1
|
Rajeev A, Bhatia D. DNA-templated fluorescent metal nanoclusters and their illuminating applications. NANOSCALE 2024; 16:18715-18731. [PMID: 39292491 DOI: 10.1039/d4nr03429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
After the discovery of DNA during the mid-20th century, a multitude of novel methodologies have surfaced which exploit DNA for its various properties. One such recently developed application of DNA is as a template in metal nanocluster formation. In the early years of the new millennium, a group of researchers found that DNA can be adopted as a template for the binding of metal nanoparticles that ultimately form nanoclusters. Three metal nanoclusters have been studied so far, including silver, gold, and copper, which have a plethora of biological applications. This review focuses on the synthesis, mechanisms, and novel applications of DNA-templated metal nanoclusters, including the therapies that have employed them for their wide range of fluorescent properties, and the future perspectives related to their development by exploiting machine learning algorithms and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
2
|
Boruah BS, Biswas R, Mazumder N. Quantifying arsenic and mercury in aqueous media via bio-inspired gold nanoparticles modified by mango leaf extract. RSC Adv 2023; 13:34916-34921. [PMID: 38035228 PMCID: PMC10687517 DOI: 10.1039/d3ra07293b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
The present study conveys a new method for detecting arsenic(iii) and mercury(ii) in aqueous solution via bio-inspired gold nanoparticles. The process of synthesizing gold nanoparticles involves the utilization of the chemical reduction method. The functionalization of gold nanoparticles' surface is achieved via mango leaf extract. The as-synthesized nanoparticles are characterized by UV-Vis and DLS which reveal a plasmonic peak around ∼520 nm with an average size distribution of ∼44 nm. The modified gold nanoparticles have demonstrated selective detection capabilities towards arsenic(iii) as well as mercury(ii), as evidenced by color changes observed in the presence of ions of arsenic as well as mercury. The addition of mercury and arsenic lead to the overall aggregation-thereby bringing a colorimetric response. The limit of detection was determined to be 1 ppb and 1.5 ppb for arsenic(iii) and mercury(ii) ions, respectively along with exceptional linearity.
Collapse
Affiliation(s)
| | - Rajib Biswas
- Department of Physics, Applied Optics and Photonics Research Laboratory, Tezpur University Tezpur-784028 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education Manipal Karnataka India-576104
| |
Collapse
|
3
|
Biswas R, Barman C, Neog A, Biswas S, Mazumder N. Label-free heavy metal ion sensing via smartphone based app. CHEMOSPHERE 2023; 322:138231. [PMID: 36841452 DOI: 10.1016/j.chemosphere.2023.138231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The proliferation of heavy metal ions in water has been a serious problem that has been escalating day by day. Rapid detection of these ions in an aqueous solution is of immense significance to keep them within permissible limit. To address the growing concentration of heavy metal ions, we report a facile and cost-effective sensing scheme. Based on intensity modulation, the sensing scheme comprises of a smartphone, light source, and analyte. The results reveal that the concentration of heavy metal ions can be detected at ppb level. The sensing scheme renders an average limit of detection (LOD) of ∼0.5 ppb for those assessed ions. Further, spiked tap water has also been assessed to check the applicability of the scheme which eventually yields a ∼95% recovery level. Overall, the sensing scheme with minimal logistics is believed to replace the complex analysis procedure executed through bulky and sophisticated instruments.
Collapse
Affiliation(s)
- Rajib Biswas
- Department of Physics, Tezpur University, Tezpur, 784028, Assam, India.
| | - Chinmay Barman
- Department of Physics, Tezpur University, Tezpur, 784028, Assam, India
| | - Ashamoni Neog
- Department of Physics, Tezpur University, Tezpur, 784028, Assam, India
| | | | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
4
|
Sakunrungrit K, Suwanchawalit C, Charoenkitamorn K, Hongwitayakorn A, Strzelak K, Chaneam S. Sequential Injection Analysis for Rapid Determination of Mercury in Skincare Products Based on Fluorescence Quenching of Eco-Friendly Synthesized Carbon Dots. ACS OMEGA 2023; 8:7615-7625. [PMID: 36872964 PMCID: PMC9979229 DOI: 10.1021/acsomega.2c07175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This work reports the analysis of mercury using a spectrofluorometric method combined with a sequential injection analysis (SIA) system. This method is based on the measurement of fluorescence intensity of carbon dots (CDs), which is quenched proportionally after adding mercury ions. Herein, the CDs underwent environmentally friendly synthesis using a microwave-assisted approach that provides intensive and efficient energy and shortens reaction time. After irradiation at 750 W for 5 min in a microwave oven, a dark brown CD solution with a concentration of 2.7 mg mL-1 was obtained. The properties of the CDs were characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and UV-vis spectrometry. We presented for the first time the use of CDs as a specific reagent for the determination of mercury in skincare products with the SIA system to achieve rapid analysis and full automatic control. The as-prepared CD stock solution was diluted 10 times and used as a reagent in the SIA system. Excitation and emission wavelengths at 360 and 452 nm, respectively, were used to construct a calibration curve. Physical parameters affecting the SIA performance were optimized. In addition, the effect of pH and other ions was investigated. Under the optimum conditions, our method showed a linear range from 0.3 to 600 mg L-1 with an R 2 of 0.99. The limit of detection was 0.1 mg L-1. Relative standard deviation was 1.53% (n = 12) with a high sample throughput of 20 samples per hour. Finally, the accuracy of our method was validated by comparison using inductively coupled plasma mass spectrometry. Acceptable recoveries were also presented without a significant matrix effect. This method was also the first time that uses the untreated CDs for the determination of mercury(II) in skincare products. Therefore, this method could be an alternative for mercuric toxic control in other sample applications.
