1
|
Thümmler JF, Binder WH. Compartmentalised single-chain nanoparticles and their function. Chem Commun (Camb) 2024; 60:14332-14345. [PMID: 39575550 DOI: 10.1039/d4cc04387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Single-chain nanoparticles (SCNPs) are generated by intramolecular collapse and crosslinking of single polymer chains, thus conceptually resembling the structures of folded proteins. Their chemical flexibility and ability to form compartmentalised nanostructures sized ∼1 nm make them perfect candidates for numerous applications, such as in catalysis and drug delivery. In this review we discuss principles for the design, synthesis and analysis of SCNPs, with a focus on their compartmentalised structures, highlighting our own previous work. As such compartments offer the potential to generate a specific nanoenvironment e.g. for the covalent and non-covalent encapsulation of catalysts or drugs, they represent a novel, exciting, and expanding research area. Starting from the architectural and chemical design of the starting copolymers by controlling their amphiphilic profile, the embedding of blocks-, or secondary-structure-mimetic arrangements, we discuss design principles to form internal compartments inside the SCNPs. While the generation of compartments inside SCNPs is straightforward, their analysis is still challenging and often demands special techniques. We finally discuss applications of SCNPs, also linked to the compartment formation, predicting a bright future for these special nanoobjects.
Collapse
Affiliation(s)
- Justus F Thümmler
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| | - Wolfgang H Binder
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| |
Collapse
|
2
|
Némethová I, Schmid D, Tiefenbacher K. Supramolecular Capsule Catalysis Enables the Exploration of Terpenoid Chemical Space Untapped by Nature. Angew Chem Int Ed Engl 2023; 62:e202218625. [PMID: 36727480 DOI: 10.1002/anie.202218625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Terpenes represent the largest and the most diverse class of natural compounds. This is remarkable as the whole variety is accessed from just a handful of highly conserved linear precursors. Modification of the cyclization precursors would enable a dramatic expansion of the accessible chemical space. However, natural enzymes do not enable us to tap into this potential, as they do not tolerate larger deviations from the prototypical substrate structure. Herein we report that supramolecular capsule catalysis enables facile access to diverse and novel terpenoid skeletons that formally can be traced back to C3-phenyl, benzyl, and homoprenyl derivatives of farnesol. Novel skeletons related to the presilphiperfolane core structure, as well as novel neoclovene derivatives were accessed efficiently in only four synthetic steps. Importantly, the products obtained carry functional groups that may be readily derivatized further.
Collapse
Affiliation(s)
- Ivana Némethová
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Dario Schmid
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
3
|
Tailored Supramolecular Cage for Efficient Bio-Labeling. Int J Mol Sci 2023; 24:ijms24032147. [PMID: 36768471 PMCID: PMC9916613 DOI: 10.3390/ijms24032147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
Fluorescent chemosensors are powerful imaging tools used in a broad range of biomedical fields. However, the application of fluorescent dyes in bioimaging still remains challenging, with small Stokes shifts, interfering signals, background noise, and self-quenching on current microscope configurations. In this work, we reported a supramolecular cage (CA) by coordination-driven self-assembly of benzothiadiazole derivatives and Eu(OTf)3. The CA exhibited high fluorescence with a quantum yield (QY) of 38.57%, good photoluminescence (PL) stability, and a large Stokes shift (153 nm). Furthermore, the CCK-8 assay against U87 glioblastoma cells verified the low cytotoxicity of CA. We revealed that the designed probes could be used as U87 cells targeting bioimaging.
Collapse
|
4
|
Sinclair ZL, Bell NL, Bame JR, Long DL, Cronin L. Water-soluble Self-assembled {Pd 84 } Ac Polyoxopalladate Nano-wheel as a Supramolecular Host. Angew Chem Int Ed Engl 2023; 62:e202214203. [PMID: 36336660 PMCID: PMC10100005 DOI: 10.1002/anie.202214203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Polyoxopalladates (POPs) are a class of self-assembling palladium-oxide clusters that span a variety of sizes, shapes and compositions. The largest of this family, {Pd84 }Ac , is constructed from 14 building units of {Pd6 } and lined on the inner and outer torus by 28 acetate ligands. Due to its high water solubility, large hydrophobic cavity and distinct 1 H NMR fingerprint {Pd84 }Ac is an ideal molecule for exploring supramolecular behaviour with small organic molecules in aqueous media. Molecular visualisation studies highlighted potential binding sites between {Pd84 }Ac and these species. Nuclear Magnetic Resonance (NMR) techniques, including 1 H NMR, 1 H Diffusion Ordered Spectroscopy (DOSY) and Nuclear Overhauser Spectroscopy (NOESY), were employed to study the supramolecular chemistry of this system. Here, we provide conclusive evidence that {Pd84 }Ac forms a 1 : 7 host-guest complex with benzyl viologen (BV2+ ) in aqueous solution.
