1
|
Hess R, Brenet M, Rajaonarivelo H, Gauthier M, Koehler V, Waelès P, Huc I, Ferrand Y, Coutrot F. Cascading Macrocycle and Helix Motions in a Foldarotaxane Molecular Shuttle. Angew Chem Int Ed Engl 2024:e202413977. [PMID: 39248768 DOI: 10.1002/anie.202413977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
The design of a dynamically assembled foldarotaxane was envisioned with the aim of operating as a two cascading trigger-based molecular shuttle. Under acidic conditions, both the macrocycle and helix were localized around their respective best molecular stations because they are far enough from each other not to alter the stability of complexes. The pH-dependent localization of the macrocycle along the encircled axle allowed us to modulate the association between the helical foldamer and its sites of interaction on the axle. Under kinetic control-at low concentration and room temperature-when the foldarotaxane supramolecular architecture is kinetically stable, the pH-responsive translation of the macrocycle along the thread triggered the gliding of the helix away from its initial best station. At higher concentration-when helix assembly/disassembly process is accelerated-the system reached the equilibrium state. A new foldarotaxane isomer then appeared through the change of the relative position of the helix and macrocycle along the thread. In this isomer, the helix segregated the macrocycle away from its best station. The fine control of the kinetic and thermodynamic processes, combined with the control of pH, allowed the reciprocal segregation of the helix or the ring away from their respective best sites of interaction.
Collapse
Affiliation(s)
- Robin Hess
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248), Université de Bordeaux, CNRS, IPB, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Marius Brenet
- Supramolecular Machines and Architectures Team, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Haingo Rajaonarivelo
- Supramolecular Machines and Architectures Team, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Maxime Gauthier
- Supramolecular Machines and Architectures Team, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Victor Koehler
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248), Université de Bordeaux, CNRS, IPB, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Philip Waelès
- Supramolecular Machines and Architectures Team, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Yann Ferrand
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248), Université de Bordeaux, CNRS, IPB, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
2
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
3
|
Takiguchi N, Yamazaki S, Murata M, Kawano S, Shizuma M, Muraoka M. Controlling the Molecular Shuttling of pH‐Responsive [2]Rotaxanes with Two Different Stations. ChemistrySelect 2023. [DOI: 10.1002/slct.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Perrot A, Wang WZ, Buhler E, Moulin E, Giuseppone N. Bending Actuation of Hydrogels through Rotation of Light-Driven Molecular Motors. Angew Chem Int Ed Engl 2023; 62:e202300263. [PMID: 36715696 DOI: 10.1002/anie.202300263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The unidirectional rotation of chemically crosslinked light-driven molecular motors is shown to progressively shift the swelling equilibrium of hydrogels. The concentration of molecular motors and the initial strand density of the polymer network are key parameters to modulate the macroscopic contraction of the material, and both parameters can be tuned using polymer chains of different molecular weights. These findings led to the design of optimized hydrogels revealing a half-time contraction of approximately 5 min. Furthermore, under inhomogeneous stimulation, the local contraction event was exploited to design useful bending actuators with an energy output 400 times higher than for previously reported self-assembled systems involving rotary motors. In the present configuration, we measure that a single molecular motor can lift up loads of 200 times its own molecular weight.
Collapse
Affiliation(s)
- Alexis Perrot
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France.,School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Wen-Zhi Wang
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France
| | - Eric Buhler
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Bâtiment Condorcet, 75013, Paris, France
| | - Emilie Moulin
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France
| |
Collapse
|
5
|
He L, Zhang T, Zhu C, Yan T, Liu J. Crown Ether-Based Ion Transporters in Bilayer Membranes. Chemistry 2023; 29:e202300044. [PMID: 36723493 DOI: 10.1002/chem.202300044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Bilayer membranes that enhance the stability of the cell are essential for cell survival, separating and protecting the interior of the cell from its external environment. Membrane-based channel proteins are crucial for sustaining cellular activities. However, dysfunction of these proteins would induce serial channelopathies, which could be substituted by artificial ion channel analogs. Crown ethers (CEs) are widely studied in the area of artificial ion channels owing to their intrinsic host-guest interaction with different kinds of organic and inorganic ions. Other advantages such as lower price, chemical stability, and easier modification also make CE a research hotspot in the field of synthetic transmembrane nanopores. And numerous CEs-based membrane-active synthetic ion channels were designed and fabricated in the past decades. Herein, the recent progress of CEs-based synthetic ion transporters has been comprehensively summarized in this review, including their design principles, functional mechanisms, controllable properties, and biomedical applications. Furthermore, this review has been concluded by discussing the future opportunities and challenges facing this research field. It is anticipated that this review could offer some inspiration for the future fabrication of novel CEs-derived ion transporters with more advanced structures, properties, and practical applications.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Tianlong Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Canhong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| |
Collapse
|
6
|
Jiang Y, Danowski W, Feringa BL, Heinke L. Nanoporous Films with Oriented Arrays of Molecular Motors for Photoswitching the Guest Adsorption and Diffusion. Angew Chem Int Ed Engl 2023; 62:e202214202. [PMID: 36367076 PMCID: PMC10107543 DOI: 10.1002/anie.202214202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Molecular motors are fascinating nanomachines. However, constructing smart materials from such functional molecules presents a severe challenge in material science. Here, we present a bottom-up layer-by-layer assembly of oriented overcrowded-alkene molecular motors forming a crystalline metal-organic framework thin film. While all stator parts of the overcrowded-alkene motors are oriented perpendicular to the substrate, the rotors point into the pores, which are large enough allowing for the light-induced molecular rotation. Taking advantage of the thin film's transparency, the motor rotation and its activation energy are determined by UV/Vis spectroscopy. As shown by gravimetric uptake experiments, molecular motors in crystalline porous materials are used, for the first time, to control the adsorption and diffusion properties of guest molecules in the pores, here, by switching with light between the (meta-)stable states. The work demonstrates the potential of designed materials with molecular motors and indicates a path for the future development of smart materials.
