1
|
Kim HH, Im SW, Cho NH, Choi S, Kim S, Lim YC, Nam KT. Morphological Evolution Trajectory of Multifaceted Palladium Nanoparticles. J Phys Chem Lett 2022; 13:8344-8351. [PMID: 36040951 DOI: 10.1021/acs.jpclett.2c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precise control over the morphology and facets of Pd nanomaterials has great importance in catalytic and sensing applications. In this study, we synthesized Pd nanoparticles with multiple types of low-Miller-index-faceted morphologies by systematically defining the synthesis conditions of the seed-mediated colloidal preparation method. We discovered the morphological evolution of Pd nanoparticles by following the trajectory of the surface Miller indices, which were determined by the cooperative effects of cetyltrimethylammonium bromide and ascorbic acid. By precise control of the morphological trajectory, Pd nanoparticles with a new cuborhombicube morphology, composed of 36 facets and concave edges, were discovered. This study provides important insight into the design of the surface Miller indices and morphologies of functional nanomaterials.
Collapse
Affiliation(s)
- Ho Hyeon Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungho Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Liu M, Liu K, Gao C. Effects of Ligands on Synthesis and Surface‐Engineering of Noble Metal Nanocrystals for Electrocatalysis. ChemElectroChem 2022. [DOI: 10.1002/celc.202200651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Moxuan Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| | - Kai Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| | - Chuanbo Gao
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
3
|
Jin B, Yan F, Qi X, Cai B, Tao J, Fu X, Tan S, Zhang P, Pfaendtner J, Naser NY, Baneyx F, Zhang X, DeYoreo JJ, Chen C. Peptoid-Directed Formation of Five-Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angew Chem Int Ed Engl 2022; 61:e202201980. [PMID: 35167709 PMCID: PMC9258440 DOI: 10.1002/anie.202201980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 11/17/2022]
Abstract
While bio-inspired synthesis offers great potential for controlling nucleation and growth of inorganic particles, precisely tuning biomolecule-particle interactions is a long-standing challenge. Herein, we used variations in peptoid sequence to manipulate peptoid-Au interactions, leading to the synthesis of concave five-fold twinned, five-pointed Au nanostars via a process of repeated particle attachment and facet stabilization. Ex situ and liquid-phase TEM observations show that a balance between particle attachment biased to occur near the star points, preferential growth along the [100] direction, and stabilization of (111) facets is critical to forming star-shaped particles. Molecular simulations predict that interaction strengths between peptoids and distinct Au facets differ significantly and thus can alter attachment kinetics and surface energies to form the stars. This work provides new insights into how sequence-defined ligands affect particle growth to regulate crystal morphology.
Collapse
Affiliation(s)
- Biao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - Feng Yan
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- School of Chemistry & Chemical Engineering, Linyi University The Middle Part of Shuangling Road, Linyi, Shandong Province, 276005 (China)
| | - Xin Qi
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - Xiaofeng Fu
- Department of Biological Science, Florida State University 600 W College Ave, Tallahassee, FL 32306 (USA)
| | - Susheng Tan
- Department of Electrical and Computer Engineering & Petersen Institute of Nanoscience and Engineering (PINSE) University of Pittsburgh 4200 Fifth Ave, Pittsburgh, PA 15260 (USA)
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford University Offices, Wellington Square, Oxford, OX1 2JD (UK)
- Diamond Light Source Harwell Science and Innovation Campus, Didcot OX11 0DE (UK)
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Nada Y. Naser
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - François Baneyx
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - James J. DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- Department of Materials Science and Engineering University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Chunlong Chen
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| |
Collapse
|
4
|
Jin B, Yan F, Qi X, Cai B, Tao J, Fu X, Tan S, Zhang P, Pfaendtner J, Naser NY, Baneyx F, Zhang X, DeYoreo JJ, Chen C. Peptoid‐Directed Formation of Five‐Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biao Jin
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - Feng Yan
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- School of Chemistry & Chemical Engineering Linyi University The Middle Part of Shuangling Road Linyi Shandong Province 276005 China
| | - Xin Qi
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Bin Cai
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- School of Chemistry and Chemical Engineering Shandong University Shanda Nan Road 27 Jinan China
| | - Jinhui Tao
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - Xiaofeng Fu
- Department of Biological Science Florida State University 600 W College Ave Tallahassee FL 32306 USA
| | - Susheng Tan
- Department of Electrical and Computer Engineering & Petersen Institute of Nanoscience and Engineering (PINSE) University of Pittsburgh 4200 Fifth Ave Pittsburgh PA 15260 USA
| | - Peijun Zhang
- Division of Structural Biology Wellcome Trust Centre for Human Genetics University of Oxford Roosevelt Drive, Wellington Square Oxford OX3 7BN UK
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Jim Pfaendtner
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Nada Y. Naser
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - François Baneyx
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Xin Zhang
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - James J. DeYoreo
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- Department of Materials Science and Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Chun‐Long Chen
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| |
Collapse
|
5
|
Wang L, An X, Wu Y, Qian Q, Zou R, Dong K. DEM simulation of vibrated packing densification of mono-sized regular octahedral particles. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Janssen A, Shi Y, Xia Y. Separating Growth from Nucleation for Facile Control over the Size and Shape of Palladium Nanocrystals. Chemistry 2020; 26:13890-13895. [PMID: 32459866 DOI: 10.1002/chem.202001626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Indexed: 11/06/2022]
Abstract
In order to maximize the performance of nanocrystals in a specific application, it is necessary to control both their size and shape. Here we report a one-pot protocol that allows us to separate growth from nucleation for achieving better control over the size and shape of Pd nanocrystals. The two processes are temporally separated from each other, although the synthesis is carried out in the same reaction container. Size control is achieved by simply varying the ratio between the amounts of precursor allocated to the growth and nucleation processes. With the involvement of seeds at a fixed number, increasing the amount of precursor for growth leads to increasingly larger nanocrystals. Shape control is made possible by varying the capping agent, with bromide leading to a cubic shape and citrate inducing the formation of an octahedral shape. The synthesis can also be scaled up by at least tenfold without compromising the quality.
