxel have recently appeared, such as Abraxane and others currently in various phases of clinical trials, there is no new formulation in clinical trials for the other main taxane, docetaxel, except BIND-014, a polymeric nanoparticle, which recently entered phase I clinical testing. Therefore, we review herein the state of the art and recent abundance in published results of academic approaches toward nanotechnology-based drug-delivery systems containing nanocarriers and targeting agents for docetaxel formulations. These efforts will certainly enrich the spectrum of docetaxel treatments in the near future. Taxotere's systemic toxicity, low water solubility, and other side effects are significant problems that must be overcome. To avoid the limitations of docetaxel in clinical use, researchers have developed efficient drug-delivery assemblies that consist of a nanocarrier, a targeting agent, and the drug. A wide variety of such engineered nanosystems have been shown to transport and eventually vectorize docetaxel more efficiently than Taxotere in vitro, in vivo, and in pre-clinical administration. Recent progress in drug vectorization has involved a combined therapy and diagnostic ("theranostic") approach in a single drug-delivery vector and could significantly improve the efficiency of such an anticancer drug as well as other drug types.
Collapse
Affiliation(s)
- Pengxiang Zhao
- ISM, UMR CNRS No. 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| | | |
Collapse
|
42
|
Kushner AM, Guan Z. Modulares Design in natürlichen und biomimetischen elastischen Materialien. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Kushner AM, Guan Z. Modular design in natural and biomimetic soft materials. Angew Chem Int Ed Engl 2011; 50:9026-57. [PMID: 21898722 DOI: 10.1002/anie.201006496] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Indexed: 11/09/2022]
Abstract
Under eons of evolutionary and environmental pressure, biological systems have developed strong and lightweight peptide-based polymeric materials by using the 20 naturally occurring amino acids as principal monomeric units. These materials outperform their man-made counterparts in the following ways: 1) multifunctionality/tunability, 2) adaptability/stimuli-responsiveness, 3) synthesis and processing under ambient and aqueous conditions, and 4) recyclability and biodegradability. The universal design strategy that affords these advanced properties involves "bottom-up" synthesis and modular, hierarchical organization both within and across multiple length-scales. The field of "biomimicry"-elucidating and co-opting nature's basic material design principles and molecular building blocks-is rapidly evolving. This Review describes what has been discovered about the structure and molecular mechanisms of natural polymeric materials, as well as the progress towards synthetic "mimics" of these remarkable systems.
Collapse
Affiliation(s)
- Aaron M Kushner
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | |
Collapse
|
44
|
Liu J, Huang W, Pang Y, Huang P, Zhu X, Zhou Y, Yan D. Molecular Self-Assembly of a Homopolymer: An Alternative To Fabricate Drug-Delivery Platforms for Cancer Therapy. Angew Chem Int Ed Engl 2011; 50:9162-6. [DOI: 10.1002/anie.201102280] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/17/2011] [Indexed: 11/06/2022]
|
45
|
Liu J, Huang W, Pang Y, Huang P, Zhu X, Zhou Y, Yan D. Molecular Self-Assembly of a Homopolymer: An Alternative To Fabricate Drug-Delivery Platforms for Cancer Therapy. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Hanai Y, Rahman MJ, Yamakawa J, Takase M, Nishinaga T, Hasegawa M, Kamada K, Iyoda M. Synthesis and Nanostructures of Cyclic Triphenylene Trimers Having Long Alkyl and Alkoxy Side-Chains. Chem Asian J 2011; 6:2940-5. [DOI: 10.1002/asia.201100336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Indexed: 12/24/2022]
|
47
|
Liu K, Wang C, Li Z, Zhang X. Superamphiphiles Based on Directional Charge-Transfer Interactions: From Supramolecular Engineering to Well-Defined Nanostructures. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007167] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Liu K, Wang C, Li Z, Zhang X. Superamphiphiles based on directional charge-transfer interactions: from supramolecular engineering to well-defined nanostructures. Angew Chem Int Ed Engl 2011; 50:4952-6. [PMID: 21472920 DOI: 10.1002/anie.201007167] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/08/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
49
|
Lehmann T, Rühe J. Polyethyloxazoline monolayers for polymer supported biomembrane models. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/masy.19991420103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
|