1
|
Development of MALDI MS peptide array for thrombin inhibitor screening. Talanta 2021; 226:122129. [PMID: 33676683 DOI: 10.1016/j.talanta.2021.122129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 11/20/2022]
Abstract
The development of in situ methods for the analysis and visualization of enzyme activity is of paramount importance in drug discovery, research, and development. In this work, the functionalized and array patterned indium tin oxide (ITO) glass slides were fabricated by non-covalent immobilization of amphipathic phospholipid-tagged peptides encompassing the thrombin cleavage site on steric acid-modified ITO slides. The fabricated peptide arrays provide 60 spots per slide, and are compatible with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) measurement, free matrix peak interference, and tolerance to repeated aqueous washing. The peptide arrays were used for the investigation of thrombin activity and screening for its potential inhibitors. The thrombin activity and its Michaelis-Menten constant (Km) for immobilized peptide substrate was determined using developed MALDI MS peptide array. To investigate the applicability and effectiveness of peptide arrays, the anti-thrombin activity of grape seed proanthocyanidins with different degrees of polymerization (DP) was monitored and visualized. MALDI MS imaging results showed that the fractions of proanthocyanidins with the mean DP of 4.61-6.82 had good thrombin inhibitory activity and their half-maximal inhibitory concentration (IC50) were below 10 μg/mL. Therefore, the developed peptide array is a reliable platform for the discovery of natural thrombin inhibitors.
Collapse
|
2
|
Wang S, Xiao C, Guo L, Ling L, Li M, Li H, Guo X. Rapidly quantitative analysis of γ-glutamyltranspeptidase activity in the lysate and blood via a rational design of the molecular probe by matrix-assisted laser desorption ionization mass spectrometry. Talanta 2019; 205:120141. [DOI: 10.1016/j.talanta.2019.120141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
|
3
|
Wood SE, Sinsinbar G, Gudlur S, Nallani M, Huang CF, Liedberg B, Mrksich M. A Bottom-Up Proteomic Approach to Identify Substrate Specificity of Outer-Membrane Protease OmpT. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sarah E. Wood
- Departments of Chemistry and Biomedical Engineering; Northwestern University; 2145 Sheridan Road Evanston IL 60208 USA
| | - Gaurav Sinsinbar
- Center for Biomimetic Sensor Science; School of Materials Science & Engineering; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore
| | - Sushanth Gudlur
- Center for Biomimetic Sensor Science; School of Materials Science & Engineering; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore
| | - Madhavan Nallani
- Center for Biomimetic Sensor Science; School of Materials Science & Engineering; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore
| | - Che-Fan Huang
- Departments of Chemistry and Biomedical Engineering; Northwestern University; 2145 Sheridan Road Evanston IL 60208 USA
| | - Bo Liedberg
- Center for Biomimetic Sensor Science; School of Materials Science & Engineering; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore
| | - Milan Mrksich
- Departments of Chemistry and Biomedical Engineering; Northwestern University; 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
4
|
Wood SE, Sinsinbar G, Gudlur S, Nallani M, Huang CF, Liedberg B, Mrksich M. A Bottom-Up Proteomic Approach to Identify Substrate Specificity of Outer-Membrane Protease OmpT. Angew Chem Int Ed Engl 2017; 56:16531-16535. [DOI: 10.1002/anie.201707535] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Sarah E. Wood
- Departments of Chemistry and Biomedical Engineering; Northwestern University; 2145 Sheridan Road Evanston IL 60208 USA
| | - Gaurav Sinsinbar
- Center for Biomimetic Sensor Science; School of Materials Science & Engineering; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore
| | - Sushanth Gudlur
- Center for Biomimetic Sensor Science; School of Materials Science & Engineering; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore
| | - Madhavan Nallani
- Center for Biomimetic Sensor Science; School of Materials Science & Engineering; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore
| | - Che-Fan Huang
- Departments of Chemistry and Biomedical Engineering; Northwestern University; 2145 Sheridan Road Evanston IL 60208 USA
| | - Bo Liedberg
- Center for Biomimetic Sensor Science; School of Materials Science & Engineering; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore
| | - Milan Mrksich
- Departments of Chemistry and Biomedical Engineering; Northwestern University; 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
5
|
Hoang A, Laigre E, Goyard D, Defrancq E, Vinet F, Dumy P, Renaudet O. An oxime-based glycocluster microarray. Org Biomol Chem 2017; 15:5135-5139. [DOI: 10.1039/c7ob00889a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrate microarrays represent powerful tools to study and detect carbohydrate-binding proteins, pathogens or cells.