Collapse
Affiliation(s)
- Yunzhe Jiang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Wojciech Danowski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, Nijenborgh 4, Groningen, AG, The Netherlands.,University of Strasbourg CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, Nijenborgh 4, Groningen, AG, The Netherlands
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Morimoto K, Kitagawa D, Sotome H, Ito S, Miyasaka H, Kobatake S. Edge-to-Center Propagation of Photochemical Reaction during Single-Crystal-to-Single-Crystal Photomechanical Transformation of 2,5-Distyrylpyrazine Crystals. Angew Chem Int Ed Engl 2022; 61:e202212290. [PMID: 36326234 DOI: 10.1002/anie.202212290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/06/2022]
Abstract
Photomechanical molecular crystals are promising materials for photon-powered artificial actuators. To interpret the photomechanical responses, the spatiotemporal distribution of photoproducts in crystals could be an important role in addition to molecular structures, molecular packings, illumination conditions, crystal morphology, crystal size, and so on. In this study, we have found that single crystals of 2,5-distyrylpyrazine show a smooth single-crystal-to-single-crystal photomechanical expansion, and the photochemical reaction propagates from the edge to the center of the single crystal. We revealed that the surface effect (special reactivity at the crystal surface) in addition to the cooperative effect (the reaction is facilitated by neighboring molecules) is essential for the edge-to-center propagation of the photochemical reaction. Our results would provide a foundation for future studies of the photochemical reaction dynamics in photomechanical molecular crystals.
Collapse
Affiliation(s)
- Kohei Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Daichi Kitagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.,Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Syoji Ito
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Seiya Kobatake
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.,Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
8
|
Foy JT, Ta N, Hoyt J, Staples RJ, Ehm C. Photoswitching Properties of 5‐Methoxy‐2‐ (2‐phenyldiazenyl) Pyridine. ChemistrySelect 2022. [DOI: 10.1002/slct.202204517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Justin T. Foy
- Department of Physical and Biological Sciences Western New England University 1215 Wilbraham Rd Springfield MA 01119 Unites States
| | - Nicholas Ta
- Department of Physical and Biological Sciences Western New England University 1215 Wilbraham Rd Springfield MA 01119 Unites States
| | - Johnathon Hoyt
- Department of Physical and Biological Sciences Western New England University 1215 Wilbraham Rd Springfield MA 01119 Unites States
| | - Richard J. Staples
- Department of Chemistry Michigan State University 578 S. Shaw Lane East Lansing MI 48824
| | - Christian Ehm
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia, Complesso di Monte San Angelo 80126 Napoli Italy
| |
Collapse
|
9
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022; 61:e202206631. [PMID: 35852813 PMCID: PMC9826306 DOI: 10.1002/anie.202206631] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Molecular machines are at the frontier of biology and chemistry. The ability to control molecular motion and emulating the movement of biological systems are major steps towards the development of responsive and adaptive materials. Amazing progress has been seen for the design of molecular machines including light-induced unidirectional rotation of overcrowded alkenes. However, the feasibility of inducing unidirectional rotation about a single bond as a result of chemical conversion has been a challenging task. In this Review, an overview of approaches towards the design, synthesis, and dynamic properties of different classes of atropisomers which can undergo controlled switching or rotation under the influence of a chemical stimulus is presented. They are categorized as molecular switches, rotors, motors, and autonomous motors according to their type of response. Furthermore, we provide a future perspective and challenges focusing on building sophisticated molecular machines.
Collapse
Affiliation(s)
- Anirban Mondal
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Department of ChemistryGraduate School of ScienceTohoku University6-3 Aramaki-Aza-AobaAobaku, Sendai980-8578Japan
| | - Romain Costil
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
10
|
Yu Gitlina A, Fadaei-Tirani F, Ruggi A, Plaice C, Severin K. Acid-base-induced fac → mer isomerization of luminescent iridium(iii) complexes. Chem Sci 2022; 13:10370-10374. [PMID: 36277648 PMCID: PMC9473533 DOI: 10.1039/d2sc02808e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Luminescent Ir(C^N)3 complexes (C^N = cyclometalated arylpyridine ligand) exist in the form of two stable isomers with distinct photophysical and electrochemical properties: fac and mer. Herein, we show that fac-Ir(C^N)3 complexes can be converted into the thermodynamically less stable mer forms by a consecutive reaction with first acid and then base. The chemically induced isomerization is fast, quantitative, and stereoselective, and it can be inversed by light. The new isomerization process opens the possibility to use highly luminescent Ir(C^N)3 complexes as molecular switches.
Collapse
Affiliation(s)
- Anastasia Yu Gitlina
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg 1700 Fribourg Switzerland
| | - Carolina Plaice
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
11
|
Benny R, Sahoo D, George A, De S. Recent Advances in Fuel-Driven Molecular Switches and Machines. ChemistryOpen 2022; 11:e202200128. [PMID: 36071446 PMCID: PMC9452441 DOI: 10.1002/open.202200128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular switches and machines arena has entered a new phase in which molecular machines operate under out-of-equilibrium conditions using appropriate fuel. Unlike the equilibrium version, the dissipative off-equilibrium machines necessitate only one stimulus input to complete each cycle and decrease chemical waste. Such a modus operandi would set significant steps towards mimicking the natural machines and may offer a platform for advancing new applications by providing temporal control. This review summarises the recent progress and blueprint of autonomous fuel-driven off-equilibrium molecular switches and machines.
