1
|
Chiang CW, Li HL, Lin TJ, Chen HC, Chou YH, Chou CJ. Versatile Synthesis of Symmetric and Unsymmetric Imines via Photoelectrochemical Catalysis: Application to N-Terminal Modification of Phenylalanine. Chemistry 2023; 29:e202301379. [PMID: 37434348 DOI: 10.1002/chem.202301379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
A strategy that combines electrochemical synthesis and photoredox catalysis was reported for the efficient synthesis of imines. This approach was demonstrated to be highly versatile in producing various types of imines, including symmetric and unsymmetric imines, by exploring the impact of different substituents on the benzene ring of the arylamine. Additionally, the method was specifically applied to modify N-terminal phenylalanine residues and was found to be successful in the photoelectrochemical cross-coupling reaction between NH2 -Phe-OMe and aryl methylamines, leading to the synthesis of phenylalanine-containing imines. Therefore, this technique would present a convenient and efficient platform for synthesizing imines, with promising applications in chemical biology, drug development, and organic synthesis.
Collapse
Affiliation(s)
- Chien-Wei Chiang
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Li Li
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Ting-Jun Lin
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Chi Chen
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Yi-Hsien Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Chih-Ju Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| |
Collapse
|
2
|
Ding D, Wen Y, Liao CM, Yin XG, Zhang RY, Wang J, Zhou SH, Zhang ZM, Zou YK, Gao XF, Wei HW, Yang GF, Guo J. Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. J Med Chem 2023; 66:1467-1483. [PMID: 36625758 PMCID: PMC9844103 DOI: 10.1021/acs.jmedchem.2c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Exploring potent adjuvants and new vaccine strategies is crucial for the development of protein vaccines. In this work, we synthesized a new TLR4 agonist, structurally simplified lipid A analogue GAP112, as a potent built-in adjuvant to improve the immunogenicity of SARS-CoV-2 spike RBD protein. The new TLR4 agonist GAP112 was site-selectively conjugated on the N-terminus of RBD to construct an adjuvant-protein conjugate vaccine in a liposomal formulation. It is the first time that a TLR4 agonist is site-specifically and quantitatively conjugated to a protein antigen. Compared with an unconjugated mixture of GAP112/RBD, a two-dose immunization of the GAP112-RBD conjugate vaccine strongly activated innate immune cells, elicited a 223-fold increase in RBD-specific antibodies, and markedly enhanced T-cell responses. Antibodies induced by GAP112-RBD also effectively cross-neutralized SARS-CoV-2 variants (Delta/B.1.617.2 and Omicron/B.1.1.529). This conjugate strategy provides an effective method to greatly enhance the immunogenicity of antigen in protein vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Dong Ding
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xu-Guang Yin
- School of Medicine, Shaoxing
University, Shaoxing312000, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yong-Ke Zou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and
Instrumentation, East China University of Technology,
Nanchang330013, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology
Co. Ltd, Nantong226499, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| |
Collapse
|
3
|
Mishra D, Loukrakpam DC, Neog SR, Hazarika D, Phukan P. A Switchable Protocol for Selective Synthesis of
gem
‐Dibromo Compounds and Amides from Ketoximes using TsNBr
2. ChemistrySelect 2022. [DOI: 10.1002/slct.202203449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Debashish Mishra
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | | | - Smriti Rekha Neog
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Debojit Hazarika
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Prodeep Phukan
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
4
|
Kjærsgaard NL, Nielsen TB, Gothelf KV. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. Chembiochem 2022; 23:e202200245. [PMID: 35781760 PMCID: PMC9796363 DOI: 10.1002/cbic.202200245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Protein bioconjugates are in high demand for applications in biomedicine, diagnostics, chemical biology and bionanotechnology. Proteins are large and sensitive molecules containing multiple different functional groups and in particular nucleophilic groups. In bioconjugation reactions it can therefore be challenging to obtain a homogeneous product in high yield. Numerous strategies for protein conjugation have been developed, of which a vast majority target lysine, cysteine and to a lesser extend tyrosine. Likewise, several methods that involve recombinantly engineered protein tags have been reported. In recent years a number of methods have emerged for chemical bioconjugation to other amino acids and in this review, we present the progress in this area.