Collapse
Affiliation(s)
- Annemieke Janssen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| |
Collapse
|
7
|
Yang T, Shi Y, Janssen A, Xia Y. Oberflächenstabilisatoren und ihre Rolle bei der formkontrollierten Synthese von kolloidalen Metall‐Nanokristallen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tung‐Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Annemieke Janssen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
8
|
Baaziz W, Valette S, Gay A, Hirlimann C, Ersen O. A New Methodology for Quantifying the Surface Crystallography of Particles from their Tomographic Reconstruction: Application to Pd Nanoparticles Embedded in a Mesoporous Silica Shell. ChemCatChem 2020. [DOI: 10.1002/cctc.202000275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43 67034 Strasbourg cedex 2 France
| | - Sébastien Valette
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS) UMR 5220 – INSERM U1206, Université Lyon 1 – INSA Lyon – Université Jean Monnet Saint-Etienne 7 Avenue Jean Capelle 69100 Villeurbanne France
| | - Anne‐Sophie Gay
- IFP Energies Nouvelles (IFPEN) Rond-point de l'échangeur de Solaize BP 3 69360 Solaize France
| | - Charles Hirlimann
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43 67034 Strasbourg cedex 2 France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43 67034 Strasbourg cedex 2 France
| |
Collapse
|
9
|
Yang T, Shi Y, Janssen A, Xia Y. Surface Capping Agents and Their Roles in Shape‐Controlled Synthesis of Colloidal Metal Nanocrystals. Angew Chem Int Ed Engl 2020; 59:15378-15401. [DOI: 10.1002/anie.201911135] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Tung‐Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Annemieke Janssen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
10
|
Tian Y, Lu Q, Guo X, Wang S, Gao Y, Wang L. Au nanoparticles deposited on ultrathin two-dimensional covalent organic framework nanosheets for in vitro and intracellular sensing. NANOSCALE 2020; 12:7776-7781. [PMID: 32215408 DOI: 10.1039/c9nr08220d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel composite nanomaterial is prepared by growing small Au nanoparticles on two-dimensional covalent organic framework nanosheets (Au NPs/COF NSs). The synthesized hybrid nanosheets are used as a new platform for multiplexed detection of hepatitis A virus DNA (HAV) and hepatitis B virus DNA (HBV). Additionally, this sensing platform based on Au NPs/COF NSs can be used as a candidate for monitoring the distribution of potassium ions (K+) and the intracellular K+ level in living cells. Accordingly, the sensing systems based on hybrid Au NPs/COF NSs have shown great potential for the investigation of biomolecules and related biological applications.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | |
Collapse
|
11
|
Bai L, Ouyang Y, Song J, Xu Z, Liu W, Hu J, Wang Y, Yuan F. Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1497. [PMID: 31071982 PMCID: PMC6539706 DOI: 10.3390/ma12091497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 11/17/2022]
Abstract
Metallic nanocrystals exhibit superior properties to their bulk counterparts because of the reduced sizes, diverse morphologies, and controllable exposed crystal facets. Therefore, the fabrication of metal nanocrystals and the adjustment of their properties for different applications have attracted wide attention. One of the typical examples is the fabrication of nanocrystals encased with high-index facets, and research on their magnified catalytic activities and selections. Great accomplishment has been achieved within the field of noble metals such as Pd, Pt, Ag, and Au. However, it remains challenging in the fabrication of base metal nanocrystals such as Ni, Cu, and Co with various structures, shapes, and sizes. In this paper, the synthesis of metal nanocrystals is reviewed. An introduction is briefly given to the metal nanocrystals and the importance of synthesis, and then commonly used synthesis methods for metallic nanocrystals are summarized, followed by specific examples of metal nanocrystals including noble metals, alloys, and base metals. The synthesis of base metal nanocrystals is far from satisfactory compared to the tremendous success achieved in noble metals. Afterwards, we present a discussion on specific synthesis methods suitable for base metals, including seed-mediated growth, ligand control, oriented attachment, chemical etching, and Oswald ripening, based on the comprehensive consideration of thermodynamics, kinetics, and physical restrictions. At the end, conclusions are drawn through the prospect of the future development direction.