Collapse
Affiliation(s)
- Renitta Benny
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Diptiprava Sahoo
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Ajith George
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Soumen De
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| |
Collapse
|
12
|
Kathan M, Crespi S, Troncossi A, Stindt CN, Toyoda R, Feringa BL. The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angew Chem Int Ed Engl 2022; 61:e202205801. [PMID: 35718745 PMCID: PMC9544085 DOI: 10.1002/anie.202205801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/13/2022]
Abstract
In artificial small‐molecule machines, molecular motors can be used to perform work on coupled systems by applying a mechanical load—such as strain—that allows for energy transduction. Here, we report how ring strain influences the rotation of a rotary molecular motor. Bridging the two halves of the motor with alkyl tethers of varying sizes yields macrocycles that constrain the motor's movement. Increasing the ring size by two methylene increments increases the mobility of the motor stepwise and allows for fine‐tuning of strain in the system. Small macrocycles (8–14 methylene units) only undergo a photochemical E/Z isomerization. Larger macrocycles (16–22 methylene units) can perform a full rotational cycle, but thermal helix inversion is strongly dependent on the ring size. This study provides systematic and quantitative insight into the behavior of molecular motors under a mechanical load, paving the way for the development of complex coupled nanomachinery.
Collapse
Affiliation(s)
- Michael Kathan
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Stefano Crespi
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry—Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Axel Troncossi
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| | - Charlotte N. Stindt
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry Graduate School of Science Tohoku University 6-3 Aramaki-Aza-Aoba, Aobaku Sendai 980-8578 Japan
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| |
Collapse
|
13
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anirban Mondal
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ryojun Toyoda
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chmistry NETHERLANDS
| | - Romain Costil
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
14
|
Kathan M, Crespi S, Troncossi A, Stindt CN, Toyoda R, Feringa BL. The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael Kathan
- Humboldt-Universitat zu Berlin Department of Chemistry Brook-Taylor-Str. 2 12489 Berlin GERMANY
| | - Stefano Crespi
- Uppsala Universitet Department of Chemistry Ångström LaboratoryBox 523 751 20 Uppsala SWEDEN
| | - Axel Troncossi
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Charlotte N. Stindt
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ryojun Toyoda
- Tohoku University: Tohoku Daigaku Department of Chemistry JAPAN
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
15
|
Bach NN, Josef V, Maid H, Dube H. Active Mechanical Threading by a Molecular Motor. Angew Chem Int Ed Engl 2022; 61:e202201882. [PMID: 35146857 PMCID: PMC9314141 DOI: 10.1002/anie.202201882] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Molecular motors transform external energy input into directional motions and offer exquisite precision for nano‐scale manipulations. To make full use of molecular motor capacities, their directional motions need to be transmitted and used for powering downstream molecular events. Here we present a macrocyclic molecular motor structure able to perform repetitive molecular threading of a flexible tetraethylene glycol chain through the macrocycle. This mechanical threading event is actively powered by the motor and leads to a direct translation of the unidirectional motor rotation into unidirectional translation motion (chain versus ring). The mechanism of the active mechanical threading is elucidated and the actual threading step is identified as a combined helix inversion and threading event. The established molecular machine function resembles the crucial step of macroscopic weaving or sewing processes and therefore offers a first entry point to a “molecular knitting” counterpart.
Collapse
Affiliation(s)
- Nicolai N Bach
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Verena Josef
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Harald Maid
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
16
|
Zhao LD, Yang X, Zhong X, zhuo Y. Advances in Electrochemiluminescence Biosensors Based on DNA Walkers. Chempluschem 2022; 87:e202200070. [DOI: 10.1002/cplu.202200070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Li-Dan Zhao
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Xia Yang
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Xia Zhong
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - ying zhuo
- Southwest University College of Chemistry and Chemical Engineering No.2 Tiansheng RoadBeiBei District 400715 Chongqing CHINA
| |
Collapse
|
17
|
Bach NN, Josef V, Maid H, Dube H. Active Mechanical Threading by a Molecular Motor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicolai N. Bach
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Verena Josef
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Harald Maid
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Henry Dube
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen GERMANY
| |
Collapse
|
18
|
Gauthier M, Coutrot F. Weinreb Amide, Ketone and Amine as Potential and Competitive Secondary Molecular Stations for Dibenzo-[24]Crown-8 in [2]Rotaxane Molecular Shuttles. Chemistry 2021; 27:17576-17580. [PMID: 34738683 DOI: 10.1002/chem.202103805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 01/05/2023]
Abstract
This paper reports the synthesis and study of new pH-sensitive DB24C8-based [2]rotaxane molecular shuttles that contain within their axle four potential sites of interaction for the DB24C8: ammonium, amine, Weinreb amide, and ketone. In the protonated state, the DB24C8 lay around the best ammonium site. After either deprotonation or deprotonation-then-carbamoylation of the ammonium, different localizations of the DB24C8 were seen, depending on both the number and nature of the secondary stations and steric restriction. Unexpectedly, the results indicated that the Weinreb amide was not a proper secondary molecular station for the DB24C8. Nevertheless, through its methoxy side chain, it slowed down the shuttling of the macrocycle along the threaded axle, thereby partitioning the [2]rotaxane into two translational isomers on the NMR timescale. The ketone was successfully used as a secondary molecular station, and its weak affinity for the DB24C8 was similar to that of a secondary amine.
Collapse
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
19
|
Gisbert Y, Abid S, Kammerer C, Rapenne G. Molecular Gears: From Solution to Surfaces. Chemistry 2021; 27:12019-12031. [PMID: 34131971 DOI: 10.1002/chem.202101489] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 01/18/2023]
Abstract
This review highlights the major efforts devoted to the development of molecular gears over the past 40 years, from pioneering covalent bis-triptycyl systems undergoing intramolecular correlated rotation in solution, to the most recent examples of gearing systems anchored on a surface, which allow intermolecular transmission of mechanical power. Emphasis is laid on the different strategies devised progressively to control the architectures of molecular bevel and spur gears, as intramolecular systems in solution or intermolecular systems on surfaces, while aiming at increased efficiency, complexity and functionality.