Collapse
Affiliation(s)
| | - Eugénie Laigre
- Univ. Grenoble Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| | - David Goyard
- Univ. Grenoble Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| | - Eric Defrancq
- Univ. Grenoble Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| | | | - Pascal Dumy
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34000 Montpellier
- France
| | | |
Collapse
|
6
|
Hu J, Liu F, Ju H. MALDI-MS Patterning of Caspase Activities and Its Application in the Assessment of Drug Resistance. Angew Chem Int Ed Engl 2016; 55:6667-70. [PMID: 27101158 DOI: 10.1002/anie.201601096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/14/2016] [Indexed: 12/19/2022]
Abstract
Mass spectrometry (MS) has been widely used for enzyme activity assays. Herein, we propose a MALDI-MS patterning strategy for the convenient visual presentation of multiple enzyme activities with an easy-to-prepare chip. The array-based caspase-activity patterned chip (Casp-PC) is fabricated by hydrophobically assembling different phospholipid-tagged peptide substrates on a modified ITO slide. The advantages of amphipathic phospholipids lead to high-quality mass spectra for imaging analysis. Upon the respective cleavage of these substrates by different caspases, such as caspase-1, -2, -3, and -8, to produce a mass shift, the enzyme activities can be directly evaluated by MALDI-MS patterning by m/z-dependent imaging of the cleavage products. The ability to identify drug-sensitive/resistant cancer cells and assess the curative effects of anticancer drugs is demonstrated, indicating the applicability of the method and the designed chip.
Collapse
Affiliation(s)
- Junjie Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China.
| |
Collapse
|
7
|
Hu J, Liu F, Ju H. MALDI-MS Patterning of Caspase Activities and Its Application in the Assessment of Drug Resistance. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junjie Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
8
|
Smith AME, Brennan JD. Simultaneous inhibition assay for human and microbial kinases via MALDI-MS/MS. Chembiochem 2014; 15:587-94. [PMID: 24478228 DOI: 10.1002/cbic.201300739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Indexed: 11/05/2022]
Abstract
Selective inhibition of one kinase over another is a critical issue in drug development. For antimicrobial development, it is particularly important to selectively inhibit bacterial kinases, which can phosphorylate antimicrobial compounds such as aminoglycosides, without affecting human kinases. Previous work from our group showed the development of a MALDI-MS/MS assay for the detection of small molecule modulators of the bacterial aminoglycoside kinase APH3'IIIa. Herein, we demonstrate the development of an enhanced kinase MALDI-MS/MS assay involving simultaneous assaying of two kinase reactions, one for APH3'IIIa, and the other for human protein kinase A (PKA), which leads to an output that provides direct information on selectivity and mechanism of action. Specificity of the respective enzyme substrates were verified, and the assay was validated through generation of Z'-factors of 0.55 for APH3'IIIa with kanamycin and 0.60 for PKA with kemptide. The assay was used to simultaneously screen a kinase-directed library of mixtures of ten compounds each against both enzymes, leading to the identification of selective inhibitors for each enzyme as well as one non-selective inhibitor following mixture deconvolution.
Collapse
Affiliation(s)
- Anne Marie E Smith
- Biointerfaces Institute and Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4L8 (Canada), Homepage: brennanlab.ca; biointerfaces.mcmaster.ca
| | | |
Collapse
|
9
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of Microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013; 52:7477-81. [PMID: 23757366 DOI: 10.1002/anie.201302455] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Indexed: 01/21/2023]
Abstract
Ligand libraries can be printed onto a sandwich composed of activated lipids embedded in a hydrophobic layer conjugated to an indium-tin oxide (ITO) surface. Arrays produced this way can be analyzed by fluorescence spectroscopy and mass spectrometry. Applications include the assignment of enzyme specificity, the profiling of glycoforms and the identification of lectins.