Collapse
Affiliation(s)
- Liuyang Bai
- Zhumadian Academy of Industry Innovation and Development, Huanghuai University, Zhumadian 463000, China.
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuge Ouyang
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jun Song
- Zhumadian Academy of Industry Innovation and Development, Huanghuai University, Zhumadian 463000, China.
| | - Zhi Xu
- Zhumadian Academy of Industry Innovation and Development, Huanghuai University, Zhumadian 463000, China.
| | - Wenfu Liu
- Department of Mechanical and Energy Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Jingyu Hu
- Department of Mechanical and Energy Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Yinling Wang
- Department of Mechanical and Energy Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Fangli Yuan
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
12
|
Zhao M, Wang X, Yang X, Gilroy KD, Qin D, Xia Y. Hollow Metal Nanocrystals with Ultrathin, Porous Walls and Well-Controlled Surface Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801956. [PMID: 29984540 DOI: 10.1002/adma.201801956] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Recent developments of a novel class of catalytic materials built on hollow nanocrystals having ultrathin, porous walls, and well-controlled surface structures are discussed, with a focus on platinum and the oxygen reduction reaction (ORR). An introduction is given to the critical role of platinum in the proton exchange membrane fuel cells, and the pressing need to develop a strategy for achieving cost-effective and sustainable use of this precious metal. How to maximize the mass activity of ORR catalysts based on platinum by rationally engineering the surface structure while increasing the utilization efficiency of atoms is then discussed. After reporting on the synthetic methods involving galvanic replacement and seed-mediated growth followed by etching, respectively, a number of examples to demonstrate the enhancement in activity and durability for this new class of catalytic materials are showcased. The feasibility to have the methodology extended from platinum to other precious metals such as gold and ruthenium is highlighted. In conclusion, some of the remaining issues and emerging solutions are examined.
Collapse
Affiliation(s)
- Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xue Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Xuan Yang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Kyle D Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Dong Qin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| |
Collapse
|
13
|
Rodrigues TS, Zhao M, Yang TH, Gilroy KD, da Silva AGM, Camargo PHC, Xia Y. Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. Chemistry 2018; 24:16944-16963. [PMID: 29923247 DOI: 10.1002/chem.201802194] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Indexed: 01/13/2023]
Abstract
There is a growing interest in controlling the synthesis of colloidal metal nanocrystals and thus tailoring their properties toward various applications. In this context, choosing an appropriate combination of reagents (e.g., salt precursor, reductant, capping agent, and stabilizer) plays a pivotal role in enabling the synthesis of metal nanocrystals with diversified sizes, shapes, and structures. Here we present a comprehensive review that highlights one of the key reagents for the synthesis of metal nanocrystals via chemical reduction: the reductants. We start with a brief introduction to the compounds commonly employed as reductants in the colloidal synthesis of metal nanocrystals by showing their oxidation half-reactions and the corresponding oxidation potentials. Then we offer specific examples pertaining to the controlled synthesis of metal nanocrystals, followed by some fundamental aspects covering the general mechanisms of metal ion reduction based on the Marcus Theory. Afterwards, we present a case-by-case discussion on a wide variety of reductants, including their major properties, reduction mechanisms, and additional effects on the final products. We illustrate these aspects by selecting key examples from the literature and paying close attention to the underlying mechanism in each case. At the end, we conclude by summarizing the highlights of the review and providing some perspectives on future directions.
Collapse
Affiliation(s)
- Thenner S Rodrigues
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA.,Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo-SP, Brazil
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Tung-Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Kyle D Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Anderson G M da Silva
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA.,Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo-SP, Brazil
| | - Pedro H C Camargo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo-SP, Brazil
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
14
|
Wang JY, Mu X, Li Y, Xu F, Long W, Yang J, Bian P, Chen J, Ouyang L, Liu H, Jing Y, Wang J, Liu L, Dai H, Sun Y, Liu C, Zhang XD. Hollow PtPdRh Nanocubes with Enhanced Catalytic Activities for In Vivo Clearance of Radiation-Induced ROS via Surface-Mediated Bond Breaking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703736. [PMID: 29424016 DOI: 10.1002/smll.201703736] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/26/2017] [Indexed: 06/08/2023]
Abstract
Catalytic nanomaterials can be used extrinsically to combat diseases associated with a surplus of reactive oxygen species (ROS). Rational design of surface morphologies and appropriate doping can substantially improve the catalytic performances. In this work, a class of hollow polyvinyl pyrrolidone-protected PtPdRh nanocubes with enhanced catalytic activities for in vivo free radical scavenging is proposed. Compared with Pt and PtPd counterparts, ternary PtPdRh nanocubes show remarkable catalytic properties of decomposing H2 O2 via enhanced oxygen reduction reactions. Density functional theory calculation indicates that the bond of superoxide anions breaks for the energetically favorable status of oxygen atoms on the surface of PtPdRh. Viability of cells and survival rate of animal models under exposure of high-energy γ radiation are considerably enhanced by 94% and 50% respectively after treatment of PtPdRh nanocubes. The mechanistic investigations on superoxide dismutase (SOD) activity, malondialdehyde amount, and DNA damage repair demonstrate that hollow PtPdRh nanocubes act as catalase, peroxidase, and SOD analogs to efficiently scavenge ROS.