Collapse
Affiliation(s)
- Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Seifallah Abid
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France.,Division of Materials Science, Nara Institute of Science and Technology, 8916-5, Nara, Japan
| |
Collapse
|
20
|
Amirjalayer S. Understanding the Molecular Origin of the Collective Movement in a Diarylethene-based Photo-Responsive Actuator. Chemphyschem 2021; 22:1658-1661. [PMID: 34213042 PMCID: PMC8456835 DOI: 10.1002/cphc.202100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Indexed: 11/30/2022]
Abstract
Remotely controlling macroscopic movement is one of the key elements to realize intelligent materials for applications ranging from sensing to robotics. Over the last few years, a number of photomechanical materials based on diarylethene derivatives have been developed. However, a detailed picture of the structural evolution within these soft actuators is often missing. In this work, an atomistic investigation uncovers how the photo-induced molecular dynamics propagates to large-scale motion and results in macroscopic deformation of the crystal. By correlating the intramolecular rearrangement within the photo-responsive switching unit with the intermolecular packing, the molecular mechanism for the photomechanical phenomena is deciphered, which is fundamental for a rational development of photo-responsive actuators.
Collapse
Affiliation(s)
- Saeed Amirjalayer
- Westfälische Wilhelms-Universität MünsterPhysikalisches InstituteCenter for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC)Heisenbergstr. 1148149MünsterGermany
| |
Collapse
|
21
|
Waelès P, Gauthier M, Coutrot F. Challenges and Opportunities in the Post-Synthetic Modification of Interlocked Molecules. Angew Chem Int Ed Engl 2021; 60:16778-16799. [PMID: 32894812 DOI: 10.1002/anie.202007496] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Several strategies have been successfully utilised to obtain a wide range of interlocked molecules. However, some interlocked compounds are still not obtained directly and/or efficiently from non-interlocked components because the requisites for self-assembly cannot always be enforced. To circumvent such a synthetic problem, a strategy that consists of synthesizing an isolable and storable interlocked building block in a step that precedes its modification is an appealing chemical route to more sophisticated interlocked molecules. Synthetic opportunities and challenges are closely linked to the fact that the mechanical bond might greatly affect the reactivity of a functionality of the encircled axle, but that the interlocked architecture needs to be preserved during the synthesis. Hence, the mechanical bond plays a fundamental role in the strategy employed. This Review focuses on the challenging post-synthetic modifications of interlocked molecules, sometimes through cleavage of the axle's main chain, but always with conservation of the mechanical bond.
Collapse
Affiliation(s)
- Philip Waelès
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Maxime Gauthier
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| |
Collapse
|
22
|
Waelès P, Gauthier M, Coutrot F. Challenges and Opportunities in the Post‐Synthetic Modification of Interlocked Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philip Waelès
- Supramolecular Machines and ARchitectures Team Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS Université de Montpellier ENSCM case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Maxime Gauthier
- Supramolecular Machines and ARchitectures Team Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS Université de Montpellier ENSCM case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS Université de Montpellier ENSCM case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| |
Collapse
|
23
|
Huber LA, Thumser S, Grill K, Voßiek D, Bach NN, Mayer P, Dube H. Steric Effects on the Thermal Processes of Hemithioindigo Based Molecular Motor Rotation. Chemistry 2021; 27:10758-10765. [PMID: 33945652 PMCID: PMC8361725 DOI: 10.1002/chem.202100950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/21/2022]
Abstract
Tuning the thermal behavior of light driven molecular motors is fundamentally important for their future rational design. In many molecular motors thermal ratcheting steps are comprised of helicity inversions, energetically stabilizing the initial photoproducts. In this work we investigated a series of five hemithioindigo (HTI) based molecular motors to reveal the influence of steric hindrance in close proximity to the rotation axle on this process. Applying a high yielding synthetic procedure, we synthesized constitutional isomeric derivatives to distinguish between substitution effects at the aromatic and aliphatic position on the rotor fragment. The kinetics of thermal helix inversions were elucidated using low temperature 1 H NMR spectroscopy and an in situ irradiation technique. In combination with a detailed theoretical description, a comparative analysis of substituent effects on the thermal helix inversions of the rotation cycle is now possible. Such deeper understanding of the rotational cycle of HTI molecular motors is essential for speed regulation and future applications of visible light triggered nanomachines.
Collapse
Affiliation(s)
- Ludwig A. Huber
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - Stefan Thumser
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - Kerstin Grill
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - David Voßiek
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - Nicolai N. Bach
- Department of Chemistry and PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Peter Mayer
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - Henry Dube
- Department of Chemistry and PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
24
|
Colasson B, Devic T, Gaubicher J, Martineau-Corcos C, Poizot P, Sarou-Kanian V. Dual Electroactivity in a Covalent Organic Network with Mechanically Interlocked Pillar[5]arenes. Chemistry 2021; 27:9589-9596. [PMID: 33830553 DOI: 10.1002/chem.202100558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 02/02/2023]
Abstract
The synthesis and characterization of a polyrotaxanated covalent organic network (CON) based on the association between the viologen and pillar[5]arene (P[5]OH) units are reported. The mechanical bond allows for the irreversible insertion of n-type redox centers (P[5]OH macrocycles) within a pristine structure based on p-type viologen redox centers. Both redox units are active on a narrow potential range and, in water, the presence of P[5]OH greatly increases the electroactivity of the material.
Collapse
Affiliation(s)
- Benoit Colasson
- Université de Paris UMR 8601, LCPBT, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Thomas Devic
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, 44322, Nantes, France
| | - Joël Gaubicher
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, 44322, Nantes, France
| | - Charlotte Martineau-Corcos
- Institut Lavoisier de Versailles (ILV), Université de Versailles St Quentin, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France.,CEMHTI UPR 3079 CNRS, Université d'Orléans, 45071, Orléans, France
| | - Philippe Poizot
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, 44322, Nantes, France
| | | |
Collapse
|
25
|
Lu RQ, Zhuo YZ, Bao YH, Yang LL, Qu H, Tang X, Wang XC, Li ZH, Cao XY. Cyclopentadienone Derivative Dimers as Tunable Photoswitches. Chemistry 2021; 27:7882-7886. [PMID: 33780575 DOI: 10.1002/chem.202100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 11/10/2022]
Abstract
A series of photoswitchable cyclopentadienone derivative dimers bearing bromo, thienyl, 4-(dimethylamino)phenyl, 3-pyridinyl, 4-nitrophenyl and cyano groups was designed and facilely synthesized. Photoswitching properties such as the photoconversions in the photostationary state (PSS), the thermal kinetics and thermal half-lives of photoisomers were systematically investigated. These photoswitches show high fatigue resistance and large photoconversions in the PSS. This work proves that the photoswitching properties of photoswitches based on cyclopentadienone dimers can be tuned by substitution groups and also pave the way to functionalize the cyclopentadienone derivative dimer-based photoswitch, which is important for its future applications.
