1
|
Xu S, Zhang W, Li C, Li Y, Zeng H, Wang Y, Zhang Y, Niu D. Generation and Use of Glycosyl Radicals under Acidic Conditions: Glycosyl Sulfinates as Precursors. Angew Chem Int Ed Engl 2023; 62:e202218303. [PMID: 36760072 DOI: 10.1002/anie.202218303] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
We herein report a method that enables the generation of glycosyl radicals under highly acidic conditions. Key to the success is the design and use of glycosyl sulfinates as radical precursors, which are bench-stable solids and can be readily prepared from commercial starting materials. This development allows the installation of glycosyl units onto pyridine rings directly by the Minisci reaction. We further demonstrate the utility of this method in the late-stage modification of complex drug molecules, including the anticancer agent camptothecin. Experimental studies provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Shiyang Xu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Wei Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Caiyi Li
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yanjing Li
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Hongxin Zeng
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yingwei Wang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
2
|
Zhang H, Liang S, Wei D, Xu K, Zeng C. Electrocatalytic Generation of Acyl Radicals and Their Applications. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haonan Zhang
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Sen Liang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University 100048 Beijing China
| | - Dengchao Wei
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Kun Xu
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Chengchu Zeng
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| |
Collapse
|
3
|
Wang JZ, Sakai HA, MacMillan DWC. Alcohols as Alkylating Agents: Photoredox-Catalyzed Conjugate Alkylation via In Situ Deoxygenation. Angew Chem Int Ed Engl 2022; 61:e202207150. [PMID: 35727296 PMCID: PMC9398968 DOI: 10.1002/anie.202207150] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/10/2022]
Abstract
The rapid exploration of sp3 -enriched chemical space is facilitated by fragment-coupling technologies that utilize simple and abundant alkyl precursors, among which alcohols are a highly desirable, commercially accessible, and synthetically versatile class of substrate. Herein, we describe an operationally convenient, N-heterocyclic carbene (NHC)-mediated deoxygenative Giese-type addition of alcohol-derived alkyl radicals to electron-deficient alkenes under mild photocatalytic conditions. The fragment coupling accommodates a broad range of primary, secondary, and tertiary alcohol partners, as well as structurally varied Michael acceptors containing traditionally reactive sites, such as electrophilic or oxidizable moieties. We demonstrate the late-stage diversification of densely functionalized molecular architectures, including drugs and biomolecules, and we further telescope our protocol with metallaphotoredox cross-coupling for step-economic access to sp3 -rich complexity.
Collapse
Affiliation(s)
- Johnny Z Wang
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Wang JZ, Sakai HA, MacMillan DWC. Alcohols as Alkylating Agents: Photoredox‐Catalyzed Conjugate Alkylation via In Situ Deoxygenation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Chen M, Li J, Ma K, Jin G, Pan X, Zhang Z, Zhu J. Controlling Polymer Molecular Weight Distribution through a Latent Mediator Strategy with Temporal Programming. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Miao Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Kaiqi Ma
- School of Mechanical and Electric Engineering Soochow University Suzhou 215006 China
| | - Guoqin Jin
- School of Mechanical and Electric Engineering Soochow University Suzhou 215006 China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
6
|
Chen M, Li J, Ma K, Jin G, Pan X, Zhang Z, Zhu J. Controlling Polymer Molecular Weight Distribution through a Latent Mediator Strategy with Temporal Programming. Angew Chem Int Ed Engl 2021; 60:19705-19709. [PMID: 34189823 DOI: 10.1002/anie.202107106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/20/2021] [Indexed: 11/12/2022]
Abstract
Polymer molecular weight distribution (MWD) is a key parameter of polymers. Here we present a robust method for controlling polymer MWD in controlled cationic polymerizations. A latent mediator strategy was designed and combined with temporal programming to regenerate mediators at different times during polymerization. Both the breadths and shapes of MWD curves were tuned easily by adjusting an external light source. Bimodal, trimodal, and tetramodal distributions were obtained, and the breadths could be varied from 1.06 to 2.09. Polymers with different MWDs prepared by this method had good chain end fidelity, which was demonstrated with successful chain-extension experiments. In addition, the introduction of temporal programming with a computer-controlled single chip for the light source opened an avenue for the use of artificial intelligence in polymer synthesis.