Collapse
Affiliation(s)
- Ana Beloqui
- CICbiomaGUNE, Biofunctional Nanomaterials Unit, Paseo Miramon 182, 20009 San Sebastian, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim JI, Kim S, Yeo WS. Analysis of chemical/biochemical conversions on gold microparticles using MALDI-TOF MS. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5302-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Affiliation(s)
- Xiaoli Liao
- Department of Chemistry, University of Chicago929 East 57th Street, Chicago, IL 60637 (USA)
| | - Rafe T Petty
- Department of Chemistry, University of Chicago929 East 57th Street, Chicago, IL 60637 (USA)
| | - Milan Mrksich
- Department of Chemistry, University of Chicago929 East 57th Street, Chicago, IL 60637 (USA)
| |
Collapse
|
13
|
|
14
|
Pulsipher A, Yousaf MN. Surface chemistry and cell biological tools for the analysis of cell adhesion and migration. Chembiochem 2010; 11:745-53, 730. [PMID: 20198673 DOI: 10.1002/cbic.200900787] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Abigail Pulsipher
- Department of Chemistry and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
15
|
Liao X, Su J, Mrksich M. An adaptor domain-mediated autocatalytic interfacial kinase reaction. Chemistry 2010; 15:12303-9. [PMID: 19821459 PMCID: PMC2856317 DOI: 10.1002/chem.200901345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes a model system for studying the autocatalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an autocatalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings.
Collapse
Affiliation(s)
- Xiaoli Liao
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
16
|
Kim YK, Ryoo SR, Kwack SJ, Min DH. Mass Spectrometry Assisted Lithography for the Patterning of Cell Adhesion Ligands on Self-Assembled Monolayers. Angew Chem Int Ed Engl 2009; 48:3507-11. [DOI: 10.1002/anie.200806098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Kim YK, Ryoo SR, Kwack SJ, Min DH. Mass Spectrometry Assisted Lithography for the Patterning of Cell Adhesion Ligands on Self-Assembled Monolayers. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Kondo N, Nishimura SI. MALDI-TOF mass-spectrometry-based versatile method for the characterization of protein kinases. Chemistry 2009; 15:1413-21. [PMID: 19115309 DOI: 10.1002/chem.200801650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We describe a MALDI-TOF mass-spectrometry-based method that is rapid and versatile for the characterization of protein kinases and their inhibitors. We have designed new kinase substrates by the modification of common synthetic peptides, such as kemptide (LRRALSG), CaMKII substrate (KRQQSFDLF), erktide (ATGPLSPGPFGRR), abltide (EAIYAAPFAKKK), srctide (AEEEIYGEFEAKKKK), neurogranin (AAAKIQASFRGHMARKK), and casein kinase I (CKI) substrate (RRKDLHDDEEDEAMSITA). There are two fundamental points on which the proposed method is based to improve the mass-spectrometric response: 1) mass tag technology by N-derivatization through stable isotope labeling and 2) C-terminal conjugation with tryptophanylarginine (WR). It was suggested that C-terminal conjugation with the WR moiety enhances the ionization potency of these new substrates 1.5-13.7 times as much as those of the original peptides. We demonstrated, by using modified abltide (Ac-EAIYAAPFAKKKWR-NH(2)), that WR conjugation at the C-terminus in combination with stable-isotope labeling at the N-terminus allowed the quantitative assay of recombinant c-Abl kinase in the presence of adenosine 5'-triphosphate (ATP; K(M,ATP)=18.6 microM and V(max)=642 pmol min(-1) microg(-1)). The present protocol made a simple and reliable inhibition assay of recombinant c-Abl kinase by imatinib possible (IC(50(recombinant))=291 nM; STI571, Gleevec; Novartis Pharma). Moreover, it was also demonstrated that this ATP noncompetitive inhibitor differentiates between two conformers of c-Abl kinases: the phosphorylated active and dephosphorylated inactive forms (IC(50(active form))=1049 nM and IC(50(inactive form))=54 nM). The merit of this approach is evident because the present protocol can be applied to the direct monitoring of the activities of living cell kinases by using cancer-cell lines, such as mouse B16 melanoma cells and human lung cancer K562 cells. A multiple-kinase assay that uses K562 cell lysate in the presence of seven new synthetic substrates made high-throughput inhibitor profiling possible. It should be emphasized that this radioactive isotope-free quantitative kinase assay will greatly accelerate the discovery of a new generation of potential kinase inhibitors that exhibit highly selective or unique inhibitory profiles.