Collapse
Affiliation(s)
- Zoë L Sinclair
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| | - Nicola L Bell
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| | - Jessica R Bame
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| | - De-Liang Long
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| | - Leroy Cronin
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| |
Collapse
|
5
|
Tomasini M, Caporaso L, Trouvé J, Poater J, Gramage‐Doria R, Poater A. Unravelling Enzymatic Features in a Supramolecular Iridium Catalyst by Computational Calculations. Chemistry 2022; 28:e202201970. [PMID: 35788999 PMCID: PMC9804516 DOI: 10.1002/chem.202201970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 01/05/2023]
Abstract
Non-biological catalysts following the governing principles of enzymes are attractive systems to disclose unprecedented reactivities. Most of those existing catalysts feature an adaptable molecular recognition site for substrate binding that are prone to undergo conformational selection pathways. Herein, we present a non-biological catalyst that is able to bind substrates via the induced fit model according to in-depth computational calculations. The system, which is constituted by an inflexible substrate-recognition site derived from a zinc-porphyrin in the second coordination sphere, features destabilization of ground states as well as stabilization of transition states for the relevant iridium-catalyzed C-H bond borylation of pyridine. In addition, this catalyst appears to be most suited to tightly bind the transition state rather than the substrate. Besides these features, which are reminiscent of the action modes of enzymes, new elementary catalytic steps (i. e. C-B bond formation and catalyst regeneration) have been disclosed owing to the unique distortions encountered in the different intermediates and transition states.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut de Química Computacional i CatàlisiDepartament de QuímicaUniversitat de Gironac/Mª Aurèlia Capmany 6917003GironaCataloniaSpain,Department of ChemistryUniversity of SalernoVia Ponte Don Melillo84084FiscianoItaly
| | - Lucia Caporaso
- Department of ChemistryUniversity of SalernoVia Ponte Don Melillo84084FiscianoItaly
| | | | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de Barcelona08028BarcelonaSpain,ICREA08010BarcelonaSpain
| | | | - Albert Poater
- Institut de Química Computacional i CatàlisiDepartament de QuímicaUniversitat de Gironac/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| |
Collapse
|
6
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
7
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
8
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail-to-Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203384. [PMID: 35324038 PMCID: PMC9323437 DOI: 10.1002/anie.202203384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Molecular capsules enable the conversion of substrates inside a closed cavity, mimicking to some extent enzymatic catalysis. Chirality transfer from the molecular capsule onto the encapsulated substrate has been only studied in a few cases. Here we demonstrate that chirality transfer is possible inside a rather large molecular container of approximately 1400 Å3 . Specifically, we present 1) the first examples of optically active hexameric resorcin[4]arene capsules, 2) their ability to enantioselectively catalyze tail-to-head terpene cyclizations, and 3) the surprisingly high sensitivity of enantioselectivity on the structural modifications.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - GiovanniMaria Piccini
- Facoltà di Informatica, Istituto EuleroUniversità della Svizzera Italiana (USI)LuganoSwitzerland
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
9
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022; 61:e202200638. [DOI: 10.1002/anie.202200638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
10
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail‐to‐Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daria Sokolova
- University of Basel: Universitat Basel Chemistry SWITZERLAND
| | - GiovanniMaria Piccini
- Università della Svizzera Italiana: Universita della Svizzera Italiana Informatica SWITZERLAND
| | | |
Collapse
|
11
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
12
|
Li K, Wu K, Lu Y, Guo J, Hu P, Su C. Creating Dynamic Nanospaces in Solution by Cationic Cages as Multirole Catalytic Platform for Unconventional C(sp)−H Activation Beyond Enzyme Mimics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Li
- School of Chemistry South China Normal University Guangzhou 510006 China
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Peng Hu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
13
|
Li Q, Gu D, Yu D, Liu Y. Caged iridium catalyst for hydrosilylation of alkynes with high site selectivity. ChemCatChem 2022. [DOI: 10.1002/cctc.202101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiaosheng Li
- Beihang University School of Chemistry and Environment CHINA