Collapse
Affiliation(s)
- Ru-Qiang Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - You-Zhen Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yue-Hua Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lin-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xin-Chang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhi-Hao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
26
|
Gauthier M, Koehler V, Clavel C, Kauffmann B, Huc I, Ferrand Y, Coutrot F. Interplay between a Foldamer Helix and a Macrocycle in a Foldarotaxane Architecture. Angew Chem Int Ed Engl 2021; 60:8380-8384. [PMID: 33475210 DOI: 10.1002/anie.202100349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 11/07/2022]
Abstract
The design and synthesis of a novel rotaxane/foldaxane hybrid architecture is reported. The winding of an aromatic oligoamide helix host around a dumbbell-shaped thread-like guest, or axle, already surrounded by a macrocycle was evidenced by NMR spectroscopy and X-ray crystallography. The process proved to depend on the position of the macrocycle along the axle and the associated steric hindrance. The macrocycle thus behaves as a switchable shield that modulates the affinity of the helix for the axle. Reciprocally, the foldamer helix acts as a supramolecular auxiliary that compartmentalizes the axle. In some cases, the macrocycle is forced to move along the axle to allow the foldamer to reach its best recognition site.
Collapse
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Victor Koehler
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248), Université de Bordeaux, CNRS, IPB, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Caroline Clavel
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Brice Kauffmann
- Université de Bordeaux, CNRS, INSERM, UMS3033, IECB, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Yann Ferrand
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248), Université de Bordeaux, CNRS, IPB, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| |
Collapse
|
27
|
Gauthier M, Koehler V, Clavel C, Kauffmann B, Huc I, Ferrand Y, Coutrot F. Interplay between a Foldamer Helix and a Macrocycle in a Foldarotaxane Architecture. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and ARchitectures Team Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS Université de Montpellier ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage Faculté des Sciences Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Victor Koehler
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248) Université de Bordeaux CNRS, IPB 2 rue Robert Escarpit 33600 Pessac France
| | - Caroline Clavel
- Supramolecular Machines and ARchitectures Team Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS Université de Montpellier ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage Faculté des Sciences Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Brice Kauffmann
- Université de Bordeaux CNRS INSERM, UMS3033 IECB 2 rue Robert Escarpit 33600 Pessac France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
| | - Yann Ferrand
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248) Université de Bordeaux CNRS, IPB 2 rue Robert Escarpit 33600 Pessac France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS Université de Montpellier ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage Faculté des Sciences Place Eugène Bataillon 34095 Montpellier cedex 5 France
| |
Collapse
|
28
|
Zhang W, Bertinetti L, Blank KG, Dimova R, Gao C, Schneck E, Fratzl P. Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. Angew Chem Int Ed Engl 2021; 60:6488-6495. [PMID: 33188706 PMCID: PMC7986915 DOI: 10.1002/anie.202011983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/06/2020] [Indexed: 12/21/2022]
Abstract
Osmotic pressures (OPs) play essential roles in biological processes and numerous technological applications. However, the measurement of OP in situ with spatiotemporal resolution has not been achieved so far. Herein, we introduce a novel kind of OP sensor based on liposomes loaded with water-soluble fluorescent dyes exhibiting resonance energy transfer (FRET). The liposomes experience volume changes in response to OP due to water outflux. The FRET efficiency depends on the average distance between the entrapped dyes and thus provides a direct measure of the OP surrounding each liposome. The sensors exhibit high sensitivity to OP in the biologically relevant range of 0-0.3 MPa in aqueous solutions of salt, small organic molecules, and macromolecules. With the help of FRET microscopy, we demonstrate the feasibility of spatiotemporal OP imaging, which can be a promising new tool to investigate phenomena involving OPs and their dynamics in biology and technology.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Luca Bertinetti
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Kerstin G. Blank
- Mechano(bio)chemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Rumiana Dimova
- Department of Theory & Bio-SystemsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Emanuel Schneck
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
- Department of PhysicsTechnische Universität Darmstadt64289DarmstadtGermany
| | - Peter Fratzl
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| |
Collapse
|
29
|
Zhang W, Bertinetti L, Blank KG, Dimova R, Gao C, Schneck E, Fratzl P. Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenbo Zhang
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Luca Bertinetti
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Kerstin G. Blank
- Mechano(bio)chemistry Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Rumiana Dimova
- Department of Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Emanuel Schneck
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
- Department of Physics Technische Universität Darmstadt 64289 Darmstadt Germany
| | - Peter Fratzl
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| |
Collapse
|
30
|
Yang X, Cheng Q, Monnier V, Charles L, Karoui H, Ouari O, Gigmes D, Wang R, Kermagoret A, Bardelang D. Guest Exchange by a Partial Energy Ratchet in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xue Yang
- Aix Marseille Univ CNRS ICR Marseille France
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | - Valerie Monnier