Collapse
Affiliation(s)
- Nanna L. Kjærsgaard
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | | | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
5
|
Hanaya K, Yamoto K, Taguchi K, Matsumoto K, Higashibayashi S, Sugai T. Single‐Step N‐Terminal Modification of Proteins via a Bio‐Inspired Copper(II)‐Mediated Aldol Reaction. Chemistry 2022; 28:e202201677. [DOI: 10.1002/chem.202201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kengo Hanaya
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| | - Kaho Yamoto
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| | - Kazuaki Taguchi
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| | - Kazuaki Matsumoto
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| | | | - Takeshi Sugai
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| |
Collapse
|
6
|
Wang S, Zhou Q, Zhang X, Wang P. Site‐Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
7
|
Wang S, Zhou Q, Zhang X, Wang P. Site-Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202111388. [PMID: 34845804 DOI: 10.1002/anie.202111388] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Site-selective peptide functionalization provides a straightforward and cost-effective access to diversify peptides for biological studies. Among many existing non-invasive peptide conjugations methodologies, photoredox catalysis has emerged as one of the powerful approaches for site-specific manipulation on native peptides. Herein, we report a highly N-termini-specific method to rapidly access itaconated peptides and their derivatives through a combination of transamination and photoredox conditions. This strategy exploits the facile reactivity of peptidyl-dihydropyridine in the complex peptide settings, complementing existing approaches for bioconjugations with excellent selectivity under mild conditions. Distinct from conventional methods, this method utilizes the highly reactive carbamoyl radical derived from a peptidyl-dihydropyridine. In addition, this itaconated peptide can be further functionalized as a Michael acceptor to access the corresponding peptide-protein conjugate.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| |
Collapse
|
8
|
Janson N, Heinks T, Beuel T, Alam S, Höhne M, Bornscheuer UT, Fischer von Mollard G, Sewald N. Efficient Site‐Selective Immobilization of Aldehyde‐Tagged Peptides and Proteins by Knoevenagel Ligation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nils Janson
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Heinks
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Beuel
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Sarfaraz Alam
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Matthias Höhne
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | | | - Norbert Sewald
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
9
|
Li M, Blum NT, Wu J, Lin J, Huang P. Weaving Enzymes with Polymeric Shells for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008438. [PMID: 34197008 DOI: 10.1002/adma.202008438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Indexed: 06/13/2023]
Abstract
Enzyme therapeutics have received increasing attention due to their high biological specificity, outstanding catalytic efficiency, and impressive therapeutic outcomes. Protecting and delivering enzymes into target cells while retaining enzyme catalytic efficiency is a big challenge. Wrapping of enzymes with rational designed polymer shells, rather than trapping them into large nanoparticles such as liposomes, have been widely explored because they can protect the folded state of the enzyme and make post-functionalization easier. In this review, the methods for wrapping up enzymes with protective polymer shells are mainly focused on. It is aimed to provide a toolbox for the rational design of polymeric enzymes by introducing methods for the preparation of polymeric enzymes including physical adsorption and chemical conjugation with specific examples of these conjugates/hybrid applications. Finally, a conclusion is drawn and key points are emphasized.
Collapse
Affiliation(s)
- Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
10
|
Mallek AJ, Pentelute BL, Buchwald SL. Selective N‐Arylation of
p
‐Aminophenylalanine in Unprotected Peptides with Organometallic Palladium Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aaron J. Mallek
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
11
|
Mallek AJ, Pentelute BL, Buchwald SL. Selective N-Arylation of p-Aminophenylalanine in Unprotected Peptides with Organometallic Palladium Reagents. Angew Chem Int Ed Engl 2021; 60:16928-16931. [PMID: 34015170 DOI: 10.1002/anie.202104780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Indexed: 11/11/2022]
Abstract
The selective N-arylation of p-aminophenylalanine in polypeptides with pre-formed palladium oxidative addition complexes is described. The depressed pKa of the aniline NH2 group enables chemoselective C-N bond formation on peptides containing multiple other aliphatic amino groups at lysines or the N-terminus via Curtin-Hammett control under mild conditions. Using palladium complexes derived from electron-poor aryl halides, p-aminophenylalanine is fully arylated in aqueous buffer in as little as one hour at micromolar concentrations. A complementary protocol using the non-nucleophilic, organic base 1,5-diazabicyclo(4.3.0)non-5-ene (DBN), expands the substrate scope to tolerate electron-rich functional groups provides up to 97 % conversion. These procedures enable the chemoselective conjugation of functionally diverse small molecule pharmaceuticals to p-aminophenylalanine containing derivatives of cell-penetrating peptides.