Collapse
Affiliation(s)
- Jun-Ying Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Fujuan Xu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peixian Bian
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Junchi Chen
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Lufei Ouyang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Yaqi Jing
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Jingya Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Lingfang Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Haitao Dai
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Yuanming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
15
|
Cui Z, Bai X, Liu Y, Li S. Synthesis of palladium concave Nanocubes with high-index facets and their catalytic properties. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zelin Cui
- Institute of Petrochemistry; Heilongjiang Academy of Sciences; Harbin 150040 China
| | - Xuefeng Bai
- Institute of Petrochemistry; Heilongjiang Academy of Sciences; Harbin 150040 China
| | - Yang Liu
- Institute of Petrochemistry; Heilongjiang Academy of Sciences; Harbin 150040 China
| | | |
Collapse
|
16
|
Morphology dependence of electrochemical properties on palladium nanocrystals. J Colloid Interface Sci 2017; 490:190-196. [DOI: 10.1016/j.jcis.2016.11.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022]
|
17
|
Ethylenediamine tetramethylene phosphonic acid assisted synthesis of palladium nanocubes and their electrocatalysis of formic acid oxidation. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3470-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Huo JR, Wang XX, Li L, Cheng HX, Su YJ, Qian P. The stability and catalytic activity of W 13@Pt 42 core-shell structure. Sci Rep 2016; 6:35464. [PMID: 27759038 PMCID: PMC5069721 DOI: 10.1038/srep35464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/28/2016] [Indexed: 11/25/2022] Open
Abstract
This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.
Collapse
Affiliation(s)
- Jin-Rong Huo
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao-Xu Wang
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Li
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai-Xia Cheng
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan-Jing Su
- Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083, China
| | - Ping Qian
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
19
|
Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla- Gullón J, Cabrera CR, Feliu JM. Electrochemical Characterisation of Platinum Nanoparticles Prepared in a Water-in-Oil Microemulsion in the Presence of Different Modifiers and Metal Precursors. ChemElectroChem 2016. [DOI: 10.1002/celc.201600295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roberto A. Martínez-Rodríguez
- Institute of Electrochemistry; University of Alicante; Ap. 99 03080 Alicante Spain
- NASA-URC Center for Advanced Nanoscale Materials (CANM); Department of Chemistry; University of Puerto Rico; Río Piedras Campus, P.O. Box 23346 San Juan 00931-3346 Puerto Rico
| | | | - José Solla- Gullón
- Institute of Electrochemistry; University of Alicante; Ap. 99 03080 Alicante Spain
| | - Carlos R. Cabrera
- NASA-URC Center for Advanced Nanoscale Materials (CANM); Department of Chemistry; University of Puerto Rico; Río Piedras Campus, P.O. Box 23346 San Juan 00931-3346 Puerto Rico
| | - Juan M. Feliu
- Institute of Electrochemistry; University of Alicante; Ap. 99 03080 Alicante Spain
| |
Collapse
|
20
|
The role of citric acid and ascorbic acid in morphology control of palladium nanocrystals: A molecular dynamics and density functional theory study. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Hong JW, Kim Y, Kwon Y, Han SW. Noble-Metal Nanocrystals with Controlled Facets for Electrocatalysis. Chem Asian J 2016; 11:2224-39. [PMID: 27258679 DOI: 10.1002/asia.201600462] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/27/2016] [Indexed: 11/06/2022]
Abstract
Noble-metal nanocrystals (NCs) show excellent catalytic performance for many important electrocatalysis reactions. The crystallographic properties of the facets by which the NCs are bound, closely associated with the shape of the NCs, have a profound influence on the electrocatalytic function of the NCs. To develop an efficient strategy for the synthesis of NCs with controlled facets as well as compositions, understanding of the growth mechanism of the NCs and their interaction with the chemical species involved in NC synthesis is quite important. Furthermore, understanding the facet-dependent catalytic properties of noble-metal NCs and the corresponding mechanisms for various electrocatalysis reactions will allow for the rational design of robust electrocatalysts. In this review, we summarize recently developed synthesis strategies for the preparation of mono- and bimetallic noble-metal NCs by classifying them by the type of facets through which they are enclosed and discuss the electrocatalytic applications of noble-metal NCs with controlled facets, especially for reactions associated with fuel-cell applications, such as the oxygen reduction reaction and fuel (methanol, ethanol, and formic acid) oxidation reactions.