Collapse
Affiliation(s)
- Noriyasu Kondo
- Laboratory of Advanced Chemical Biology, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | | |
Collapse
|
19
|
Laurent N, Haddoub R, Voglmeir J, Wong SCC, Gaskell SJ, Flitsch SL. SPOT Synthesis of Peptide Arrays on Self-Assembled Monolayers and their Evaluation as Enzyme Substrates. Chembiochem 2008; 9:2592-6. [DOI: 10.1002/cbic.200800481] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Laurent N, Voglmeir J, Flitsch SL. Glycoarrays--tools for determining protein-carbohydrate interactions and glycoenzyme specificity. Chem Commun (Camb) 2008:4400-12. [PMID: 18802573 DOI: 10.1039/b806983m] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrate arrays (glycoarrays) have recently emerged as a high-throughput tool for studying carbohydrate-binding proteins and carbohydrate-processing enzymes. A number of sophisticated array platforms that allow for qualitative and quantitative analysis of carbohydrate binding and modification on the array surface have been developed, including analysis by fluorescence spectroscopy, mass spectrometry and surface plasmon resonance spectroscopy. These platforms, together with examples of biologically-relevant applications are reviewed in this Feature Article.
Collapse
Affiliation(s)
- Nicolas Laurent
- Manchester Interdisciplinary Biocentre and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK M1 7DN
| | | | | |
Collapse
|
21
|
Qiu F, Jiang D, Ding Y, Zhu J, Huang L. Monolayer-Barcoded Nanoparticles for On-Chip DNA Hybridization Assay. Angew Chem Int Ed Engl 2008; 47:5009-12. [DOI: 10.1002/anie.200800435] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Qiu F, Jiang D, Ding Y, Zhu J, Huang L. Monolayer-Barcoded Nanoparticles for On-Chip DNA Hybridization Assay. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Partserniak I, Werstuck G, Capretta A, Brennan JD. An ESI-MS/MS Method for Screening of Small-Molecule Mixtures against Glycogen Synthase Kinase-3β (GSK-3β). Chembiochem 2008; 9:1065-73. [DOI: 10.1002/cbic.200700674] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Marin VL, Bayburt TH, Sligar SG, Mrksich M. Functional assays of membrane-bound proteins with SAMDI-TOF mass spectrometry. Angew Chem Int Ed Engl 2008; 46:8796-8. [PMID: 17943935 PMCID: PMC2790068 DOI: 10.1002/anie.200702694] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Violeta L Marin
- Department of Chemistry and Howard Hughes Medical Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
25
|
Marin V, Bayburt T, Sligar S, Mrksich M. Functional Assays of Membrane-Bound Proteins with SAMDI-TOF Mass Spectrometry. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Kim YP, Oh E, Oh YH, Moon DW, Lee TG, Kim HS. Protein Kinase Assay on Peptide-Conjugated Gold Nanoparticles by Using Secondary-Ion Mass Spectrometric Imaging. Angew Chem Int Ed Engl 2007; 46:6816-9. [PMID: 17665386 DOI: 10.1002/anie.200701418] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Young-Pil Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea.
| | | | | | | | | | | |
Collapse
|
27
|
Kim YP, Oh E, Oh YH, Moon D, Lee T, Kim HS. Protein Kinase Assay on Peptide-Conjugated Gold Nanoparticles by Using Secondary-Ion Mass Spectrometric Imaging. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701418] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Henderson G, Bradley M. Functional peptide arrays for high-throughput chemical biology based applications. Curr Opin Biotechnol 2007; 18:326-30. [PMID: 17681464 DOI: 10.1016/j.copbio.2007.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/08/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
Constant advancements in printing technology, informatics, surface modification strategies and peptide chemistries mean that peptide arrays have, like DNA arrays, become even more miniaturised and complex in terms of not only the numbers of peptides immobilised but also their lengths. As a result peptide-based arrays have become a powerful tool in the interrogation, examination and perturbation of a host of biological systems.