Collapse
Affiliation(s)
- Miao Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Kaiqi Ma
- School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215006, China
| | - Guoqin Jin
- School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215006, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Mastandrea MM, Pericàs MA. Photoredox Dual Catalysis: A Fertile Playground for the Discovery of New Reactivities. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marco M. Mastandrea
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Instutite of Science and Technology (BIST) Avda. Països Catalans 16 43007 Tarragona Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Instutite of Science and Technology (BIST) Avda. Països Catalans 16 43007 Tarragona Spain
- Department de Química Inorgànica i Orgànica Universitat de Barcelona c/Martí i Franqués 1–11 08028 Barcelona Spain
| |
Collapse
|
8
|
Wei Y, Ben-Zvi B, Diao T. Diastereoselective Synthesis of Aryl C-Glycosides from Glycosyl Esters via C-O Bond Homolysis. Angew Chem Int Ed Engl 2021; 60:9433-9438. [PMID: 33438338 PMCID: PMC8044010 DOI: 10.1002/anie.202014991] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Indexed: 12/20/2022]
Abstract
C-aryl glycosyl compounds offer better in vivo stability relative to O- and N-glycoside analogues. C-aryl glycosides are extensively investigated as drug candidates and applied to chemical biology studies. Previously, C-aryl glycosides were derived from lactones, glycals, glycosyl stannanes, and halides, via methods displaying various limitations with respect to the scope, functional-group compatibility, and practicality. Challenges remain in the synthesis of C-aryl nucleosides and 2-deoxysugars from easily accessible carbohydrate precursors. Herein, we report a cross-coupling method to prepare C-aryl and heteroaryl glycosides, including nucleosides and 2-deoxysugars, from glycosyl esters and bromoarenes. Activation of the carbohydrate substrates leverages dihydropyridine (DHP) as an activating group followed by decarboxylation to generate a glycosyl radical via C-O bond homolysis. This strategy represents a new means to activate alcohols as a cross-coupling partner. The convenient preparation of glycosyl esters and their stability exemplifies the potential of this method in medicinal chemistry.
Collapse
Affiliation(s)
- Yongliang Wei
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Benjamin Ben-Zvi
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Tianning Diao
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
9
|
Wei Y, Ben‐zvi B, Diao T. Diastereoselective Synthesis of Aryl
C
‐Glycosides from Glycosyl Esters via C−O Bond Homolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yongliang Wei
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| | - Benjamin Ben‐zvi
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| | - Tianning Diao
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
10
|
A Rational Approach to Organo‐Photocatalysis: Novel Designs and Structure‐Property Relationships. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006416] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Vega‐Peñaloza A, Mateos J, Companyó X, Escudero‐Casao M, Dell'Amico L. A Rational Approach to Organo‐Photocatalysis: Novel Designs and Structure‐Property Relationships. Angew Chem Int Ed Engl 2020; 60:1082-1097. [DOI: 10.1002/anie.202006416] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Alberto Vega‐Peñaloza
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Javier Mateos
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Xavier Companyó
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | | | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
12
|
Shang W, Su SN, Shi R, Mou ZD, Yu GQ, Zhang X, Niu D. Generation of Glycosyl Radicals from Glycosyl Sulfoxides and Its Use in the Synthesis of C-linked Glycoconjugates. Angew Chem Int Ed Engl 2020; 60:385-390. [PMID: 32935426 DOI: 10.1002/anie.202009828] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Indexed: 02/05/2023]
Abstract
We here report glycosyl sulfoxides appended with an aryl iodide moiety as readily available, air and moisture stable precursors to glycosyl radicals. These glycosyl sulfoxides could be converted to glycosyl radicals by way of a rapid and efficient intramolecular radical substitution event. The use of this type of precursors enabled the synthesis of various complex C-linked glycoconjugates under mild conditions. This reaction could be performed in aqueous media and is amenable to the synthesis of glycopeptidomimetics and carbohydrate-DNA conjugates.