Collapse
Affiliation(s)
- Aaron J Mallek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Liu X, Gao W. Precision Conjugation: An Emerging Tool for Generating Protein–Polymer Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| |
Collapse
|
13
|
Liu X, Gao W. Precision Conjugation: An Emerging Tool for Generating Protein–Polymer Conjugates. Angew Chem Int Ed Engl 2021; 60:11024-11035. [PMID: 32437042 DOI: 10.1002/anie.202003708] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/20/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| |
Collapse
|
14
|
Janson N, Krüger T, Karsten L, Boschanski M, Dierks T, Müller KM, Sewald N. Bifunctional Reagents for Formylglycine Conjugation: Pitfalls and Breakthroughs. Chembiochem 2020; 21:3580-3593. [PMID: 32767537 PMCID: PMC7756428 DOI: 10.1002/cbic.202000416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Indexed: 12/28/2022]
Abstract
Formylglycine-generating enzymes specifically oxidize cysteine within the consensus sequence CxPxR to Cα -formylglycine (FGly). This noncanonical electrophilic amino acid can subsequently be addressed selectively by bioorthogonal hydrazino-iso-Pictet-Spengler (HIPS) or Knoevenagel ligation to attach payloads like fluorophores or drugs to proteins to obtain a defined payload-to-protein ratio. However, the disadvantages of these conjugation techniques include the need for a large excess of conjugation building block, comparably low reaction rates and limited stability of FGly-containing proteins. Therefore, functionalized clickable HIPS and tandem Knoevenagel building blocks were synthesized, conjugated to small proteins (DARPins) and subsequently linked to strained alkyne-containing payloads for protein labeling. This procedure allowed the selective bioconjugation of one or two DBCO-carrying payloads with nearly stoichiometric amounts at low concentrations. Furthermore, an azide-modified tandem Knoevenagel building block enabled the synthesis of branched PEG linkers and the conjugation of two fluorophores, resulting in an improved signal-to-noise ratio in live-cell fluorescence-imaging experiments targeting the EGF receptor.
Collapse
Affiliation(s)
- Nils Janson
- Faculty of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Tobias Krüger
- Faculty of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Lennard Karsten
- Cellular and Molecular BiotechnologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Mareile Boschanski
- Faculty of ChemistryBiochemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Thomas Dierks
- Faculty of ChemistryBiochemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Kristian M. Müller
- Cellular and Molecular BiotechnologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Faculty of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
15
|
Sornay C, Hessmann S, Erb S, Dovgan I, Ehkirch A, Botzanowski T, Cianférani S, Wagner A, Chaubet G. Investigating Ugi/Passerini Multicomponent Reactions for the Site‐Selective Conjugation of Native Trastuzumab**. Chemistry 2020; 26:13797-13805. [DOI: 10.1002/chem.202002432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| |
Collapse
|
16
|
Onoda A, Inoue N, Sumiyoshi E, Hayashi T. Triazolecarbaldehyde Reagents for One-Step N-Terminal Protein Modification. Chembiochem 2020; 21:1274-1278. [PMID: 31794069 DOI: 10.1002/cbic.201900692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Site-specific modification of peptides and proteins is a key aspect of protein engineering. We developed a method for modification of the N terminus of proteins using 1H-1,2,3-triazole-4-carbaldehyde (TA4C) derivatives, which can be prepared in one step. The N-terminal specific labeling of bioactive peptides and proteins with the TA4C derivatives proceeds under mild reaction conditions in excellent conversion (angiotensin I: 92 %, ribonuclease A: 90 %). This method enables site-specific conjugation of various functional molecules such as fluorophores, biotin, and polyethylene glycol attached to the triazole ring to the N terminus. Furthermore, a functional molecule modified with a primary amine moiety can be directly converted into a TA4C derivative through a Dimroth rearrangement reaction with 1-(4-nitrophenyl)-1H-1,2,3-triazole-4-carbaldehyde. This method can be used to obtain N-terminal-modified proteins via only two steps: 1) convenient preparation of a TA4C derivative with a functional group and 2) modification of the N terminus of the protein with the TA4C derivative.
Collapse
Affiliation(s)
- Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nozomu Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eigo Sumiyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Adusumalli SR, Rawale DG, Thakur K, Purushottam L, Reddy NC, Kalra N, Shukla S, Rai V. Chemoselective and Site‐Selective Lysine‐Directed Lysine Modification Enables Single‐Site Labeling of Native Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Srinivasa Rao Adusumalli
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Dattatraya Gautam Rawale
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Kalyani Thakur
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Landa Purushottam
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Neelesh C. Reddy
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Neetu Kalra
- Department of Biological Sciences Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Sanjeev Shukla
- Department of Biological Sciences Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Vishal Rai
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| |
Collapse
|
18
|
Adusumalli SR, Rawale DG, Thakur K, Purushottam L, Reddy NC, Kalra N, Shukla S, Rai V. Chemoselective and Site-Selective Lysine-Directed Lysine Modification Enables Single-Site Labeling of Native Proteins. Angew Chem Int Ed Engl 2020; 59:10332-10336. [PMID: 32171045 DOI: 10.1002/anie.202000062] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/24/2020] [Indexed: 12/13/2022]
Abstract
The necessity for precision labeling of proteins emerged during the efforts to understand and regulate their structure and function. It demands selective attachment of tags such as affinity probes, fluorophores, and potent cytotoxins. Here, we report a method that enables single-site labeling of a high-frequency Lys residue in the native proteins. At first, the enabling reagent forms stabilized imines with multiple solvent-accessible Lys residues chemoselectively. These linchpins create the opportunity to regulate the position of a second Lys-selective electrophile connected by a spacer. Consequently, it enables the irreversible single-site labeling of a Lys residue independent of its place in the reactivity order. The user-friendly protocol involves a series of steps to deconvolute and address chemoselectivity, site-selectivity, and modularity. Also, it delivers ordered immobilization and analytically pure probe-tagged proteins. Besides, the methodology provides access to antibody-drug conjugate (ADC), which exhibits highly selective anti-proliferative activity towards HER-2 expressing SKBR-3 breast cancer cells.