- Aix Marseille Univ CNRS Centrale Marseille, FSCM Spectropole Marseille France
| | | | | | | | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | | | | |
Collapse
|
31
|
Yang X, Cheng Q, Monnier V, Charles L, Karoui H, Ouari O, Gigmes D, Wang R, Kermagoret A, Bardelang D. Guest Exchange by a Partial Energy Ratchet in Water. Angew Chem Int Ed Engl 2021; 60:6617-6623. [DOI: 10.1002/anie.202014399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Xue Yang
- Aix Marseille Univ CNRS ICR Marseille France
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | - Valerie Monnier
- Aix Marseille Univ CNRS Centrale Marseille, FSCM Spectropole Marseille France
| | | | | | | | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | | | | |
Collapse
|
32
|
Non‐Covalent Interaction‐Directed Coordination‐Driven Self‐Assembly of Non‐Trivial Supramolecular Topologies. CHEM REC 2021; 21:574-593. [DOI: 10.1002/tcr.202000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/07/2022]
|
33
|
Yamano Y, Murayama K, Asanuma H. Dual Crosslinking Photo‐Switches for Orthogonal Photo‐Control of Hybridization Between Serinol Nucleic Acid and RNA. Chemistry 2020; 27:4599-4604. [DOI: 10.1002/chem.202003528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Yuuhei Yamano
- Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464–8603 Japan
| | - Keiji Murayama
- Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464–8603 Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464–8603 Japan
| |
Collapse
|
34
|
Jeong M, Park J, Kwon S. Molecular Switches and Motors Powered by Orthogonal Stimuli. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Myeongsu Jeong
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Jiyoon Park
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Sunbum Kwon
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| |
Collapse
|
35
|
Wilcken R, Huber L, Grill K, Guentner M, Schildhauer M, Thumser S, Riedle E, Dube H. Tuning the Ground and Excited State Dynamics of Hemithioindigo Molecular Motors by Changing Substituents. Chemistry 2020; 26:13507-13512. [PMID: 32692896 PMCID: PMC7702134 DOI: 10.1002/chem.202003096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Efficiency and performance of light triggered molecular motors are crucial features that need to be mechanistically understood to improve the performance and enable conscious property tailoring for specific applications. In this work, three different hemithioindigo-based molecular motors are investigated and all four steps in their complete unidirectional rotation are unraveled fully quantitatively. Transient absorption spectroscopy across twelve orders of magnitude in time is used to probe the fs nuclear motions up to the ms thermal kinetics, covering the timeframe of the whole motor rotation. The newly known full mechanisms allow simulation of the motor systems to scrutinize their performance at realistic illumination conditions. This highlights the importance of photoisomerization quantum yields for the rotation speed. The substitution pattern in close proximity to the rotation axle influences the excited and ground state properties. Reduction of electron donation and concomitant increase of steric hindrance leads to faster photoisomerization reactions with quasi-ballistic behavior, but also to a slight decrease in the quantum efficiency. The expected decelerating effects of increased sterics are primarily manifested in the ground state. A promising approach for next-generation hemithioindigo motors is to elevate electron donation at the rotor fragment followed by an increase of steric hindrance.
Collapse
Affiliation(s)
- Roland Wilcken
- Lehrstuhl für BioMolekulare OptikLudwig-Maximilians-Universität MünchenOettingenstr. 6780538MünchenGermany
| | - Ludwig Huber
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–13 (Haus F)81377MünchenGermany
| | - Kerstin Grill
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–13 (Haus F)81377MünchenGermany
| | - Manuel Guentner
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–13 (Haus F)81377MünchenGermany
| | - Monika Schildhauer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–13 (Haus F)81377MünchenGermany
| | - Stefan Thumser
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–13 (Haus F)81377MünchenGermany
| | - Eberhard Riedle
- Lehrstuhl für BioMolekulare OptikLudwig-Maximilians-Universität MünchenOettingenstr. 6780538MünchenGermany
| | - Henry Dube
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–13 (Haus F)81377MünchenGermany
- Chair of Organic Chemistry IDepartment of Chemistry and PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
36
|
Rest C, Philips DS, Dünnebacke T, Sutar P, Sampedro A, Droste J, Stepanenko V, Hansen MR, Albuquerque RQ, Fernández G. Tuning Aqueous Supramolecular Polymerization by an Acid-Responsive Conformational Switch. Chemistry 2020; 26:10005-10013. [PMID: 32374463 PMCID: PMC7496824 DOI: 10.1002/chem.202001566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/03/2020] [Indexed: 01/03/2023]
Abstract
Besides their widespread use in coordination chemistry, 2,2'-bipyridines are known for their ability to undergo cis-trans conformational changes in response to metal ions and acids, which has been primarily investigated at the molecular level. However, the exploitation of such conformational switching in self-assembly has remained unexplored. In this work, the use of 2,2'-bipyridines as acid-responsive conformational switches to tune supramolecular polymerization processes has been demonstrated. To achieve this goal, we have designed a bipyridine-based linear bolaamphiphile, 1, that forms ordered supramolecular polymers in aqueous media through cooperative aromatic and hydrophobic interactions. Interestingly, addition of acid (TFA) induces the monoprotonation of the 2,2'-bipyridine moiety, leading to a switch in the molecular conformation from a linear (trans) to a V-shaped (cis) state. This increase in molecular distortion along with electrostatic repulsions of the positively charged bipyridine-H+ units attenuate the aggregation tendency and induce a transformation from long fibers to shorter thinner fibers. Our findings may contribute to opening up new directions in molecular switches and stimuli-responsive supramolecular materials.