Collapse
Affiliation(s)
- Kanokwan Sakunrungrit
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Cheewita Suwanchawalit
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Kanokwan Charoenkitamorn
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Apisake Hongwitayakorn
- Department
of Computing, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Kamil Strzelak
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Sumonmarn Chaneam
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
- Flow
Innovation Research for Science and Technology Laboratories (FIRST
Labs), Bangkok 10400, Thailand
| |
Collapse
|
5
|
Fu M, Li L, Yang D, Tu Y, Yan J. Colorimetric detections of iodide and mercuric ions based on a regulation of an Enzyme-Like activity from gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121450. [PMID: 35679739 DOI: 10.1016/j.saa.2022.121450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
A simple colorimetric method was developed for sensitive and selective detections of I- and Hg2+. Histidine stabilized gold nanoclusters (His-AuNCs) were synthesized and catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product. As a strong ligand toward gold, iodide (I-) attached to the surface of the His-AuNCs and significantly enhanced the oxidase-like activity of the His-AuNCs. Based on this enhancement, a sensitive colorimetric response toward I- was obtained. Furthermore, the strong interaction between Hg2+ and I- was adopted for an indirect Hg2+ detection. Under the optimal conditions, the platform presented high selectivity for the determinations of I- and Hg2+ in the ranges 0.02-1 µM and 0.05-0.8 µM, with detection limits as 3.3 nM and 8 nM respectively. This colorimetric assay was successfully applied for analysis of real samples.
Collapse
Affiliation(s)
- Meiling Fu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Lan Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Deyuan Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
6
|
Zhang L, Liu J, Gao M, Han L, Liu X, Xing X. Fluorescent Determination of Mercury(II) and Glutathione with Binding to Thymine–Guanine Base Pairs. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Liyuan Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Jinxiao Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Mengying Gao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Li Han
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Xueguo Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Xiaojing Xing
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
7
|
Khachornsakkul K, Phuengkasem D, Palkuntod K, Sangkharoek W, Jamjumrus O, Dungchai W. A Simple Counting-Based Measurement for Paper Analytical Devices and Their Application. ACS Sens 2022; 7:2093-2101. [PMID: 35736786 DOI: 10.1021/acssensors.2c01003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work introduces the concept of a counting-based measurement on paper analytical devices (cPADs) to improve the utilization of numerous reactions. The design of cPADs consists of two layers of paper substrates; the first layer contains a central sample zone combined with a radial surrounded by 12 detection zones that are predeposited with the various reagents, and the second layer acts as a connection channel between the sample zone and each detection zone. The solution can vertically flow from the first to the second layer and then move through the area to each subsequent detection zone. The analyte level can be evaluated by counting the number of detection zones that change color from a blank signal. Furthermore, our cPADs exhibit a capability of implementation for a broad series of reactions. Compared to the dPAD technique, some reactions that are possibly difficult to apply in such devices can be wholly enabled in our devices. The final color reaction on cPADs can apparently occur due to its identity. We applied this technique to the monitoring of carbaryl (CBR) and copper ions (Cu2+) using different reactions, including azo-coupling and complexation, respectively. Accordingly, this indicates an excellent result validated using the more traditional methods. Our cPADs can be applied for rapid screening of both CBR and Cu2+ in water samples with outstanding accuracy and precision using a naked-eye measurement by a relatively unskilled person. We offer a simple platform on PADs for rapid screening, combining high cost-effectiveness within a miniaturized platform designed for use with onsite applications, which is thus suitable for several different reactions.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Danai Phuengkasem
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Kitiya Palkuntod
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Wuttichai Sangkharoek
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Opor Jamjumrus
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Wijitar Dungchai
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| |
Collapse
|
8
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA-Based Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202202211. [PMID: 35307938 DOI: 10.1002/anie.202202211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/14/2022]
Abstract
The use of DNA-based nanostructures as probes has led to significant advances in chemical and biological sensing, allowing the detection of analytes in complex media, the understanding of fundamental biological processes, and the ability to diagnose diseases based on molecular signatures. The utility of these structures arises both from DNA's inherent ability to selectively recognize and bind a variety of chemical species and from the unique properties observed when DNA is restructured at the nanoscale. In this Minireview, we chronicle the most commonly used signal transduction strategies that have been interfaced with various DNA-based nanostructures. We discuss the types of analytes and the detection scenarios that are sought after, delineate the advantages and disadvantages of each signaling strategy, and outline the key considerations that guide the selection of each signaling method.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shivudu Godhulayyagari
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shadler T Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Jasmine K Lu
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Sasha B Ebrahimi
- Biopharmaceutical Product Sciences, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| |
Collapse
|
9
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA‐Based Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seungheon Lee
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shivudu Godhulayyagari
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shadler T. Nguyen
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Jasmine K. Lu
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Sasha B. Ebrahimi
- Biopharmaceutical Product Sciences GlaxoSmithKline 1250 S Collegeville Road Collegeville PA 19426 USA
| | - Devleena Samanta
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| |
Collapse
|
10
|
Tütüncü B, Cebeci M, Emrullahoglu M. Hg (II)-mediated intramolecular cyclization of alkynyl hydrazones: Towards a new reaction-based sensing approach for Hg(II). Chem Asian J 2022; 17:e202200273. [PMID: 35467077 DOI: 10.1002/asia.202200273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Indexed: 11/08/2022]
Abstract
Drawing upon an intramolecular cyclization/annulation reaction sequence mediated by Hg 2+ ions, a BODIPY-based fluorescent probe decorated with an alkynyl hydrazone motif responds rapidly and selectively to Hg 2+ ions, with a detection limit of 29 nM and a fluorescence turn-on ratio of 15-fold. With the addition of Hg 2+ ions, the BODIPY-based alkynyl hydrazone transforms into a pyrazole ring to mediate a turn-on emission response clearly observable to the naked eye under visible light excitation.