Collapse
Affiliation(s)
- Srinivasa Rao Adusumalli
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Dattatraya Gautam Rawale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Kalyani Thakur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Landa Purushottam
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Neetu Kalra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| |
Collapse
|
19
|
|
20
|
Pomplun S, Mohamed MYH, Oelschlaegel T, Wellner C, Bergmann F. Efficient Pictet-Spengler Bioconjugation with N
-Substituted Pyrrolyl Alanine Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sebastian Pomplun
- Roche Diagnostics GmbH; Nonnenwald 2 82377 Penzberg Germany
- Current address: Massachusetts Institute of Technology; Department of Chemistry; 77 Massachusetts Ave Cambridge MA 02139 USA
| | | | | | | | - Frank Bergmann
- Roche Diagnostics GmbH; Nonnenwald 2 82377 Penzberg Germany
| |
Collapse
|
21
|
Pomplun S, Mohamed MYH, Oelschlaegel T, Wellner C, Bergmann F. Efficient Pictet-Spengler Bioconjugation with N-Substituted Pyrrolyl Alanine Derivatives. Angew Chem Int Ed Engl 2019; 58:3542-3547. [PMID: 30653800 DOI: 10.1002/anie.201814200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Indexed: 01/06/2023]
Abstract
We discovered N-pyrrolyl alanine derivatives as efficient reagents for the fast and selective Pictet-Spengler reaction with aldehyde-containing biomolecules. Other aldehyde-labeling methods described so far have several drawbacks, like hydrolytic instability, slow reaction kinetics or not readily available labeling reagents. Pictet-Spengler cyclizations of pyrrolyl 2-ethylamine substituted at the pyrrole nitrogen are significantly faster than with analogues substituted at the α- and β- position. Functionalized N-pyrrolyl alanine derivatives can be synthesized in only 2-3 steps from commercially available materials. The small size of the reagent, the high reaction rate, and the easy synthesis make pyrrolyl alanine Pictet-Spengler (PAPS) an attractive choice for bioconjugation reactions. PAPS was shown as an efficient strategy for the site-selective biotinylation of an antibody as well as for the condensation of nucleic-acid derivatives, demonstrating the versatility of this reagent.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany.,Current address: Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | | | | | | | - Frank Bergmann
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| |
Collapse
|
22
|
Dal Corso A, Catalano M, Schmid A, Scheuermann J, Neri D. Affinity Enhancement of Protein Ligands by Reversible Covalent Modification of Neighboring Lysine Residues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alberto Dal Corso
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Anja Schmid
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
23
|
Dal Corso A, Catalano M, Schmid A, Scheuermann J, Neri D. Affinity Enhancement of Protein Ligands by Reversible Covalent Modification of Neighboring Lysine Residues. Angew Chem Int Ed Engl 2018; 57:17178-17182. [DOI: 10.1002/anie.201811650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Alberto Dal Corso
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Anja Schmid
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
24
|
Choi EJ, Jung D, Kim JS, Lee Y, Kim BM. Chemoselective Tyrosine Bioconjugation through Sulfate Click Reaction. Chemistry 2018; 24:10948-10952. [PMID: 29935027 DOI: 10.1002/chem.201802380] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Indexed: 11/09/2022]
Abstract
A novel and selective tyrosine functionalization strategy through SuFEx (sulfur fluoride exchange) chemistry is presented. In this approach, free tyrosine (Tyr) reacts selectively with aryl fluorosulfate in the presence of various nucleophilic amino acid residues in bio-tolerable conditions. Chemoselectivity of this unique SuFEx reaction was confirmed in amino acid, peptide, and protein conjugations. The functions of peptides and proteins were well-preserved as demonstrated from the Tyr-specific modification of cell-penetrating peptide and erythropoietin. This method is well-suited for residue-specific modification of native proteins, and thus would expand the versatility of bio-conjugation in protein chemistry.