Collapse
Affiliation(s)
- Christina Rest
- Institut für Organische ChemieUniversität Würzburg am Hubland97078WürzburgGermany
| | - Divya Susan Philips
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität (WWU) MünsterCorrensstraße, 40.48149MünsterGermany
| | - Torsten Dünnebacke
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität (WWU) MünsterCorrensstraße, 40.48149MünsterGermany
| | - Papri Sutar
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität (WWU) MünsterCorrensstraße, 40.48149MünsterGermany
| | - Angel Sampedro
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität (WWU) MünsterCorrensstraße, 40.48149MünsterGermany
| | - Jörn Droste
- Institut für Physikalische ChemieWWU MünsterCorrensstraße, 28/3048149MünsterGermany
| | - Vladimir Stepanenko
- Institut für Organische ChemieUniversität Würzburg am Hubland97078WürzburgGermany
| | - Michael Ryan Hansen
- Institut für Physikalische ChemieWWU MünsterCorrensstraße, 28/3048149MünsterGermany
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität (WWU) MünsterCorrensstraße, 40.48149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität (WWU) MünsterCorrensstraße, 40.48149MünsterGermany
| |
Collapse
|
37
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
38
|
Kumar R, Aggarwal H, Srivastava A. Of Twists and Curves: Electronics, Photophysics, and Upcoming Applications of Non-Planar Conjugated Organic Molecules. Chemistry 2020; 26:10653-10675. [PMID: 32118325 DOI: 10.1002/chem.201905071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/02/2020] [Indexed: 01/02/2023]
Abstract
Non-planar conjugated organic molecules (NPCOMs) contain π-conjugation across their length and also exhibit asymmetry in their conformation. In other words, certain molecular fragments in NPCOMs are either twisted or curved out of planarity. This conformational asymmetry in NPCOMs leads to non-uniform charge-distribution across the molecule, with important photophysical and electronic consequences such as altered thermodynamic stability, chemical reactivity, as well as materials properties. Majorly, NPCOMs can be classified as having either Fused or Rotatable architectures. NPCOMs have been the focus of significant scientific attention in the recent past due to their exciting photophysical behavior that includes intramolecular charge-transfer (ICT), thermally activated delayed fluorescence (TADF) and long-lived charge-separated states. In addition, they also have many useful materials characteristics such as biradical character, semi-conductivity, dynamic conformations, and mechanochromism. As a result, rational design of NPCOMs and mapping their structure-property correlations has become imperative. Researchers have executed conformational changes in NPCOMs through a variety of external stimuli such as pH, temperature, anions-cations, solvent, electric potential, and mechanical force in order to tailor their photophysical, optoelectronic and magnetic properties. Converging to these points, this review highlights the lucrative electronic features, photophysical traits and upcoming applications of NPCOMs by a selective survey of the recent scientific literature.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Himanshu Aggarwal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| |
Collapse
|
39
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020; 59:13516-13520. [DOI: 10.1002/anie.202004112] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
40
|
Sardjan AS, Roy P, Danowski W, Bressan G, Nunes Dos Santos Comprido L, Browne WR, Feringa BL, Meech SR. Ultrafast Excited State Dynamics in a First Generation Photomolecular Motor. Chemphyschem 2020; 21:594-599. [PMID: 31975490 PMCID: PMC7187380 DOI: 10.1002/cphc.201901179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Efficient photomolecular motors will be critical elements in the design and development of molecular machines. Optimisation of the quantum yield for photoisomerisation requires a detailed understanding of molecular dynamics in the excited electronic state. Here we probe the primary photophysical processes in the archetypal first generation photomolecular motor, with sub‐50 fs time resolved fluorescence spectroscopy. A bimodal relaxation is observed with a 100 fs relaxation of the Franck‐Condon state to populate a red‐shifted state with a reduced transition moment, which then undergoes multi‐exponential decay on a picosecond timescale. Oscillations due to the excitation of vibrational coherences in the S1 state are seen to survive the ultrafast structural relaxation. The picosecond relaxation reveals a strong solvent friction effect which is thus ascribed to torsion about the C−C axle. This behaviour is contrasted with second generation photomolecular motors; the principal differences are explained by the existence of a barrier on the excited state surface in the case of the first‐generation motors which is absent in the second generation. These results will help to provide a basis for designing more efficient molecular motors in the future.
Collapse
Affiliation(s)
- Andy S Sardjan
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Palas Roy
- School of Chemistry, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Wojciech Danowski
- Synthetic Organic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Laura Nunes Dos Santos Comprido
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Wesley R Browne
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Ben L Feringa
- Synthetic Organic Chemistry Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Stephen R Meech
- School of Chemistry, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
41
|
Uhl E, Mayer P, Dube H. Active and Unidirectional Acceleration of Biaryl Rotation by a Molecular Motor. Angew Chem Int Ed Engl 2020; 59:5730-5737. [PMID: 31943681 PMCID: PMC7154650 DOI: 10.1002/anie.201913798] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Light-driven molecular motors possess immense potential as central driving units for future nanotechnology. Integration into larger molecular setups and transduction of their mechanical motions represents the current frontier of research. Herein we report on an integrated molecular machine setup allowing the transmission of potential energy from a motor unit onto a remote receiving entity. The setup consists of a motor unit connected covalently to a distant and sterically encumbered biaryl receiver. By action of the motor unit, single-bond rotation of the receiver is strongly accelerated and forced to proceed unidirectionally. The transmitted potential energy is directly measured as the extent to which energy degeneration is lifted in the thermal atropisomerization of this biaryl. Energy degeneracy is reduced by more than 1.5 kcal mol-1 , and rate accelerations of several orders of magnitude in terms of the rate constants are achieved.
Collapse
Affiliation(s)
- Edgar Uhl
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry and Center for Integrated Protein Science CIPSMButenandtstr. 5–1381377MünchenGermany
| | - Peter Mayer
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry and Center for Integrated Protein Science CIPSMButenandtstr. 5–1381377MünchenGermany
| | - Henry Dube
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry and Center for Integrated Protein Science CIPSMButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
42
|
Uhl E, Mayer P, Dube H. Active and Unidirectional Acceleration of Biaryl Rotation by a Molecular Motor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edgar Uhl
- Ludwig-Maximilians-Universität München Department of Chemistry and Center for Integrated Protein Science CIPSM Butenandtstr. 5–13 81377 München Germany
| | - Peter Mayer
- Ludwig-Maximilians-Universität München Department of Chemistry and Center for Integrated Protein Science CIPSM Butenandtstr. 5–13 81377 München Germany
| | - Henry Dube
- Ludwig-Maximilians-Universität München Department of Chemistry and Center for Integrated Protein Science CIPSM Butenandtstr. 5–13 81377 München Germany
| |
Collapse
|
43
|
Huang C, Ciesielski A, Samorì P. Molecular Springs: Integration of Complex Dynamic Architectures into Functional Devices. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chang‐Bo Huang
- University of StrasbourgCNRSISIS UMR 7006 8 Alleé Gaspard Monge F-67000 Strasbourg France
| | - Artur Ciesielski
- University of StrasbourgCNRSISIS UMR 7006 8 Alleé Gaspard Monge F-67000 Strasbourg France
| | - Paolo Samorì
- University of StrasbourgCNRSISIS UMR 7006 8 Alleé Gaspard Monge F-67000 Strasbourg France
| |
Collapse
|
44
|
Huang CB, Ciesielski A, Samorì P. Molecular Springs: Integration of Complex Dynamic Architectures into Functional Devices. Angew Chem Int Ed Engl 2020; 59:7319-7330. [PMID: 31898855 DOI: 10.1002/anie.201914931] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 11/06/2022]
Abstract
Molecular/supramolecular springs are artificial nanoscale objects possessing well-defined structures and tunable physicochemical properties. Like a macroscopic spring, supramolecular springs are capable of switching their nanoscale conformation as a response to external stimuli by undergoing mechanical spring-like motions. This dynamic action offers intriguing opportunities for engineering molecular nanomachines by translating the stimuli-responsive nanoscopic motions into macroscopic work. These nanoscopic objects are reversible dynamic multifunctional architectures which can express a variety of novel properties and behave as adaptive nanoscopic systems. In this Minireview, we focus on the design and structure-property relationships of supramolecular springs and their (self-)assembly as a prerequisite towards the generation of novel dynamic materials featuring controlled movements to be readily integrated into macroscopic devices for applications in sensing, robotics, and the internet of things.