Collapse
Affiliation(s)
- Buse Tütüncü
- Izmir Institute of Technology: Izmir Yuksek Teknoloji Enstitusu, Chemistry, TURKEY
| | - Miray Cebeci
- Izmir Institute of Technology: Izmir Yuksek Teknoloji Enstitusu, Chemistry, TURKEY
| | - Mustafa Emrullahoglu
- Institute of Technology, Izmir, Chemistry, Gulbahce Köyü, Urla, 35430, Izmir, TURKEY
| |
Collapse
|
11
|
Fast detection of isocarbophos using bis-propargylcalix[4]arene-stabilized silver nanoparticles. ANAL SCI 2022; 38:861-867. [PMID: 35435640 DOI: 10.1007/s44211-022-00102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 11/01/2022]
Abstract
Bis-propargylcalix[4]arene-stabilized silver nanoparticles (BPCA-Ag NPs), as a chemosensor for detecting an isocarbophos (ICP) pesticide in an aqueous medium, are reported in this work. The nanoparticles were characterized by UV-visible spectroscopy, dynamic light scattering, zeta potential and high-resolution transmission electron microscopy techniques. It was observed that the BPCA-Ag NPs had a high selectivity for isocarbophos with a detection limit of 1.0 × 10-6 M. According to the result of this research, the BPCA-Ag NPs were found to be useful for the colorimetric detection of isocarbophos in an aqueous medium. It provides a new method for in situ detection of isocarbophos using host-guest interaction.
Collapse
|
12
|
Kumar SS, Kumar SR, Vetriarasu V, Bhaskar R, Somkuwar P, Joseph S, Mohurle S, Ashok Kumar SK. Smartphone‐Assisted Quinoline‐Based Chromogenic Probe for the Selective Detection of Hg
2+
in Protic Media. ChemistrySelect 2022. [DOI: 10.1002/slct.202103422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saravana S. Kumar
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| | - Selva R. Kumar
- Department of Chemistry Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai - 602105 Tamil Nadu India
| | - V. Vetriarasu
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| | - R. Bhaskar
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| | - Pranati Somkuwar
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| | - Suman Joseph
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| | - Shital Mohurle
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| | - S. K. Ashok Kumar
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| |
Collapse
|
13
|
Jiang J, Kan X. Mimetic peroxidase based on a gold amalgam for the colorimetric sensing of trace mercury( ii) in water samples. Analyst 2022; 147:2388-2395. [DOI: 10.1039/d2an00560c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and effective AuNPs/H-rGO/CC colorimetric sensing interface was constructed for the sensitive, selective, and facile determination of Hg2+ in water samples.
Collapse
Affiliation(s)
- Jing Jiang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education;Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of ChemoBiosensing, Anhui Key Laboratory of Functional Molecular Solids, China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|
14
|
Badekar PS, Thakur GCN, Varma ME, Ghatpande NS, Kulkarni PP, Kumbhar AA. Rhodamine‐Based Fluorescence ‘Turn‐On’ Chemosensor: Detection of Fe
3+
Ion in Aqueous Medium and MCF‐7 Live Cells. ChemistrySelect 2021. [DOI: 10.1002/slct.202004640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pooja S. Badekar
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| | - Garima C. N. Thakur
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| | - Mokshada E. Varma
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Niraj S. Ghatpande
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Prasad P. Kulkarni
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Anupa A. Kumbhar
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| |
Collapse
|
15
|
Wei X, Guo J, Lian H, Sun X, Liu B. Cobalt metal-organic framework modified carbon cloth/paper hybrid electrochemical button-sensor for nonenzymatic glucose diagnostics. SENSORS AND ACTUATORS. B, CHEMICAL 2021. [PMID: 33519089 DOI: 10.1016/j.snb.2020.129215] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the growing pandemic, family healthcare is widely concerned with the increase of medical self-diagnosis away from the hospital. A cobalt metal-organic framework modified carbon cloth/paper (Co-MOF/CC/Paper) hybrid button-sensor was developed as a portable, robust, and user-friendly electrochemical analytical chip for nonenzymatic quantitative detection of glucose. Highly integrated electrochemical analytical chip was successfully fabricated with a flexible Co-MOF/CC sensing interface, effectively increasing the specific area and catalytic sites than the traditional plane electrode. Based on the button-sensor, rapid quantitative detection of glucose was achieved in multiple complex bio-matrixes, such as serum, urine, and saliva, with desired selectivity, stability, and durability. With the advantages of low cost, high environment tolerance, ease of production, our nanozyme-based electrochemical analytical chip achieved reliable nonenzymatic electrocatalysis, has great potential for the application of rapid on-site analysis in personalized diagnostic and disease prevention.
Collapse
Affiliation(s)
- Xiaofeng Wei
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| | - Jialei Guo
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| | - Huiting Lian
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| | - Xiangying Sun
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| | - Bin Liu
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| |
Collapse
|
16
|
Berlina AN, Sotnikov DV, Komova NS, Zherdev AV, Dzantiev BB. Limitations for colorimetric aggregation assay of metal ions and ways of their overcoming. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:250-257. [PMID: 33355543 DOI: 10.1039/d0ay02068k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of analytical methods for the determination of metal ions in water is one of the priority tasks for efficient environmental monitoring. The use of modified gold nanoparticles and the colorimetric detection of their aggregation initiated by ions binding with specific receptors on the nanoparticle surface has high potential for simple testing. However, the limits of this approach and the parameters determining the assay sensitivity are not clear, and the possibilities of different assay formats are estimated only empirically. We have proposed a mathematical description of the aggregation processes in the assay and have estimated the detection limits of an aptamer-based assay of Pb2+ ions theoretically and experimentally. In the studied assay, gold nanoparticles modified with G,T-enriched aptamer were used, and their aggregation caused by the interaction with Pb2+ ions was controlled via a color change. The experimentally determined limit of Pb2+ detection was 700 ppb, which was in good agreement with theoretical calculations. An examination of the model showed that the limiting parameter of the assay is the binding constant of the aptamer-Pb2+ ion interaction. To overcome this limitation without searching for alternate receptors, two methods have been proposed, namely additional aggregation-causing components or centrifugation. These approaches lowered the detection limit to 150 ppb and even to 0.4 ppb. The second value accords with regulatory demands for the permissible levels of water source contamination, and the corresponding approach has significant competitive potential due to its rapidity, simple implementation, and the visual assessment of the assay results.