Collapse
Affiliation(s)
- Weidong Shang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Sheng-Nan Su
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Rong Shi
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Ze-Dong Mou
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Guo-Qiang Yu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
13
|
Shang W, Su S, Shi R, Mou Z, Yu G, Zhang X, Niu D. Generation of Glycosyl Radicals from Glycosyl Sulfoxides and Its Use in the Synthesis of
C
‐linked Glycoconjugates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weidong Shang
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Sheng‐Nan Su
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Rong Shi
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze‐Dong Mou
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Guo‐Qiang Yu
- Discovery Chemistry Unit HitGen Inc. Building 6, No. Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610200 China
| | - Xia Zhang
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
14
|
Luo X, He R, Liu Q, Gao Y, Li J, Chen X, Zhu Z, Huang Y, Li Y. Metal-Free Oxidative Esterification of Ketones and Potassium Xanthates: Selective Synthesis of α-Ketoesters and Esters. J Org Chem 2020; 85:5220-5230. [DOI: 10.1021/acs.joc.9b03272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xianglin Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Runfa He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Qiang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanping Gao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Jingqing Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| |
Collapse
|
15
|
Spinnato D, Schweitzer-Chaput B, Goti G, Ošeka M, Melchiorre P. A Photochemical Organocatalytic Strategy for the α-Alkylation of Ketones by using Radicals. Angew Chem Int Ed Engl 2020; 59:9485-9490. [PMID: 32053279 PMCID: PMC7317845 DOI: 10.1002/anie.201915814] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/16/2022]
Abstract
Reported herein is a visible‐light‐mediated radical approach to the α‐alkylation of ketones. This method exploits the ability of a nucleophilic organocatalyst to generate radicals upon SN2‐based activation of alkyl halides and blue light irradiation. The resulting open‐shell intermediates are then intercepted by weakly nucleophilic silyl enol ethers, which would be unable to directly attack the alkyl halides through a traditional two‐electron path. The mild reaction conditions allowed functionalization of the α position of ketones with functional groups that are not compatible with classical anionic strategies. In addition, the redox‐neutral nature of this process makes it compatible with a cinchona‐based primary amine catalyst, which was used to develop a rare example of enantioselective organocatalytic radical α‐alkylation of ketones.
Collapse
Affiliation(s)
- Davide Spinnato
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Bertrand Schweitzer-Chaput
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Giulio Goti
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Maksim Ošeka
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
16
|
Spinnato D, Schweitzer‐Chaput B, Goti G, Ošeka M, Melchiorre P. A Photochemical Organocatalytic Strategy for the α‐Alkylation of Ketones by using Radicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915814] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Davide Spinnato
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Bertrand Schweitzer‐Chaput
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Giulio Goti
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Maksim Ošeka
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
17
|
Lardy SW, Schmidt VA. Intermolecular Aminoallylation of Alkenes Using Allyl-Oxyphthalimide Derivatives: A Case Study in Radical Polarity Effects. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Samuel W. Lardy
- Department of Chemistry and Biochemistry; University of California San Diego; 9500 Gilman Dr 92093 La Jolla CA USA
| | - Valerie A. Schmidt
- Department of Chemistry and Biochemistry; University of California San Diego; 9500 Gilman Dr 92093 La Jolla CA USA
| |
Collapse
|
18
|
Pulikottil FT, Pilli R, Murugesan V, Krishnan CG, Rasappan R. A Free‐Radical Reduction and Cyclization of Alkyl Halides Mediated by FeCl
2. ChemCatChem 2019. [DOI: 10.1002/cctc.201900230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Feba Thomas Pulikottil
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| | - Ramadevi Pilli
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| | - Vetrivelan Murugesan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| | - Chandu G. Krishnan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| | - Ramesh Rasappan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| |
Collapse
|
19
|
Wu Z, Lai M, Zhang S, Zhong X, Song H, Zhao M. An Efficient Synthesis of Benzyl Dithiocarbamates by Base-Promoted Cross-Coupling Reactions of Benzyl Chlorides with Tetraalkylthiuram Disulfides at Room Temperature. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhiyong Wu
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province; Henan Agricultural University; 95, Wenhua Road 450002 Zhengzhou P. R. China
| | - Miao Lai
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province; Henan Agricultural University; 95, Wenhua Road 450002 Zhengzhou P. R. China
| | - Siyuan Zhang
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province; Henan Agricultural University; 95, Wenhua Road 450002 Zhengzhou P. R. China
| | - Xianyun Zhong
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province; Henan Agricultural University; 95, Wenhua Road 450002 Zhengzhou P. R. China
| | - Hao Song