Collapse
Affiliation(s)
- Graham Henderson
- EaStCHEM, School of Chemistry, King's Buildings, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | | |
Collapse
|
29
|
Shults MD, Kozlov IA, Nelson N, Kermani BG, Melnyk PC, Shevchenko V, Srinivasan A, Musmacker J, Hachmann JP, Barker DL, Lebl M, Zhao C. A multiplexed protein kinase assay. Chembiochem 2007; 8:933-42. [PMID: 17471478 DOI: 10.1002/cbic.200600522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report a novel protein kinase assay designed for high-throughput detection of one or many kinases in a complex mixture. A solution-phase phosphorylation reaction is performed on 900 different peptide substrates, each covalently linked to an oligonucleotide tag. After incubation, phosphoserine, phosphothreonine, and phosphotyrosine are chemically labeled, and the substrates are hybridized to a microarray with oligonucleotides complementary to the tags to read out the phosphorylation state of each peptide. Because protein kinases act on more than one peptide sequence, each kinase can be characterized by a unique signature of phosphorylation activity on multiple substrates. Using this method, we determined signatures for 26 purified kinases and demonstrated that enzyme mixtures can be screened for activity and selectivity of inhibition.
Collapse
|
30
|
Becker CFW, Wacker R, Bouschen W, Seidel R, Kolaric B, Lang P, Schroeder H, Müller O, Niemeyer CM, Spengler B, Goody RS, Engelhard M. Direct readout of protein-protein interactions by mass spectrometry from protein-DNA microarrays. Angew Chem Int Ed Engl 2006; 44:7635-9. [PMID: 16245381 DOI: 10.1002/anie.200502908] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian F W Becker
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Niessen KV, Höfner G, Wanner KT. Competitive MS binding assays for dopamine D2 receptors employing spiperone as a native marker. Chembiochem 2005; 6:1769-75. [PMID: 16149041 DOI: 10.1002/cbic.200500074] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A competitive MS binding assay employing spiperone as a native marker and a porcine striatal membrane fraction as a source for dopamine D2 receptors in a nonvolatile buffer has been established. Binding of the test compounds to the target was monitored by mass-spectrometric quantification of the nonbound marker, spiperone, in the supernatant of the binding samples obtained by centrifugation. A solid-phase extraction procedure was used for separating spiperone from ESI-MS-incompatible supernatant matrix components. Subsequently, the marker was reliably quantified by LC-ESI-MS-MS by using haloperidol as an internal standard. The affinities of the test compounds, the dopamine receptor antagonists (+)-butaclamol, chlorpromazine and (S)-sulpiride obtained from the competitive MS binding assay were verified by corresponding radioligand binding experiments with [3H]spiperone. The results of this study demonstrate that competitive MS binding assays represent a universally applicable alternative to conventional radioligand binding assays.
Collapse
Affiliation(s)
- Karin V Niessen
- Zentrales Institut des Sanitätsdienstes der Bundeswehr München, Ingolstädter Landstrasse 102, 85748 Garching-Hochbrück, Germany
| | | | | |
Collapse
|
32
|
Becker CFW, Wacker R, Bouschen W, Seidel R, Kolaric B, Lang P, Schroeder H, Müller O, Niemeyer CM, Spengler B, Goody RS, Engelhard M. Direkter Nachweis von Protein-Protein-Wechselwirkungen durch Massenspektrometrie an Protein-DNA-Mikroarrays. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200502908] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Yeo WS, Min DH, Hsieh RW, Greene GL, Mrksich M. Label-Free Detection of Protein-Protein Interactions on Biochips. Angew Chem Int Ed Engl 2005; 44:5480-3. [PMID: 16052641 DOI: 10.1002/anie.200501363] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Woon-Seok Yeo
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
34
|
Yeo WS, Min DH, Hsieh RW, Greene GL, Mrksich M. Label-Free Detection of Protein-Protein Interactions on Biochips. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501363] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Affiliation(s)
- Mike Schutkowski
- JPT Peptide Technologies GmbH, Invalidenstrasse 130, 10115 Berlin, Germany.
| | | | | |
Collapse
|