Collapse
Affiliation(s)
- Anna N Berlina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Dmitry V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Nadezhda S Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| |
Collapse
|
17
|
Ding L, Zhao Y, Li H, Zhang Q, Yang W, Pan Q. A Simple Colorimetric Probe for Sensitive Detection of Hg
2+
Based on MnO
2
Nanosheets and Monothioglycerol. ChemistrySelect 2020. [DOI: 10.1002/slct.202002969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lu Ding
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Yanyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Qiujuan Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| |
Collapse
|
18
|
Colorimetric determination of Hg 2+ based on the mercury-stimulated oxidase mimetic activity of Ag 3PO 4 microcubes. Mikrochim Acta 2020; 187:422. [PMID: 32617681 DOI: 10.1007/s00604-020-04399-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 02/02/2023]
Abstract
Four kinds of Ag3PO4 materials were prepared by controlling the experimental conditions, which were developed as oxidase mimics. Experimental results showed that different synthesis methods led to distinct crystal structures, morphologies, and surface properties, which contributed to diverse oxidase-like activities of Ag3PO4 materials. Among them, Ag3PO4 microcubes (APMCs) can efficiently catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine in the presence of dissolved oxygen to form a blue-colored oxide, presenting the best intrinsic oxidase mimetic ability. The higher-energy [110] facets with more oxygen vacancies exposed and more active sites coupled with more negative charge and larger specific surface area of APMCs contributed to its enhanced oxidase mimetic performance. Besides, mercury ions were proved to remarkably and selectively stimulate the oxidase-like ability of APMCs owing to the formation of Ag-Hg amalgam on its surface. Based on the stimulating effect of Hg2+ towards APMCs, a simple and rapid method for colorimetric determination of Hg2+ was thus established via the significant signal amplification and megascopic color variation. Under the optimal conditions, the sensing system showed a good linear relationship ranging from 0.1 to 7.0 μM and a detection limit of 20 nM for Hg2+, exhibiting high selectivity and good colour stability. Moreover, the colorimetric method was successfully applied to determine Hg2+ in real water samples. Considering these advantages, the developed colorimetric sensing system is expected to hold bright prospects for trace determination of Hg2+ in biological, environmental, and food samples. Graphical abstract The preparation process of Ag3PO4 materials and Hg2+-stimulated enhanced oxidase-like ability of Ag3PO4 microcubes in catalyzing the oxidation of TMB to generate a typical blue color, which can be applied in rapid and ultrasensitive detection of Hg2+ visually.
Collapse
|
19
|
Sharifi M, Hosseinali SH, Yousefvand P, Salihi A, Shekha MS, Aziz FM, JouyaTalaei A, Hasan A, Falahati M. Gold nanozyme: Biosensing and therapeutic activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110422. [DOI: 10.1016/j.msec.2019.110422] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
|
20
|
Wu X, Duan N, Yang S, Tian H, Sun B. Synthesis and Application of a Naphthol‐Based Fluorescent Probe for Mercury(II) Detection. ChemistrySelect 2020. [DOI: 10.1002/slct.202000076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| |
Collapse
|
21
|
Li H, Liu S, Hassan MM, Ali S, Ouyang Q, Chen Q, Wu X, Xu Z. Rapid quantitative analysis of Hg 2+ residue in dairy products using SERS coupled with ACO-BP-AdaBoost algorithm. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117281. [PMID: 31234020 DOI: 10.1016/j.saa.2019.117281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
In this study, surface-enhanced Raman spectroscopy (SERS) coupled with multivariate calibrations were employed to develop a rapid, simple and sensitive method for determination of mercury ions residues in dairy products. Initially, spherical Au@SiO2 core shell nanoparticles with highly enhancement effect were synthesized to serve as the SERS substrate. Afterwards, an optical sensor system, namely micro-Raman spectroscopy system, was constructed for rapid acquisition of Au@SiO2-mercury ions spectra. Then, ant colony optimization (ACO) and genetic algorithm (GA) were applied comparatively for selecting the characteristic variables from the Savitzky Golay-First derivative (SG-FD) processing data for subsequent quantitative analysis. Eventually, both linear (PLS and SW-MLR) and nonlinear (BPANN and BP-AdaBoost) methods were used for modeling. Experimental results showed that the variables selection methods significantly improved the model performance. Especially for the ACO algorithm, and the ACO-BP-AdaBoost model achieved the best results with the higher correlation coefficient of determination (R2 = 0.997), and lower root-mean-square error of prediction (RMSEP = 0.092) than other quantification models. Paired sample t-test exhibited no statistically significant difference (sig > 0.05) between the reference concentrations determined by inductively coupled plasma mass spectrometry (ICP-MS) and the predicted concentrations by ACO-BP-AdaBoost model in adulterated foodstuffs.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Zhenjiang, People's Republic of China
| | - Zhenlin Xu
- Laboratory of Quality and Safety Risk Assessment in Agricultural Products Preservation Ministry of Agriculture, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Wang H, Rao H, Luo M, Xue X, Xue Z, Lu X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Chen YY, Gong GF, Fan YQ, Zhou Q, Zhang QP, Yao H, Zhang YM, Wei TB, Lin Q. A novel AIE-based supramolecular polymer gel serves as an ultrasensitive detection and efficient separation material for multiple heavy metal ions. SOFT MATTER 2019; 15:6878-6884. [PMID: 31414697 DOI: 10.1039/c9sm01177c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, ultrasensitive stimuli-responsive materials have received extensive attention due to their high sensitivity and wide applications. Herein, we report a novel approach to design ultrasensitive responsive materials by rationally introducing the aggregation-induced emission (AIE) effect into supramolecular polymer gels. According to this approach, by rationally introducing self-assembly moieties and a fluorophore, the obtained gelator DNS can act as an AIEgen; it showed strong AIE after aggregating into the supramolecular polymer gel GDNS. More interestingly, because the aggregation of DNS led to amplification of the detective signal, the AIE-based supramolecular polymer gel GDNS could ultrasensitively detect the heavy metal ions Hg2+, Cu2+, and Fe3+ by a signal amplification mechanism; the lowest detection limits reached 10-11 M. In addition, the xerogel of GDNS could adsorb and separate Hg2+, Cu2+, and Fe3+ from aqueous solution with favourable adsorption properties, and the adsorption rates ranged from 94.70% to 99.37%. Furthermore, the gel GDNS could act as a convenient test kit for Hg2+, Cu2+, and Fe3+ as well as a smart fluorescent display material.