Collapse
Affiliation(s)
- Jong Wook Hong
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, Korea.,Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Yena Kim
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, Korea
| | - Yongmin Kwon
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
22
|
Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem Rev 2016; 116:10414-72. [DOI: 10.1021/acs.chemrev.6b00211] [Citation(s) in RCA: 1109] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kyle D. Gilroy
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | | | | | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Hajfathalian M, Gilroy KD, Hughes RA, Neretina S. Citrate-Induced Nanocubes: A Re-Examination of the Role of Citrate as a Shape-Directing Capping Agent for Ag-Based Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3444-3452. [PMID: 27174815 DOI: 10.1002/smll.201600545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Seed-mediated syntheses utilizing facet-selective surface passivation provide the necessary chemical controls to direct noble metal nanostructure formation to a predetermined geometry. The foremost protocol for the synthesis of (111)-faceted Ag octahedra involves the reduction of metal ions onto pre-existing seeds in the presence of citrate and ascorbic acid. It is generally accepted that the capping of (111) facets with citrate dictates the shape while ascorbic acid acts solely as the reducing agent. Herein, a citrate-based synthesis is demonstrated in which the presence or absence of ascorbic acid is the shape-determining factor. Reactions are carried out in which Ag(+) ions are reduced onto substrate-immobilized Ag, Au, Pd, and Pt seeds. Syntheses lacking ascorbic acid, in which citrate acts as both the capping and the reducing agent, result in a robust nanocube growth mode able to withstand wide variations in the concentration of reactants, reaction rates, seed material, seed orientation and faceting, pH, and substrate material. If, however, ascorbic acid is included in these syntheses, then the growth mode reverts to one that advances the octahedral geometry. The implication of these results is that citrate, or one of its oxidation products, selectively caps (100) facets, but where this capability is compromised by ascorbic acid.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- College of Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Kyle D Gilroy
- College of Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Robert A Hughes
- College of Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Svetlana Neretina
- College of Engineering, Temple University, Philadelphia, PA, 19122, United States
| |
Collapse
|
24
|
Affiliation(s)
- Shuifen Xie
- Research Institute for Biomimetics and Soft Matter and Department of Physics; Xiamen University; Xiamen 361005 P.R. China
| | - Qingchi Xu
- Research Institute for Biomimetics and Soft Matter and Department of Physics; Xiamen University; Xiamen 361005 P.R. China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P. R. China
| |
Collapse
|
25
|
Sneed BT, Young AP, Tsung CK. Building up strain in colloidal metal nanoparticle catalysts. NANOSCALE 2015; 7:12248-12265. [PMID: 26147486 DOI: 10.1039/c5nr02529j] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The focus on surface lattice strain in nanostructures as a fundamental research topic has gained momentum in recent years as scientists investigated its significant impact on the surface electronic structure and catalytic properties of nanomaterials. Researchers have begun to tell a more complete story of catalysis from a perspective which brings this concept to the forefront of the discussion. The nano-'realm' makes the effects of surface lattice strain, which acts on the same spatial scales, more pronounced due to a higher ratio of surface to bulk atoms. This is especially evident in the field of metal nanoparticle catalysis, where displacement of atoms on surfaces can significantly alter the sorption properties of molecules. In part, the concept of strain-engineering for catalysis opened up due to the achievements that were made in the synthesis of a more sophisticated nanoparticle library from an ever-expanding set of methodologies. Developing synthesis methods for metal nanoparticles with well-defined and strained architectures is a worthy goal that, if reached, will have considerable impact in the search for catalysts. In this review, we summarize the recent accomplishments in the area of surface lattice-strained metal nanoparticle synthesis, framing the discussion from the important perspective of surface lattice strain effects in catalysis.
Collapse
Affiliation(s)
- Brian T Sneed
- Boston College Chemistry Department, Merkert Chemistry Center, 2609 Beacon St, Chestnut Hill, MA 02467, USA.
| | | | | |
Collapse
|
26
|
Xu CD, Ye JY, Chen L, Chen DH, Li JT, Zhen CH, Sun SG. Cyclic voltammetric studies of adsorption of cetyltrimethylammonium bromide and HBr on Pt(100) towards understanding their effects in shape-controlled synthesis of nanomaterials. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Francis S, Varshney L. Intrinsic anisotropic crystallization of gold into microplates. CrystEngComm 2015. [DOI: 10.1039/c5ce01615k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Huang YX, Xie JF, Zhang X, Xiong L, Yu HQ. Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15795-15801. [PMID: 25153308 DOI: 10.1021/am504664r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Reduced graphene oxide (rGO) supported palladium nanoparticles (Pd NPs) with a size of ∼3 nm were synthesized using one-pot photoassisted citrate reduction. This synthetic approach allows for the formation and assembly of Pd NPs onto the rGO surface with a desired size and can be readily used for other metal NP preparation. The prepared rGO-Pd exhibited 5.2 times higher mass activity for ethanol oxidation reaction than the commercial platinum/carbon (Pt/C). In the oxygen reduction reaction tests, rGO-Pd exhibited comparable activity compared with Pt/C and maintained its high performance after 4000 cycles of potential sweep. These results demonstrate that our synthetic approach is effective for preparing graphene-supported metal NPs with excellent activity and stability in ethanol oxidation and oxygen reduction reactions.