Collapse
Affiliation(s)
- Chang-Bo Huang
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000, Strasbourg, France
| | - Artur Ciesielski
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000, Strasbourg, France
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
45
|
Jin M, Yamamoto S, Seki T, Ito H, Garcia‐Garibay MA. Anisotropic Thermal Expansion as the Source of Macroscopic and Molecular Scale Motion in Phosphorescent Amphidynamic Crystals. Angew Chem Int Ed Engl 2019; 58:18003-18010. [DOI: 10.1002/anie.201909048] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Mingoo Jin
- University of California Los AngelesDepartment of Chemistry & Biochemistry Los Angeles California 90095-1569 USA
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Sho Yamamoto
- Division of Applied Chemistry and Frontier Chemistry Center (FCC)Faculty of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tomohiro Seki
- Division of Applied Chemistry and Frontier Chemistry Center (FCC)Faculty of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center (FCC)Faculty of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Miguel A. Garcia‐Garibay
- University of California Los AngelesDepartment of Chemistry & Biochemistry Los Angeles California 90095-1569 USA
| |
Collapse
|
46
|
Wang C, Wu G, Zhu J, Jiao T, Zhang Y, Li H. An Octacationic [2]Catenane Formed by Oxime Condensation: A Bistable Molecular Switch. Chempluschem 2019. [DOI: 10.1002/cplu.201900668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cai‐Yun Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiaqi Zhu
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yang Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
47
|
MacDonald TSC, Price WS, Astumian RD, Beves JE. Enhanced Diffusion of Molecular Catalysts is Due to Convection. Angew Chem Int Ed Engl 2019; 58:18864-18867. [DOI: 10.1002/anie.201910968] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - William S. Price
- Nanoscale Group School of Science and Health Western Sydney University Penrith NSW 2751 Australia
| | - R. Dean Astumian
- Department of Physics University of Maine Orono ME 04469-5709 USA
| | | |
Collapse
|
48
|
MacDonald TSC, Price WS, Astumian RD, Beves JE. Enhanced Diffusion of Molecular Catalysts is Due to Convection. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - William S. Price
- Nanoscale Group School of Science and Health Western Sydney University Penrith NSW 2751 Australia
| | - R. Dean Astumian
- Department of Physics University of Maine Orono ME 04469-5709 USA
| | | |
Collapse
|
49
|
Paul I, Ghosh A, Bolte M, Schmittel M. Remote Control of the Synthesis of a [2]Rotaxane and its Shuttling via Metal-Ion Translocation. ChemistryOpen 2019; 8:1355-1360. [PMID: 31763127 PMCID: PMC6863578 DOI: 10.1002/open.201900293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Remote control in an eight-component network commanded both the synthesis and shuttling of a [2]rotaxane via metal-ion translocation, the latter being easily monitored by distinct colorimetric and fluorimetric signals. Addition of zinc(II) ions to the red colored copper-ion relay station rapidly liberated copper(I) ions and afforded the corresponding zinc complex that was visualized by a bright sky blue fluorescence at 460 nm. In a mixture of all eight components of the network, the liberated copper(I) ions were translocated to a macrocycle that catalyzed formation of a rotaxane by a double-click reaction of acetylenic and diazide compounds. The shuttling frequency in the copper-loaded [2]rotaxane was determined to k 298=30 kHz (ΔH ≠=62.3±0.6 kJ mol-1, ΔS ≠=50.1±5.1 J mol-1 K-1, ΔG ≠ 298=47.4 kJ mol-1). Removal of zinc(II) ions from the mixture reversed the system back generating the metal-free rotaxane. Further alternate addition and removal of Zn2+ reversibly controlled the shuttling mode of the rotaxane in this eight-component network where the ion translocation status was monitored by the naked eye.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| | - Amit Ghosh
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| | - Michael Bolte
- Institut für Anorganische und Analytische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 7D-60438Frankfurt (Main)Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| |
Collapse
|
50
|
Jin M, Yamamoto S, Seki T, Ito H, Garcia‐Garibay MA. Anisotropic Thermal Expansion as the Source of Macroscopic and Molecular Scale Motion in Phosphorescent Amphidynamic Crystals. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mingoo Jin
- University of California Los AngelesDepartment of Chemistry & Biochemistry Los Angeles California 90095-1569 USA
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Sho Yamamoto
- Division of Applied Chemistry and Frontier Chemistry Center (FCC)Faculty of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tomohiro Seki
- Division of Applied Chemistry and Frontier Chemistry Center (FCC)Faculty of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center (FCC)Faculty of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Miguel A. Garcia‐Garibay
- University of California Los AngelesDepartment of Chemistry & Biochemistry Los Angeles California 90095-1569 USA
| |
Collapse
|