Collapse
Affiliation(s)
- Eun Joung Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Dongwook Jung
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute of Basic Science, Seoul, 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - B Moon Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
25
|
N
-Phenyl-N
-aceto-vinylsulfonamides as Efficient and Chemoselective Handles for N-Terminal Modification of Peptides and Proteins. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Ju Y, Zhang Y, Zhao H. Fabrication of Polymer-Protein Hybrids. Macromol Rapid Commun 2018; 39:e1700737. [PMID: 29383794 DOI: 10.1002/marc.201700737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Rapid developments in organic chemistry and polymer chemistry promote the synthesis of polymer-protein hybrids with different structures and biofunctionalities. In this feature article, recent progress achieved in the synthesis of polymer-protein conjugates, protein-nanoparticle core-shell structures, and polymer-protein nanogels/hydrogels is briefly reviewed. The polymer-protein conjugates can be synthesized by the "grafting-to" or the "grafting-from" approach. In this article, different coupling reactions and polymerization methods used in the synthesis of bioconjugates are reviewed. Protein molecules can be immobilized on the surfaces of nanoparticles by covalent or noncovalent linkages. The specific interactions and chemical reactions employed in the synthesis of core-shell structures are discussed. Finally, a general introduction to the synthesis of environmentally responsive polymer-protein nanogels/hydrogels by chemical cross-linking reactions or molecular recognition is provided.
Collapse
Affiliation(s)
- Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
27
|
MacEwan SR, Chilkoti A. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers. Angew Chem Int Ed Engl 2017; 56:6712-6733. [PMID: 28028871 PMCID: PMC6372097 DOI: 10.1002/anie.201610819] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 12/21/2022]
Abstract
The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
- Present address: Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
| |
Collapse
|
28
|
MacEwan SR, Chilkoti A. Von der Zusammensetzung zur Heilung: ein systemtechnischer Ansatz zur Entwicklung von Trägern für Tumortherapeutika. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sarah R. MacEwan
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
| |
Collapse
|
29
|
Chen D, Disotuar MM, Xiong X, Wang Y, Chou DHC. Selective N-terminal functionalization of native peptides and proteins. Chem Sci 2017; 8:2717-2722. [PMID: 28553506 PMCID: PMC5426342 DOI: 10.1039/c6sc04744k] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/06/2017] [Indexed: 12/12/2022] Open
Abstract
We report an efficient, highly selective modification on the N-terminal amines of peptides and proteins using aldehyde derivatives via reductive alkylation. After modification of a library of unprotected peptides XYSKEASAL (X varies over 20 natural amino acids) by benzaldehyde at room temperature, pH 6.1 resulted in excellent N-terminal selectivity (α-amino/ε-amino: >99 : 1) and high reaction conversion for 19 out of the 20 peptides. Under similar conditions, highly selective N-terminal modifications were achieved with a variety of aldehydes. Furthermore, N-termini of native peptides and proteins could be selectively modified under the same conditions to introduce bioorthogonal functional groups. Using human insulin as an example, we further demonstrated that preserving the positive charge in the N-terminus using reductive alkylation instead of acylation leads to a 5-fold increase in bioactivity. In summary, our reported method provides a universal strategy for site-selective N-terminal functionalization in native peptides and proteins.
Collapse
Affiliation(s)
- Diao Chen
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Maria M Disotuar
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Xiaochun Xiong
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Yuanxiang Wang
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Danny Hung-Chieh Chou
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| |
Collapse
|
30
|
Banerjee PR, Mitrea DM, Kriwacki RW, Deniz AA. Asymmetric Modulation of Protein Order-Disorder Transitions by Phosphorylation and Partner Binding. Angew Chem Int Ed Engl 2015; 55:1675-9. [PMID: 26679013 DOI: 10.1002/anie.201507728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/02/2015] [Indexed: 12/16/2022]
Abstract
As for many intrinsically disordered proteins, order-disorder transitions in the N-terminal oligomerization domain of the multifunctional nucleolar protein nucleophosmin (Npm-N) are central to its function, with phosphorylation and partner binding acting as regulatory switches. However, the mechanism of this transition and its regulation remain poorly understood. In this study, single-molecule and ensemble experiments revealed pathways with alternative sequences of folding and assembly steps for Npm-N. Pathways could be switched by altering the ionic strength. Phosphorylation resulted in pathway-specific effects, and decoupled folding and assembly steps to facilitate disorder. Conversely, binding to a physiological partner locked Npm-N in ordered pentamers and counteracted the effects of phosphorylation. The mechanistic plasticity found in the Npm-N order-disorder transition enabled a complex interplay of phosphorylation and partner-binding steps to modulate its folding landscape.