Collapse
Affiliation(s)
- Yu-Xi Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China , Hefei 230026, China
| | | | | | | | | |
Collapse
|
29
|
Hwang SY, Zhang M, Zhang C, Ma B, Zheng J, Peng Z. Carbon monoxide in controlling the surface formation of Group VIII metal nanoparticles. Chem Commun (Camb) 2014; 50:14013-6. [DOI: 10.1039/c4cc05770h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Jiang Y, Zhu G, Lin F, Zhang H, Jin C, Yuan J, Yang D, Zhang Z. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. NANO LETTERS 2014; 14:3761-3765. [PMID: 24927485 DOI: 10.1021/nl500670q] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oxidative etching has widely prevailed in the synthesis of a crystal and played a critical role in determining the final growth behavior. In this Letter, we report an in situ microscopic study on the oxidative etching of palladium cubic nanocrystals by liquid cell scanning transmission electron microscopy. The etching was realized with oxidative radiation reactants from electron-water interaction in the presence of Br(-) ions. Dissolution dynamics of monodispersed and aggregated nanocrystals were both investigated and compared. Analyses on the dissolution kinetics of nanocrystals and the diffusion kinetics of the dissolved agents were carried out based on the scanning transmission electron microscopy characterizations. The results presented here pave a way toward the quantitative understanding of the oxidative etching reaction and its application in the functionally orientated fabrication of nanocrystals with certain sizes, structures, and morphologies.
Collapse
Affiliation(s)
- Yingying Jiang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Cyrus Tang Center for Sensor Materials and Applications, and Department of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lv T, Wang Y, Choi SI, Chi M, Tao J, Pan L, Huang CZ, Zhu Y, Xia Y. Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation. CHEMSUSCHEM 2013; 6:1923-30. [PMID: 24106017 DOI: 10.1002/cssc.201300479] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 05/04/2023]
Abstract
Pd icosahedra with sizes controlled in the range of 5-35 nm were synthesized in high purity through a combination of polyol reduction and seed-mediated growth. The Pd icosahedra were obtained with purity >94 % and uniform sizes controlled in the range of 5-17 nm by using ethylene glycol as both the reductant and solvent. The studies indicate that the formation of Pd nanocrystals with an icosahedral shape was very sensitive to the reaction kinetics. The success of this synthesis relies on the use of HCl to manipulate the reaction kinetics and thus control the twin structure and shape of the resultant nanocrystals. The size of the Pd icosahedra could be further increased up to 35 nm by seed-mediated growth, with 17 nm Pd icosahedra serving as seeds. The multiply twinned Pd icosahedra could grow into larger sizes, and their shape and multiply twinned structure were preserved. Thanks to the presence of twin defects, the Pd icosahedra showed a catalytic current density towards formic-acid oxidation that was 1.9 and 11.6 times higher than that of single-crystal Pd octahedra, which were also fully covered by {111} facets, and commercial Pd/C, respectively.
Collapse
Affiliation(s)
- Tian Lv
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Chemistry & Biochemistry and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332 (USA); Engineering Research Center for Nanophotonics and Advanced Instruments, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (PR China)
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Laskar M, Zhong X, Li ZY, Skrabalak SE. Manipulating the kinetics of seeded growth for edge-selective metal deposition and the formation of concave au nanocrystals. CHEMSUSCHEM 2013; 6:1959-1965. [PMID: 23940097 DOI: 10.1002/cssc.201300383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 06/02/2023]
Abstract
By manipulating the kinetics of seeded growth through judicious control of reaction conditions, edge-selective metal deposition can be achieved to synthesize new Au nanostructures with face-centered concavities, referred to herein as Au overgrown trisoctahedra. These nanostructures display higher sensitivity to changes in refractive index compared to both Au traditional trisoctahedra and the Au nanocube seeds from which they are grown. Often, concave nanostructures are achieved by selective etching processes or corner-selective overgrowth and adopt a stellated profile rather than a profile with face-centered concavities. The presented results illustrate another strategy toward concave nanostructures and can facilitate the synthesis of new concave nanostructures for applications in catalysis and chemical sensing.