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fluorometric determination of mercury(II) by using thymine-thymine mismatches as recognition elements, toehold binding, and enzyme-assisted signal amplification. Mikrochim Acta 2019; 186:551. [PMID: 31324987 DOI: 10.1007/s00604-019-3683-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
A highly sensitive fluorometric method is described for the determination of mercury(II) ions. It is based on (a) the use of a DNA probe containing thymine-thymine mismatches that are employed as Hg(II) recognition elements, (b) subsequent toehold binding, and (c) endocuclease-assisted signal amplification. Target recycling is triggered by exonuclease III. This produces a large amount of ssDNA (defined as primer). Then, the generated primer-initiated strand displacement reaction with the help of polymerase and nicking endonuclease releases the free fluorophore-labelled probe. Under excitation at 532 nm, the fluorescent probe displays emission with a peak at 582 nm. The sensitivity of this method is improved by introduction of nicking endonuclease. The working range of the assay extends from 20 pM to 10 nM, and the detection limit is as low as 6 pM of Hg(II). Graphical abstract Schematic presentation of the fluorometric method for determination of mercury(II). By using a special structure of thymine-thymine mismatches, target-induced toehold binding and enzyme-assisted signal amplification strategy were employed. This method is selective and good performance in real sample application.
Collapse
|
25
|
Wang N, Liu G, Dai H, Ma H, Lin M. Spectroscopic evidence for electrochemical effect of mercury ions on gold nanoparticles. Anal Chim Acta 2019; 1062:140-146. [DOI: 10.1016/j.aca.2019.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023]
|
26
|
Si X, Tang S, Wang K, Zhou G, Xia J, Zhao Y, Zhao H, Shen Q, Liu Z. Electrochemical amplification for Hg(II) quantification by anchoring an enzymatically extended aptamer. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1626415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoxi Si
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Shiyun Tang
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Kunmiao Wang
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Guofu Zhou
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Jianjun Xia
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Yang Zhao
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Hui Zhao
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Qinpeng Shen
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Zhihua Liu
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Company, Kunming, China
| |
Collapse
|
27
|
Electrocatalytic Determination of Hg(II) by the Modified Carbon Paste Electrode with Sn(IV)-Clinoptilolite Nanoparticles. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00528-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Label-free DNA Y junction for detection of Hg2+ using exonuclease III or graphene oxide-assisted background reduction. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Zhang D, Yao Y, Wu J, Protsak I, Lu W, He X, Xiao S, Zhong M, Chen T, Yang J. Super Hydrophilic Semi-IPN Fluorescent Poly(N-(2-hydroxyethyl)acrylamide) Hydrogel for Ultrafast, Selective, and Long-Term Effective Mercury(II) Detection in a Bacteria-Laden System. ACS APPLIED BIO MATERIALS 2019; 2:906-915. [DOI: 10.1021/acsabm.8b00761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yingchun Yao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiahui Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Iryna Protsak
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Lu
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaomin He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengwei Xiao
- Department of Polymer Science and Engineering, School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Chen
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
30
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
31
|
Lai C, Liu S, Zhang C, Zeng G, Huang D, Qin L, Liu X, Yi H, Wang R, Huang F, Li B, Hu T. Electrochemical Aptasensor Based on Sulfur-Nitrogen Codoped Ordered Mesoporous Carbon and Thymine-Hg 2+-Thymine Mismatch Structure for Hg 2+ Detection. ACS Sens 2018; 3:2566-2573. [PMID: 30411617 DOI: 10.1021/acssensors.8b00926] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A renewable electrochemical aptasensor was proposed for super-sensitive determination of Hg2+. The novel aptasensor, based on sulfur-nitrogen codoped ordered mesoporous carbon (SN-OMC) and thymine-Hg2+-thymine (T-Hg2+-T) mismatch structure, used ferrocene as signal molecules to achieve the conversion of current signals. In the absence of Hg2+, the thiol-modified T-rich probe 1 spontaneously formed a hairpin structure by base pairing. After being hybridized with the ferrocene-labeled probe 2 in the presence of Hg2+, the hairpin structure of probe 1 was opened due to the preferential formation of the T-Hg2+-T mismatch structure, and the ferrocene signal molecules approached the modified electrode surface. SN-OMC with high specific surface area and ample active sites acted as a signal amplification element in electrochemical sensing. The sensitive determination of Hg2+ can be actualized by analyzing the relationship between the change of oxidation current caused by ferrocene signal molecules and the Hg2+ concentrations. The aptasensor had a fine linear correlation in the range of 0.001-1000 nM with a detection limit of 0.45 pM. The aptasensor also displayed a good response in real sample detection and provided a promising possibility for in situ detection.