Collapse
Affiliation(s)
- Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92307, USA
| | - Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA. .,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92307, USA.
| |
Collapse
|
31
|
Banerjee PR, Mitrea DM, Kriwacki RW, Deniz AA. Asymmetric Modulation of Protein Order-Disorder Transitions by Phosphorylation and Partner Binding. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Priya R. Banerjee
- Department of Integrative Structural and Computational Biology; The Scripps Research Institute; La Jolla CA 92307 USA
| | - Diana M. Mitrea
- Department of Structural Biology; St. Jude Children's Research Hospital; Memphis TN 38105 USA
| | - Richard W. Kriwacki
- Department of Structural Biology; St. Jude Children's Research Hospital; Memphis TN 38105 USA
- Department of Microbiology; Immunology and Biochemistry; University of Tennessee Health Sciences Center; Memphis TN 38163 USA
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology; The Scripps Research Institute; La Jolla CA 92307 USA
| |
Collapse
|
32
|
Nguyen GKT, Cao Y, Wang W, Liu CF, Tam JP. Site‐Specific N‐Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Giang K. T. Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| | - Yuan Cao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| | - Wei Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| |
Collapse
|
33
|
Nguyen GKT, Cao Y, Wang W, Liu CF, Tam JP. Site-Specific N-Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide. Angew Chem Int Ed Engl 2015; 54:15694-8. [PMID: 26563575 DOI: 10.1002/anie.201506810] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/21/2015] [Indexed: 12/15/2022]
Abstract
An efficient ligase with exquisite site-specificity is highly desirable for protein modification. Recently, we discovered the fastest known ligase called butelase 1 from Clitoria ternatea for intramolecular cyclization. For intermolecular ligation, butelase 1 requires an excess amount of a substrate to suppress the reverse reaction, a feature similar to other ligases. Herein, we describe the use of thiodepsipeptide substrates with a thiol as a leaving group and an unacceptable nucleophile to render the butelase-mediated ligation reactions irreversible and in high yields. Butelase 1 also accepted depsipeptides as substrates, but unlike a thiodesipeptide, the desipeptide ligation was partially reversible as butelase 1 can tolerate an alcohol group as a poor nucleophile. The thiodesipeptide method was successfully applied in N-terminal labeling of ubiquitin and green fluorescent protein using substrates with or without a biotin group in high yields.
Collapse
Affiliation(s)
- Giang K T Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| | - Yuan Cao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| | - Wei Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore).
| |
Collapse
|
34
|
Bhattacharjee S, Liu W, Wang WH, Weitzhandler I, Li X, Qi Y, Liu J, Pang Y, Hunt DF, Chilkoti A. Site-Specific Zwitterionic Polymer Conjugates of a Protein Have Long Plasma Circulation. Chembiochem 2015; 16:2451-5. [PMID: 26481301 PMCID: PMC4802966 DOI: 10.1002/cbic.201500439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 12/14/2022]
Abstract
Many proteins suffer from suboptimal pharmacokinetics (PK) that limit their utility as drugs. The efficient synthesis of polymer conjugates of protein drugs with tunable PK to optimize their in vivo efficacy is hence critical. We report here the first study of the in vivo behavior of a site-specific conjugate of a zwitterionic polymer and a protein. To synthesize the conjugate, we first installed an initiator for atom-transfer radical polymerization (ATRP) at the N terminus of myoglobin (Mb-N-Br). Subsequently, in situ ATRP was carried out in aqueous buffer to grow an amine-functionalized polymer from Mb-N-Br. The cationic polymer was further derivatized to two zwitterionic polymers by treating the amine groups of the cationic polymer with iodoacetic acid to obtain poly(carboxybetaine methacrylate) with a one-carbon spacer (PCBMA; C1 ), and sequentially with 3-iodopropionic acid and iodoacetic acid to obtain PCBMA(mix) with a mixture of C1 and C2 spacers. The Mb-N-PCBMA polymer conjugates had a longer in vivo plasma half-life than a PEG-like comb polymer conjugate of similar molecular weights (MW). The structure of the zwitterion plays a role in controlling the in vivo behavior of the conjugate, as the PCBMA conjugate with a C1 spacer had significantly longer plasma circulation than the conjugate with a mixture of C1 and C2 spacers.
Collapse
Affiliation(s)
- Somnath Bhattacharjee
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA
| | - Wenge Liu
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA
| | - Wei-Han Wang
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA, 22904, USA
| | - Isaac Weitzhandler
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA
| | - Yizhi Qi
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA
| | - Jinyao Liu
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA
| | - Yan Pang
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA, 22904, USA
- Department of Pathology, Health Sciences Center, University of Virginia, 1215 Lee Street, Charlottesville, VA, 22908, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA.
| |
Collapse
|
35
|
Mühlberg M, Hoesl MG, Kuehne C, Dernedde J, Budisa N, Hackenberger CPR. Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds. Beilstein J Org Chem 2015; 11:784-791. [PMID: 26124880 PMCID: PMC4464295 DOI: 10.3762/bjoc.11.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/05/2015] [Indexed: 01/12/2023] Open
Abstract
To add new tools to the repertoire of protein-based multivalent scaffold design, we have developed a novel dual-labeling strategy for proteins that combines residue-specific incorporation of unnatural amino acids with chemical oxidative aldehyde formation at the N-terminus of a protein. Our approach relies on the selective introduction of two different functional moieties in a protein by mutually orthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC) and oxime ligation. This method was applied to the conjugation of biotin and β-linked galactose residues to yield an enzymatically active thermophilic lipase, which revealed specific binding to Erythrina cristagalli lectin by SPR binding studies.