Collapse
Affiliation(s)
- Moitree Laskar
- Department of Chemistry, Indiana University, 800 E Kirkwood Av., Bloomington, IN-47405 (United States)
| | | | | | | |
Collapse
|
33
|
Wang C, Fang J. Octahedral noble-metal nanoparticles and their electrocatalytic properties. CHEMSUSCHEM 2013; 6:1848-1857. [PMID: 23929796 DOI: 10.1002/cssc.201300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 06/02/2023]
Abstract
Octahedrally shaped noble-metal nanocrystals are fascinating for their unique properties, such as electrocatalytic, catalytic, plasmonic, and optical behavior, owing to their exclusively exposed {111} facets; Oh symmetric structure; and close-packed surface atoms in low-index surface categories, which are normally stable in a reaction. A series of protocols in the preparation of noble-metal nano-octahedra through a wet-chemical synthetic strategy have been developed in recent years. Herein, advances in synthetic approaches and mechanistic studies of noble-metal nano-octahedra are systematically discussed and key factors, including reduction kinetics, selective capping, and epitaxial growth, are outlined. Their unique performance as advanced electrocatalysts towards fuel-cell reactions is highlighted as well.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902 (USA)
| | | |
Collapse
|
34
|
Noh SH, Seo MH, Seo JK, Fischer P, Han B. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts. NANOSCALE 2013; 5:8625-8633. [PMID: 23897215 DOI: 10.1039/c3nr02611f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using density functional theory (DFT) calculations, we identify the thermodynamically stable configurations of Pt-Co alloy nanoparticles of varying Co compositions and particle sizes. Our results indicate that the most thermodynamically stable structure is a shell-by-shell configuration where the Pt atom only shell and the Co only shell alternately stack and the outermost shell consists of a Pt skin layer. DFT calculations show that the structure has substantially higher dissolution potential of the outermost Pt shell compared with pure Pt nanoparticles of approximately the same size. Furthermore, our DFT calculations also propose that the shell-by-shell structure shows much better oxygen reduction reaction (ORR) activity than conventional bulk or nanoparticles of pure Pt. These novel catalyst properties can be changed when the surfaces are adsorbed with oxygen atoms via selective segregation followed by the electrochemical dissolution of the alloyed Co atoms. However, these phenomena are thermodynamically not plausible if the chemical potentials of oxygen are controlled below a certain level. Therefore, we propose that the shell-by-shell structures are promising candidates for highly functional catalysts in fuel cell applications.
Collapse
Affiliation(s)
- Seung Hyo Noh
- Department of Energy Systems Engineering, DGIST, Daegu 711-873, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Fu G, Jiang X, Tao L, Chen Y, Lin J, Zhou Y, Tang Y, Lu T. Polyallylamine functionalized palladium icosahedra: one-pot water-based synthesis and their superior electrocatalytic activity and ethanol tolerant ability in alkaline media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4413-4420. [PMID: 23480348 DOI: 10.1021/la304881m] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polyallylamine (PAH) functionalized Pd icosahedra are synthesized through a simple, one-pot, seedless and hydrothermal growth method. Herein, PAH is used efficiently as a complex-forming agent, capping agent, and facet-selective agent. The strong interaction between PAH and Pd atom sharply changes the electronic structure of Pd atom in the Pd icosahedra. The protective function of PAH layers and enhanced antietching capability of Pd atom are responsible for the formation of the Pd icosahedra. Very importantly, the as-prepared PAH functionalized Pd icosahedra exhibit superior electrocatalytic activity and ethanol tolerant ability toward the oxygen reduction reaction (ORR) compared to the commercially available Pt black in alkaline media. At 0.95 V (vs RHE), the ORR specific kinetic current density at the Pd icosahedra is 4.48 times higher than that at commercial Pt black. The fact demonstrates the appropriate surface modification of the Pd nanoparticles by nonmetallic molecules can be regarded as an effective way to enhance the electrocatalytic activity toward the ORR.
Collapse
Affiliation(s)
- Gengtao Fu
- Jiangsu Key Laboratory of Power Batteries, Laboratory of Electrochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P R China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhu C, Zeng J, Lu P, Liu J, Gu Z, Xia Y. Aqueous-Phase Synthesis of Single-Crystal Pd Seeds 3 nm in Diameter and Their Use for the Growth of Pd Nanocrystals with Different Shapes. Chemistry 2013; 19:5127-33. [DOI: 10.1002/chem.201203787] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/14/2013] [Indexed: 11/08/2022]
|
37
|
Gao M, Lin Z, Jiang J, Cui C, Zheng Y, Yu S. Completely Green Synthesis of Colloid Adams’ Catalyst α‐PtO
2
Nanocrystals and Derivative Pt Nanocrystals with High Activity and Stability for Oxygen Reduction. Chemistry 2012; 18:8423-9. [DOI: 10.1002/chem.201200353] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Min‐Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China), Fax: (+86)551‐3603040
| | - Zhao‐Yang Lin
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China), Fax: (+86)551‐3603040
| | - Jun Jiang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China), Fax: (+86)551‐3603040
| | - Chun‐Hua Cui
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China), Fax: (+86)551‐3603040
| | - Ya‐Rong Zheng
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China), Fax: (+86)551‐3603040