Collapse
Affiliation(s)
- Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Rongzhong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Fanglong Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| | - Tianyu Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry
of Education, Changsha 410082, P.R. China
| |
Collapse
|
32
|
García Grajeda BA, Aguila SA, Peinado Guevara H, Reynoso-Soto E, Ochoa-Terán A, Trujillo-Navarrete B, Cruz Enríquez A, Campos-Gaxiola JJ. Colorimetric and rapid determination of Cr(III) ions in water samples using AuNPs modified with 11-mercaptoundecyl phosphonic acid: spectroscopic characterization and reaction mechanism. INORG NANO-MET CHEM 2018. [DOI: 10.1080/24701556.2018.1503680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Blanca A. García Grajeda
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, C.U. Los Mochis, Sinaloa, México
| | - Sergio A. Aguila
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Ensenada, Baja California, México
| | - Héctor Peinado Guevara
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, C.U. Los Mochis, Sinaloa, México
| | - Edgar Reynoso-Soto
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Tijuana, México
| | - Adrián Ochoa-Terán
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Tijuana, México
| | | | - Adriana Cruz Enríquez
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, C.U. Los Mochis, Sinaloa, México
| | - José J. Campos-Gaxiola
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, C.U. Los Mochis, Sinaloa, México
| |
Collapse
|
33
|
Xu D, Yu S, Yin Y, Wang S, Lin Q, Yuan Z. Sensitive Colorimetric Hg 2+ Detection via Amalgamation-Mediated Shape Transition of Gold Nanostars. Front Chem 2018; 6:566. [PMID: 30538981 PMCID: PMC6277514 DOI: 10.3389/fchem.2018.00566] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
Reliable and sensitive methods to monitor mercury levels in real samples are highly important for environment protection and human health. Herein, a label-free colorimetric sensor for Hg2+ quantitation using gold nanostar (GNS) has been demonstrated, based on the formation of Au-Hg amalgamate that leads to shape-evolution of the GNS and changes in its absorbance. Addition of ascorbic acid (AA) to GNS solution is important for quantitation of Hg2+, mainly because it can reduce Hg2+ to Hg to enhance amalgamation on the GNSs and stabilize GNSs. In addition to transmission electron microscopy images, the distribution of circular ratios of GNSs in the presence of 2 mM AA and various concentrations of Hg2+ are used to show the morphology changes of the GNSs. Upon increasing the concentration of Hg2+, the average circular ratio of GNSs decreases, proving GNS is approaching to sphere. The morphology change alters the longitudinal localized surface plasmonic resonance (LSPR) absorbance of the GNSs significantly. Under the optimum conditions, our sensor exhibits a dynamic response for Hg2+ in the range of 1–4,000 nM with a detection limit of 0.24 nM. Upon Increasing Hg2+ concentration, the solution color changes from greenish-blue, purple to red, which can be distinguished by the naked eye when the Hg2+ concentration is higher than 250 nM. Owing to having a high surface-to-volume ratio and affinity toward Hg0, the GNS is sensitive and selective (at least 50-fold over tested metal ions like Pb2+) toward Hg2+ in the presence of AA. Practicality of this assay has been validated by the analysis of water samples without conducting tedious sample pretreatment.
Collapse
Affiliation(s)
- Dong Xu
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Shufang Yu
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yueqin Yin
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Suyan Wang
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
34
|
Tamiji T, Nezamzadeh-Ejhieh A. A comprehensive study on the kinetic aspects and experimental design for the voltammetric response of a Sn(IV)-clinoptilolite carbon paste electrode towards Hg(II). J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Gao W, Xu Y, Wei W, Wang D, Shi X. Ultrasensitive determination of mercury ions (Ⅱ) by analysis of the degree of quantum dots aggregation. Talanta 2018; 188:644-650. [DOI: 10.1016/j.talanta.2018.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
|
36
|
Application of Plant Viruses as a Biotemplate for Nanomaterial Fabrication. Molecules 2018; 23:molecules23092311. [PMID: 30208562 PMCID: PMC6225259 DOI: 10.3390/molecules23092311] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Viruses are widely used to fabricate nanomaterials in the field of nanotechnology. Plant viruses are of great interest to the nanotechnology field because of their symmetry, polyvalency, homogeneous size distribution, and ability to self-assemble. This homogeneity can be used to obtain the high uniformity of the templated material and its related properties. In this paper, the variety of nanomaterials generated in rod-like and spherical plant viruses is highlighted for the cowpea chlorotic mottle virus (CCMV), cowpea mosaic virus (CPMV), brome mosaic virus (BMV), and tobacco mosaic virus (TMV). Their recent studies on developing nanomaterials in a wide range of applications from biomedicine and catalysts to biosensors are reviewed.
Collapse
|
37
|
Surface modification and chemical functionalization of carbon dots: a review. Mikrochim Acta 2018; 185:424. [DOI: 10.1007/s00604-018-2953-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
38
|
Tu J, Gan Y, Liang T, Hu Q, Wang Q, Ren T, Sun Q, Wan H, Wang P. Graphene FET Array Biosensor Based on ssDNA Aptamer for Ultrasensitive Hg 2+ Detection in Environmental Pollutants. Front Chem 2018; 6:333. [PMID: 30155458 PMCID: PMC6102327 DOI: 10.3389/fchem.2018.00333] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 01/27/2023] Open
Abstract
Invisible mercury ion is an extremely poisonous environmental pollutant, therefore, a fast and highly sensitive detection method is of significant importance. In this study, a liquid-gated graphene field-effect transistor (GFET) array biosensor (6 × 6 GFETs on the chip) was fabricated and applied for Hg2+ quantitate detection based on single-stranded DNA (ssDNA) aptamer. The biosensor showed outstanding selectivity to Hg2+ in mixed solutions containing various metal ions. Moreover, the sensing capability of the biosensor was demonstrated by real-time responses and showed a fairly low detection limit of 40 pM, a wide detection ranged from 100 pM to 100 nM and rapid response time below one second. These results suggest that the GFET array biosensor based on ssDNA aptamer offers a simple fabrication procedure and quite fast method for mercury ion contaminant detection and are promising for various analytical applications.