Collapse
Affiliation(s)
- Michaela Mühlberg
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustr. 3, 14195 Berlin, Germany
| | - Michael G Hoesl
- Technische Universität Berlin, AK Biokatalyse, Institut für Chemie, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Christian Kuehne
- Charité - Universitätsmedizin Berlin, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jens Dernedde
- Charité - Universitätsmedizin Berlin, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nediljko Budisa
- Technische Universität Berlin, AK Biokatalyse, Institut für Chemie, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Christian P R Hackenberger
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Humboldt Universität zu Berlin, Institut für Organische und Bioorganische Chemie, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
36
|
Wang ZPA, Tian CL, Zheng JS. The recent developments and applications of the traceless-Staudinger reaction in chemical biology study. RSC Adv 2015. [DOI: 10.1039/c5ra21496c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioorthogonal reactions are one of the most important topics in chemical biology. Traceless-Staudinger reaction/ligation has been investigated and widely applied in life science. Herein, the current developments, mechanism studies, and biological applications are summarized.
Collapse
Affiliation(s)
- Zhi-Peng A. Wang
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
- Department of Chemistry
| | - Chang-Lin Tian
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Ji-Shen Zheng
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
| |
Collapse
|
37
|
Früh SM, Spycher PR, Mitsi M, Burkhardt MA, Vogel V, Schoen I. Functional Modification of Fibronectin by N-Terminal FXIIIa-Mediated Transamidation. Chembiochem 2014; 15:1481-6. [DOI: 10.1002/cbic.201402099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Indexed: 01/09/2023]
|
38
|
Tolstyka ZP, Richardson W, Bat E, Stevens CJ, Parra DP, Dozier JK, Distefano MD, Dunn B, Maynard HD. Chemoselective immobilization of proteins by microcontact printing and bio-orthogonal click reactions. Chembiochem 2013; 14:2464-71. [PMID: 24166802 PMCID: PMC3962834 DOI: 10.1002/cbic.201300478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 11/09/2022]
Abstract
Herein, a combination of microcontact printing of functionalized alkanethiols and site-specific modification of proteins is utilized to chemoselectively immobilize proteins onto gold surfaces, either by oxime- or copper-catalyzed alkyne-azide click chemistry. Two molecules capable of click reactions were synthesized, an aminooxy-functionalized alkanethiol and an azide-functionalized alkanethiol, and self-assembled monolayer (SAM) formation on gold was confirmed by IR spectroscopy. The alkanethiols were then individually patterned onto gold surfaces by microcontact printing. Site-specifically modified proteins-horse heart myoglobin (HHMb) containing an N-terminal α-oxoamide and a red fluorescent protein (mCherry-CVIA) with a C-terminal alkyne-were immobilized by incubation onto respective stamped functionalized alkanethiol patterns. Pattern formation was confirmed by fluorescence microscopy.
Collapse
Affiliation(s)
- Zachary P. Tolstyka
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Wade Richardson
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering University of California, Los Angeles Los Angeles, California, 90095, USA
| | - Erhan Bat
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Caitlin J. Stevens
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Dayanara P. Parra
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Jonathan K. Dozier
- Department of Chemistry University of Minnesota 207 Pleasant Street S. E. Minneapolis, MN 55455, USA
| | - Mark D. Distefano
- Department of Chemistry University of Minnesota 207 Pleasant Street S. E. Minneapolis, MN 55455, USA
| | - Bruce Dunn
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering University of California, Los Angeles Los Angeles, California, 90095, USA
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| |
Collapse
|
39
|
Obermeyer AC, Jarman JB, Netirojjanakul C, El Muslemany K, Francis MB. Mild Bioconjugation Through the Oxidative Coupling ofortho-Aminophenols and Anilines with Ferricyanide. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Obermeyer AC, Jarman JB, Netirojjanakul C, El Muslemany K, Francis MB. Mild Bioconjugation Through the Oxidative Coupling ofortho-Aminophenols and Anilines with Ferricyanide. Angew Chem Int Ed Engl 2013; 53:1057-61. [DOI: 10.1002/anie.201307386] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 02/02/2023]
|
41
|
Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew Chem Int Ed Engl 2013; 52:4849-53. [PMID: 23554263 DOI: 10.1002/anie.201300170] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/09/2013] [Indexed: 02/02/2023]
|
42
|
Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB. Molecular Imaging of Cancer Cells Using a Bacteriophage-Based129Xe NMR Biosensor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Temming RP, Eggermont L, van Eldijk MB, van Hest JCM, van Delft FL. N-terminal dual protein functionalization by strain-promoted alkyne–nitrone cycloaddition. Org Biomol Chem 2013; 11:2772-9. [DOI: 10.1039/c3ob00043e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Wang X, Canary JW. Rapid catalyst-free hydrazone ligation: protein-pyridoxal phosphoramides. Bioconjug Chem 2012. [PMID: 23185966 DOI: 10.1021/bc300430k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyridoxal-5'-phosphate (PLP) represents an active form of Vitamin B(6) that shows relatively fast imine formation with hydrazines under physiological conditions without the need of a catalyst. A convenient phosphate/amine conjugation protocol was developed to covalently link PLP to proteins, affording proteins capable of hydrazone formation with bioorthogonal hydrazinyl functional groups. Thus, the lectin Concanavalin A (Con A) was labeled with PLP. Pretreatment with fluorescein hydrazide gave dye-labeled Con A that labeled cell surfaces efficiently. Alternatively, pretargeting was achieved by labeling cells with Con A-PLP, then treatment in vitro with Alexa Fluor 488 hydrazide.