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province; Henan Agricultural University; 95, Wenhua Road 450002 Zhengzhou P. R. China
| | - Mingqin Zhao
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province; Henan Agricultural University; 95, Wenhua Road 450002 Zhengzhou P. R. China
| |
Collapse
|
20
|
Williamson JB, Czaplyski WL, Alexanian EJ, Leibfarth FA. Regioselective C−H Xanthylation as a Platform for Polyolefin Functionalization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jill B. Williamson
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - William L. Czaplyski
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Erik J. Alexanian
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Frank A. Leibfarth
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| |
Collapse
|
21
|
Williamson JB, Czaplyski WL, Alexanian EJ, Leibfarth FA. Regioselective C−H Xanthylation as a Platform for Polyolefin Functionalization. Angew Chem Int Ed Engl 2018; 57:6261-6265. [DOI: 10.1002/anie.201803020] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Jill B. Williamson
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - William L. Czaplyski
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Erik J. Alexanian
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Frank A. Leibfarth
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| |
Collapse
|
22
|
Ociepa M, Baka O, Narodowiec J, Gryko D. Light‐Driven Vitamin B
12
‐Catalysed Generation of Acyl Radicals from 2‐
S
‐Pyridyl Thioesters. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700913] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Michał Ociepa
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Oskar Baka
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Warsaw University of Technology Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Jakub Narodowiec
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
23
|
Quiclet-Sire B, Zard SZ. On the Strategic Impact of the Degenerative Transfer of Xanthates on Synthetic Planning. Isr J Chem 2016. [DOI: 10.1002/ijch.201600094] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Béatrice Quiclet-Sire
- Laboratoire de Synthèse Organique associé au CNRS; Ecole Polytechnique, F-; 91128 Palaiseau Cedex France
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique associé au CNRS; Ecole Polytechnique, F-; 91128 Palaiseau Cedex France
| |
Collapse
|
24
|
Moustafa GAI, Suizu H, Aoyama H, Arai M, Akai S, Yoshimitsu T. Enantiospecific Synthesis and Cytotoxicity Evaluation of Ligudentatol: A Programmed Aromatization Approach to the 2,3,4-Trisubstituted Phenolic Motif via Visible-Light-Mediated Group Transfer Radical Cyclization. Chem Asian J 2014; 9:1506-10. [DOI: 10.1002/asia.201400110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Indexed: 11/06/2022]
|
25
|
Patil S, Chen L, Tanko JM. C-H Bond Functionalization with the Formation of a C-C Bond: A Free Radical Condensation Reaction Based on the Phthalimido-N-oxyl Radical. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Zhu L, Liu S, Douglas JT, Altman RA. Copper-mediated deoxygenative trifluoromethylation of benzylic xanthates: generation of a C-CF(3) bond from an O-based electrophile. Chemistry 2013; 19:12800-5. [PMID: 23922222 DOI: 10.1002/chem.201302328] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Indexed: 11/09/2022]
Abstract
The conversion of an alcohol-based functional group, into a trifluoromethyl analogue is a desirable transformation. However, few methods are capable of converting O-based electrophiles into trifluoromethanes. The copper-mediated trifluoromethylation of benzylic xanthates using Umemoto's reagent as the source of CF3 to form C-CF3 bonds is described. The method is compatible with an array of benzylic xanthates bearing useful functional groups. A preliminary mechanistic investigation suggests that the C-CF3 bond forms by reaction of the substrate with in situ generated CuCF3 and CuOTf. Further evidence suggests that the reaction could proceed via a radical cation intermediate.
Collapse
Affiliation(s)
- Lingui Zhu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045 (USA), Fax: (+1) 785-864-5326
| | | | | | | |
Collapse
|
27
|
Alagiri K, Prabhu KR. Catalyst-Free Regio- and Stereospecific Synthesis of β-Sulfonamido Dithiocarbamates: Efficient Ring-Opening Reactions of N-Tosyl Aziridines by Dialkyldithiocarbamates. Chemistry 2011; 17:6922-5. [DOI: 10.1002/chem.201100817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Indexed: 11/09/2022]
|
28
|
Charrier N, Zard SZ. Radical allylation with alpha-branched allyl sulfones. Angew Chem Int Ed Engl 2008; 47:9443-6. [PMID: 18979487 DOI: 10.1002/anie.200804298] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nicolas Charrier
- Laboratoire de Synthèse Organique associé au CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | |
Collapse
|
29
|
Heinrich M. Intermolecular Olefin Functionalisation Involving Aryl Radicals Generated from Arenediazonium Salts. Chemistry 2008; 15:820-33. [DOI: 10.1002/chem.200801306] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
|
31
|
Kim S, Lim KC, Kim S. Tin-free radical carbonylation of alkylsulfonyl derivatives into alkylcarbonyl derivatives. Chem Asian J 2008; 3:1692-701. [PMID: 18666283 DOI: 10.1002/asia.200800155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A simple radical approach based on tin-free radical carbonylation is devised for the direct conversion of alkylthiosulfonates, alkylsulfonyl cyanides, and alkylsulfonyl oxime ethers into the corresponding alkyl thiol esters, acyl cyanides, and acylated oxime ethers in a single step. The present approach is very simple, highly efficient, and minimizes the formation of byproducts.