Collapse
Affiliation(s)
- Jiawei Tu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Tao Liang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Qiongwen Hu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Qian Wang
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | - Tianling Ren
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | - Qiyong Sun
- Key Laboratory of Healthy & Intelligent Kitchen System Integration of Zhejiang Province, Ningbo, China.,Ningbo Fotile Kitchenware CO. LTD., Bodi Centre, Hangzhou, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Li J, Yang C, Wang WL, Yan XP. Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high-throughput sequential detection of l-cysteine and insulin. NANOSCALE 2018; 10:14931-14937. [PMID: 30046773 DOI: 10.1039/c8nr04414g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro diagnostic is a crucial component of healthcare systems for early diagnosis of diseases and follow-up therapy, which generally makes clinical diagnosis faster, easier, and painless for patients. Herein, we report a dual-signaling nanoplatform for ratiometric absorption and time-resolved fluorescence resonance energy transfer based on l-cysteine-mediated aggregated gold nanoparticles and long afterglow nature of persistent luminescence nanoparticles. With this nanoplatform, we have achieved high-throughput sequential detection of l-cysteine and insulin in human serum without matrix interference. The proposed nanoplatform shows excellent linearity and precision for the determination of l-cysteine in the range of 10 nM to 5.5 μM with the limit of detection (LOD) of 2.2 nM and for the detection of insulin in the range of 12 pM to 3.44 nM with LOD of 2.06 pM. The developed dual-signaling nanoplatform has been successfully applied for the sequential determination of l-cysteine and insulin in human serum.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | | | | |
Collapse
|
40
|
Pretti E, Zerze H, Song M, Ding Y, Mahynski NA, Hatch HW, Shen VK, Mittal J. Assembly of three-dimensional binary superlattices from multi-flavored particles. SOFT MATTER 2018; 14:6303-6312. [PMID: 30014070 PMCID: PMC7339916 DOI: 10.1039/c8sm00989a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Binary superlattices constructed from nano- or micron-sized colloidal particles have a wide variety of applications, including the design of advanced materials. Self-assembly of such crystals from their constituent colloids can be achieved in practice by, among other means, the functionalization of colloid surfaces with single-stranded DNA sequences. However, when driven by DNA, this assembly is traditionally premised on the pairwise interaction between a single DNA sequence and its complement, and often relies on particle size asymmetry to entropically control the crystalline arrangement of its constituents. The recently proposed "multi-flavoring" motif for DNA functionalization, wherein multiple distinct strands of DNA are grafted in different ratios to different colloids, can be used to experimentally realize a binary mixture in which all pairwise interactions are independently controllable. In this work, we use various computational methods, including molecular dynamics and Wang-Landau Monte Carlo simulations, to study a multi-flavored binary system of micron-sized DNA-functionalized particles modeled implicitly by Fermi-Jagla pairwise interactions. We show how self-assembly of such systems can be controlled in a purely enthalpic manner, and by tuning only the interactions between like particles, demonstrate assembly into various morphologies. Although polymorphism is present over a wide range of pairwise interaction strengths, we show that careful selection of interactions can lead to the generation of pure compositionally ordered crystals. Additionally, we show how the crystal composition changes with the like-pair interaction strengths, and how the solution stoichiometry affects the assembled structures.
Collapse
Affiliation(s)
- Evan Pretti
- Lehigh University, Chemical and Biomolecular Engineering, 111 Research Dr., Bethlehem, Pennsylvania 18015-4791, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens Bioelectron 2018; 114:52-65. [DOI: 10.1016/j.bios.2018.05.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 01/13/2023]
|
42
|
Motalebizadeh A, Bagheri H, Asiaei S, Fekrat N, Afkhami A. New portable smartphone-based PDMS microfluidic kit for the simultaneous colorimetric detection of arsenic and mercury. RSC Adv 2018; 8:27091-27100. [PMID: 35540017 PMCID: PMC9083246 DOI: 10.1039/c8ra04006k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/17/2018] [Indexed: 01/04/2023] Open
Abstract
A smartphone-based microfluidic platform was developed for point-of-care (POC) detection using surface plasmon resonance (SPR) of gold nanoparticles (GNPs). The simultaneous colorimetric detection of trace arsenic and mercury ions (As3+ and Hg2+) was performed using a new image processing application (app). To achieve this goal, a microfluidic kit was fabricated using a polydimethylsiloxane (PDMS) substrate with the configuration of two separated sensing regions for the quantitative measurement of the color changes in GNPs to blue/gray. To fabricate the microfluidic kit, a Plexiglas mold was cut using a laser based on the model obtained from AutoCAD and Comsol outputs. The colorimetric signals originated from the formation of nanoparticle aggregates through the interaction of GNPs with dithiothreitol - 10,12-pentacosadiynoic acid (DTT-PCDA) and lysine (Lys) in the presence of As3+ and Hg2+ ions. This assembly exhibited the advantages of simplicity, low cost, and high portability along with a low volume of reagents and multiplex detection. Heavy Metals Detector (HMD), as a new app for the RGB reader, was programmed for an Android smartphone to quantify colorimetric analyses. Compared with traditional image processing, this app provided significant improvements in sensitivity, time of analysis, and simplicity because the color intensity is measured through a new normalization equation by converting RGB to an Integer system. As a simple, real-time, and portable analytical kit, the fabricated sensor could detect low concentrations of As3+ (710 to 1278 μg L-1) and Hg2+ (10.77 to 53.86 μg L-1) ions in water samples at ambient conditions.