| | - Shu‐Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China), Fax: (+86)551‐3603040
| |
Collapse
|
38
|
Zhang ZC, Zhang X, Yu QY, Liu ZC, Xu CM, Gao JS, Zhuang J, Wang X. Pd Cluster Nanowires as Highly Efficient Catalysts for Selective Hydrogenation Reactions. Chemistry 2012; 18:2639-45. [DOI: 10.1002/chem.201102903] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Indexed: 11/06/2022]
|
39
|
Wang Y, Biradar AV, Asefa T. Assembling nanostructures for effective catalysis: supported palladium nanoparticle multicores coated by a hollow and nanoporous zirconia shell. CHEMSUSCHEM 2012; 5:132-139. [PMID: 22095642 DOI: 10.1002/cssc.201100385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Indexed: 05/31/2023]
Abstract
We report the synthesis and catalytic activities of highly stable, hollow nanoreactors, called SiO(2)/Pd/h-ZrO(2), which consist of silica microsphere (SiO(2))-supported Pd nanoparticle multicores (Pd) that are encapsulated with a hollow and nanoporous ZrO(2) shell (h-ZrO(2)). The SiO(2)/Pd/h-ZrO(2) nanoreactors are fabricated by first synthesizing SiO(2)/Pd/SiO(2)/ZrO(2) microspheres, and then etching the inner SiO(2) shell with dilute NaOH solution. The hollow and nanoporous ZrO(2) shell of the nanoreactors serves two important functions: 1) it provides reactants direct access to the Pd nanoparticle multicores inside the SiO(2)/Pd/h-ZrO(2) nanoreactors during catalysis, and 2) it stabilizes the Pd nanoparticles or protects them from aggregation/sintering. The fabrication of such structures capable of protecting the Pd nanoparticles from aggregation/sintering is of particular interest considering the fact that Pd nanoparticles generally have a high tendency to aggregate because of their high surface energies. Furthermore, the structures are interesting because the Pd nanoparticles are designed and synthesized here to have 'naked' surfaces or no organic surface-passivating ligands-that are often necessary to stabilize metallic nanoparticles-in order to increase their catalytic efficiency. The resulting SiO(2)/Pd/h-ZrO(2) nanoreactors show excellent catalytic activity, as shown in the hydrogenation of olefins and nitro groups, even at room temperature under moderate hydrogen pressure. This stems from the SiO(2)/Pd/h-ZrO(2) microspheres' high surface area and their small, stable, and bare Pd nanoparticles. Furthermore, the SiO(2)/Pd/h-ZrO(2) nanoreactor catalysts remain fairly stable after reaction and can be recycled multiple times without losing their high catalytic activities.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
40
|
Qin YL, Zhang XB, Wang J, Wang LM. Rapid and shape-controlled synthesis of “clean” star-like and concave Pd nanocrystallites and their high performance toward methanol oxidation. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32682e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Lou Z, Huang B, Qin X, Zhang X, Cheng H, Liu Y, Wang S, Wang J, Dai Y. One-step synthesis of AgCl concave cubes by preferential overgrowth along 〈111〉 and 〈110〉 directions. Chem Commun (Camb) 2012; 48:3488-90. [DOI: 10.1039/c2cc30766a] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Qiu P, Mao C. Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:4880-5. [PMID: 21953725 PMCID: PMC3361505 DOI: 10.1002/adma.201102636] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/15/2011] [Indexed: 05/15/2023]
Affiliation(s)
- Penghe Qiu
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Science Research Center, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Science Research Center, 101 Stephenson Parkway, Norman, OK, 73019, USA
| |
Collapse
|
43
|
Controlled growth of uniform noble metal nanocrystals: Aqueous-based synthesis and some applications in biomedicine. Colloids Surf B Biointerfaces 2011; 88:1-22. [DOI: 10.1016/j.colsurfb.2011.07.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/19/2022]
|
44
|
Jin M, Zhang H, Xie Z, Xia Y. Palladium Concave Nanocubes with High-Index Facets and Their Enhanced Catalytic Properties. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Jin M, Zhang H, Xie Z, Xia Y. Palladium Concave Nanocubes with High-Index Facets and Their Enhanced Catalytic Properties. Angew Chem Int Ed Engl 2011; 50:7850-4. [DOI: 10.1002/anie.201103002] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Indexed: 11/10/2022]
|
46
|
Zhang J, Zhang S, Wang Z, Zhang Z, Wang S, Wang S. Hopper-Like Single Crystals of Sodium Chloride Grown at the Interface of Metastable Water Droplets. Angew Chem Int Ed Engl 2011; 50:6044-7. [DOI: 10.1002/anie.201101704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Indexed: 11/08/2022]
|
47
|
Zhang J, Zhang S, Wang Z, Zhang Z, Wang S, Wang S. Hopper-Like Single Crystals of Sodium Chloride Grown at the Interface of Metastable Water Droplets. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Kuai L, Geng B, Wang S, Zhao Y, Luo Y, Jiang H. Silver and Gold Icosahedra: One-Pot Water-Based Synthesis and Their Superior Performance in the Electrocatalysis for Oxygen Reduction Reactions in Alkaline Media. Chemistry 2011; 17:3482-9. [DOI: 10.1002/chem.201002949] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Indexed: 11/11/2022]
|
49
|
Sui Y, Fu W, Zeng Y, Yang H, Zhang Y, Chen H, Li Y, Li M, Zou G. Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature. Angew Chem Int Ed Engl 2010; 49:4282-5. [PMID: 20446323 DOI: 10.1002/anie.200907117] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yongming Sui
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sui Y, Fu W, Zeng Y, Yang H, Zhang Y, Chen H, Li Y, Li M, Zou G. Synthesis of Cu2O Nanoframes and Nanocages by Selective Oxidative Etching at Room Temperature. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907117] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|