Collapse
Affiliation(s)
- Sangmo Kim
- Center for Molecular Design & Synthesis and Department of Chemistry, School of Molecular Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | | | |
Collapse
|
32
|
Sato A, Yorimitsu H, Oshima K. O-AlkylS-3,3-Dimethyl-2-oxobutyl Dithiocarbonates as Versatile Sulfur-Transfer Agents in Radical C(sp3)H Functionalization. Chem Asian J 2007; 2:1568-73. [DOI: 10.1002/asia.200700251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Charrier N, Gravestock D, Zard SZ. Radical Additions of Xanthates to Vinyl Epoxides and Related Derivatives: A Powerful Tool for the Modular Creation of Quaternary Centers. Angew Chem Int Ed Engl 2006; 45:6520-3. [PMID: 16972293 DOI: 10.1002/anie.200601567] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicolas Charrier
- Laboratoire de Synthèse Organique associé au CNRS (UMR 7652), Département de Chimie, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | |
Collapse
|
34
|
Charrier N, Gravestock D, Zard SZ. Radical Additions of Xanthates to Vinyl Epoxides and Related Derivatives: A Powerful Tool for the Modular Creation of Quaternary Centers. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200601567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Quiclet-Sire B, Zard SZ. Powerful CarbonCarbon Bond Forming Reactions Based on a Novel Radical Exchange Process. Chemistry 2006; 12:6002-16. [PMID: 16791885 DOI: 10.1002/chem.200600510] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Xanthates and related derivatives have proved to be extremely useful for both inter- and intramolecular radical additions. The broad applicability of the intermolecular addition to un-activated olefins opens tremendous opportunities for synthesis, since various functional groups can be brought together under mild conditions and complex structures can be rapidly assembled. The presence of the xanthate in the product is also a powerful asset for further modifications, by both radical and non-radical pathways. Of special importance is the access to highly substituted aromatic and heteroaromatic derivatives and the synthesis of block polymers through a controlled radical polymerisation mediated by various thiocarbonylthio group containing agents (RAFT and MADIX processes).
Collapse
Affiliation(s)
- Béatrice Quiclet-Sire
- Laboratoire de Synthèse Organique associé au CNRS (UMR 7652), Département de Chimie, Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|
36
|
Ouvry G, Quiclet-Sire B, Zard SZ. Substituted Allyl Diphenylphosphine Oxides as Radical Allylating Agents. Angew Chem Int Ed Engl 2006; 45:5002-6. [PMID: 16856202 DOI: 10.1002/anie.200601556] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gilles Ouvry
- Laboratoire de Synthèse Organique Associé, CNRS (UMR 7652), Département de Chimie, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | |
Collapse
|
37
|
Ouvry G, Quiclet-Sire B, Zard SZ. Substituted Allyl Diphenylphosphine Oxides as Radical Allylating Agents. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200601556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Grainger RS, Innocenti P. Dithiocarbamate Group Transfer Cyclization Reactions of Carbamoyl Radicals under “Tin-Free” Conditions. Angew Chem Int Ed Engl 2004; 43:3445-8. [PMID: 15221835 DOI: 10.1002/anie.200453600] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Richard S Grainger
- Department of Chemistry, King's College London, Strand, London WC2R 2LS, UK.
| | | |
Collapse
|
39
|
|
40
|
Kim S, Song HJ, Choi TL, Yoon JY. Tin-Free Radical Acylation Reactions with Methanesulfonyl Oxime Ether. Angew Chem Int Ed Engl 2001; 40:2524-2526. [DOI: 10.1002/1521-3773(20010702)40:13<2524::aid-anie2524>3.0.co;2-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Indexed: 11/10/2022]
|
41
|
|
42
|
Ferjančić Z, Čeković Ž, Saičić RN. Intermolecular free radical additions to strained cycloalkenes. Cyclopropene and cyclobutene as radical acceptors. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)00286-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
Banert K. Rearrangement Reactions, 6. New Functionalized Allenes: Synthesis Using Sigmatropic Rearrangements and Unusual Reactivity. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/jlac.199719971003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|