Collapse
Affiliation(s)
- Abbas Motalebizadeh
- School of Mechanical Engineering, Iran University of Science and Technology Tehran Iran 1684613114
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences Tehran Iran +98 2182482000 +98 2182482000
| | - Sasan Asiaei
- School of Mechanical Engineering, Iran University of Science and Technology Tehran Iran 1684613114
| | - Nasim Fekrat
- Department of Computer, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
43
|
Smart app-based on-field colorimetric quantification of mercury via analyte-induced enhancement of the photocatalytic activity of TiO 2-Au nanospheres. Anal Bioanal Chem 2018; 410:4555-4564. [PMID: 29862429 DOI: 10.1007/s00216-018-1114-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/09/2018] [Accepted: 04/26/2018] [Indexed: 10/14/2022]
Abstract
We have devised a unique strategy for highly sensitive, selective, and colorimetric detection of mercury based on analyte-induced enhancement of the photocatalytic activity of TiO2-Au nanospheres (TiO2-Au NSs) toward degradation of methylene blue (MB). Through electrostatic interactions, Au nanoparticles are attached to poly-(sodium 4-styreneulfonate)/poly(diallyldimethylammonium chloride) modified TiO2 nanoparticles, which then form an Au shell on each TiO2 core through reduction of Au3+ with ascorbic acid. Notably, the deposition of Hg species (Hg2+/CH3Hg+) onto TiO2-Au NSs through strong Au-Hg aurophilic interactions speeds up catalytic degradation of MB. The first-order degradation rates of MB by TiO2-Au NSs and TiO2-Au-Hg NSs are 1.4 × 10-2 min-1 and 2.1 × 10-2 min-1, respectively. Using a commercial absorption spectrometer, the TiO2-Au NSs/MB approach provides linearity (R2 = 0.98) for Hg2+ over a concentration range of 10.0 to 100.0 nM, with a limit of detection (LOD) of 1.5 nM. On the other hand, using a low-cost smartphone app that records the color changes (ΔRGB) of MB solution based on the red-blue-green (RGB) component values, the TiO2-Au NSs/MB approach provides an LOD of 2.0 nM for Hg2+ and 5.0 nM for CH3Hg+, respectively. Furthermore, the smartphone app sensing system has been validated for the analyses of various samples, including tap water, lake water, soil, and Dorm II, showing its great potential for on-line analysis of environmental and biological samples. Graphical Abstract ᅟ.
Collapse
|
44
|
A Colorimetric Selective Sensing Probe for Calcium Ions with Tunable Dynamic Ranges Using Glutathione Modified Gold Nanoparticles. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Xu Y, Qin C, Fei J, Yuan T, Li G, Wang C, Li J. Fabrication of one-dimensional gold hierarchical nanostructures through supramolecular assembly. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Nirala NR, Saxena PS, Srivastava A. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:506-512. [PMID: 28965066 DOI: 10.1016/j.saa.2017.09.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 05/21/2023]
Abstract
We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel.
Collapse
Affiliation(s)
- Narsingh R Nirala
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India; School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Preeti S Saxena
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | - Anchal Srivastava
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
47
|
Scattering measurement of single particle for highly sensitive homogeneous detection of DNA in serum. Talanta 2018; 178:545-551. [DOI: 10.1016/j.talanta.2017.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 12/13/2022]
|
48
|
Hill AP, Kunstmann-Olsen C, Grzelczak MP, Brust M. Entropy-Driven Reversible Agglomeration of Crown Ether Capped Gold Nanoparticles. Chemistry 2018; 24:3151-3155. [PMID: 29383767 DOI: 10.1002/chem.201705820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/02/2018] [Indexed: 01/13/2023]
Abstract
It is shown that plasmonic gold nanoparticles functionalised with a thiolated 18-crown-6 ligand shell agglomerate spontaneously from aqueous dispersion at elevated temperatures. This process takes place over a narrow temperature range, is accompanied by a colour change from red to purple-blue and is fully reversible. Moreover, the temperature at which it occurs can be adjusted by the degree of complexation of the crown ether moiety with appropriate cations. More complexation leads to higher transition temperatures. The process has been studied by UV/Vis spectroscopy, electron microscopy, dynamic light scattering and zeta potential measurements. A thermodynamic rationale is provided to suggest an entropy-driven endothermic agglomeration process based on attractive hydrophobic interactions of the complexed crowns that are competing against electrostatic repulsion of the charged ligand shells.
Collapse
Affiliation(s)
- Alexander P Hill
- Department of Chemistry, University of Liverpool, Liverpool, L7 7ZD, UK
| | | | | | - Mathias Brust
- Department of Chemistry, University of Liverpool, Liverpool, L7 7ZD, UK
| |
Collapse
|
49
|
Feng Y, Shao X, Huang K, Tian J, Mei X, Luo Y, Xu W. Mercury nanoladders: a new method for DNA amplification, signal identification and their application in the detection of Hg(ii) ions. Chem Commun (Camb) 2018; 54:8036-8039. [DOI: 10.1039/c8cc03851a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A biosensor based on Hg(ii) nanoladders integrated with graphene oxide (GO) for Hg(ii) detection was developed.
Collapse
Affiliation(s)
- Yuxiang Feng
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
| | - Xiangli Shao
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Jingjing Tian
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
| | - Xiaohong Mei
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
| | - Yunbo Luo
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| |
Collapse
|
50
|
Wang W, Li X, Hou X, Wang S, Wang F, Luo X. Controlled-Release-Based Ultrasensitive and Highly Selective Turn-On Fluorescent Mercury Biosensor. ChemistrySelect 2017. [DOI: 10.1002/slct.201701704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wang
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P.R. China
| | - Xin Li
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P.R. China
| | - Xiaoshan Hou
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P.R. China
| | - Shiying Wang
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P.R. China
| | - Fengying Wang
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P.R. China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P.R. China
| |
Collapse
|