Collapse
Affiliation(s)
- Xiaojian Wang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | |
Collapse
|
45
|
Williamson DJ, Fascione MA, Webb ME, Turnbull WB. Efficient N-Terminal Labeling of Proteins by Use of Sortase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204538] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Williamson DJ, Fascione MA, Webb ME, Turnbull WB. Efficient N-terminal labeling of proteins by use of sortase. Angew Chem Int Ed Engl 2012; 51:9377-80. [PMID: 22890696 DOI: 10.1002/anie.201204538] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Indexed: 01/30/2023]
Affiliation(s)
- Daniel J Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
47
|
Long MJC, Hedstrom L. Mushroom tyrosinase oxidizes tyrosine-rich sequences to allow selective protein functionalization. Chembiochem 2012; 13:1818-25. [PMID: 22807021 DOI: 10.1002/cbic.201100792] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/14/2012] [Indexed: 11/07/2022]
Abstract
We show that mushroom tyrosinase catalyzes the formation of reactive o-quinones on unstructured, tyrosine-rich sequences such as hemagglutinin (HA) tags (YPYDVPDYA). In the absence of exogenous nucleophiles and at low protein concentrations, the o-quinone decomposes with fragmentation of the HA tag. At higher protein concentrations (>5 mg mL⁻¹), crosslinking is observed. Besthorn's reagent intercepts the o-quinone to give a characteristic pink complex that can be observed directly on a denaturing SDS-PAGE gel. Similar labeled species can be formed by using other nucleophiles such as Cy5-hydrazide. These reactions are selective for proteins bearing HA and other unstructured poly-tyrosine-containing tags and can be performed in lysates to create specifically tagged proteins.
Collapse
Affiliation(s)
- Marcus J C Long
- Graduate Program in Biochemistry MS009, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | | |
Collapse
|
48
|
Nathani R, Moody P, Smith MEB, Fitzmaurice RJ, Caddick S. Bioconjugation of green fluorescent protein via an unexpectedly stable cyclic sulfonium intermediate. Chembiochem 2012; 13:1283-5. [PMID: 22639110 PMCID: PMC3487180 DOI: 10.1002/cbic.201200231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Indexed: 11/12/2022]
Abstract
Smooth converter: Bioconjugation of superfolder GFP involving the formation of an unusually stable, and unprecedented, cyclic sulfonium species is described. This sulfonium can undergo smooth reaction with a range of nucleophiles to give sulfur-, selenium- and azide-modified GFP derivatives in high conversions.
Collapse
Affiliation(s)
- Ramiz Nathani
- Department of Chemistry, University College LondonLondon, WC1H 0AJ (UK)
| | - Paul Moody
- Department of Chemistry, University College LondonLondon, WC1H 0AJ (UK)
| | - Mark E B Smith
- Department of Chemistry, University College LondonLondon, WC1H 0AJ (UK)
| | | | - Stephen Caddick
- Department of Chemistry, University College LondonLondon, WC1H 0AJ (UK)
| |
Collapse
|
49
|
Inokuma T, Suzuki Y, Sakaeda T, Takemoto Y. Synthesis of optically active N-aryl amino acid derivatives through the asymmetric petasis reaction catalyzed by a novel hydroxy-thiourea catalyst. Chem Asian J 2011; 6:2902-6. [PMID: 21815270 DOI: 10.1002/asia.201100453] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Indexed: 12/16/2022]
Affiliation(s)
- Tsubasa Inokuma
- Department of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | | | | | |
Collapse
|
50
|
Ning X, Temming RP, Dommerholt J, Guo J, Ania DB, Debets MF, Wolfert MA, Boons GJ, van Delft FL. Protein modification by strain-promoted alkyne-nitrone cycloaddition. Angew Chem Int Ed Engl 2010; 49:3065-8. [PMID: 20333639 PMCID: PMC2871956 DOI: 10.1002/anie.201000408] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Indexed: 01/23/2023]
Affiliation(s)
- Xinghai Ning
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|