| | - Defa Gu
- Beihang University School of Chemistry and Environment CHINA
| | - Dongdong Yu
- Beihang University School of Chemistry and Environment CHINA
| | - Yuzhou Liu
- Beihang University School of Chemistry and Environment 37 Xueyuan RdHaidian District 100191 Beijing CHINA
| |
Collapse
|
14
|
Li K, Wu K, Lu YL, Guo J, Hu P, Su CY. Creating Dynamic Nanospaces in Solution by Cationic Cages as Multirole Catalytic Platform for Unconventional C(sp)-H Activation Beyond Enzyme Mimics. Angew Chem Int Ed Engl 2021; 61:e202114070. [PMID: 34779551 DOI: 10.1002/anie.202114070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 01/10/2023]
Abstract
Herein we demonstrate that, based on the creation of dynamic nanospaces in solution by highly charged positive coordination cage of [Pd6 (RuL3 )8 ]28+ , multirole and multi-way cage-confined catalysis is accomplishable for versatile functions and anomalous reactivities with the aid of the biomimetic cage effect. The high cationic-host charges drive partial deprotonation of 24 imidazole-NHs on cage sphere alike imidazole-residuals in proteins, generating amphoteric heterogeneity in solution to enforce effective cavity-basicity against solution-acidity. Synergistic actions arisen from cage hydrophobicity, host-guest electrostatic interactions and imidazole-N coordination facilitate C(sp)-H activation and carbanionic intermediate stabilization of terminal alkynes to achieve unusual H/D-exchange and Glaser coupling under acidic conditions, and enable phase transfers of water-insoluble substrates/products/co-catalysts to make immiscible-phase and bi-phase catalysis feasible, thus providing a useful catalytic protocol to combine merits from homogeneous, heterogeneous, enzymatic and phase transfer catalysis.
Collapse
Affiliation(s)
- Kang Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.,MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peng Hu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
15
|
Hosseinmardi S, Scheurer A, Heinemann FW, Kuepper K, Senft L, Waldschmidt P, Ivanović‐Burmazović I, Meyer K. Evaluation of Manganese Cubanoid Clusters for Water Oxidation Catalysis: From Well-Defined Molecular Coordination Complexes to Catalytically Active Amorphous Films. CHEMSUSCHEM 2021; 14:4741-4751. [PMID: 34409745 PMCID: PMC8596818 DOI: 10.1002/cssc.202101451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Indexed: 06/05/2023]
Abstract
With a view to developing multimetallic molecular catalysts that mimic the oxygen-evolving catalyst (OEC) in Nature's photosystem II, the synthesis of various dicubanoid manganese clusters is described and their catalytic activity investigated for water oxidation in basic, aqueous solution. Pyridinemethanol-based ligands are known to support polynuclear and cubanoid structures in manganese coordination chemistry. The chelators 2,6-pyridinedimethanol (H2 L1 ) and 6-methyl-2-pyridinemethanol (HL2 ) were chosen to yield polynuclear manganese complexes; namely, the tetranuclear defective dicubanes [MnII 2 MnIII 2 (HL1 )4 (OAc)4 (OMe)2 ] and [MnII 2 MnIII 2 (HL1 )6 (OAc)2 ] (OAc)2 ⋅2 H2 O, as well as the octanuclear-dicubanoid [MnII 6 MnIII 2 (L2 )4 (O)2 (OAc)10 (HOMe/OH2 )2 ]⋅3MeOH⋅MeCN. In freshly prepared solutions, polynuclear species were detected by electrospray ionization mass spectrometry, whereas X-band electron paramagnetic resonance studies in dilute, liquid solution suggested the presence of divalent mononuclear Mn species with g values of 2. However, the magnetochemical investigation of the complexes' solutions by the Evans technique confirmed a haphazard combination of manganese coordination complexes, from mononuclear to polynuclear species. Subsequently, the newly synthesized and characterized manganese molecular complexes were employed as precursors to prepare electrode-deposited films in a buffer-free solution to evaluate and compare their stability and catalytic activity for water oxidation electrocatalysis.
Collapse
Affiliation(s)
- Soosan Hosseinmardi
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Andreas Scheurer
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Frank W. Heinemann
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Karsten Kuepper
- Department of PhysicsUniversity of OsnabrückBarbarastraße 749069OsnabrückGermany
| | - Laura Senft
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
- Present address: Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Pablo Waldschmidt
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
- Present address: Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Karsten Meyer
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| |
Collapse
|
16
|
Trouvé J, Zardi P, Al-Shehimy S, Roisnel T, Gramage-Doria R. Enzyme-like Supramolecular Iridium Catalysis Enabling C-H Bond Borylation of Pyridines with meta-Selectivity. Angew Chem Int Ed Engl 2021; 60:18006-18013. [PMID: 33704892 DOI: 10.1002/anie.202101997] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 01/14/2023]
Abstract
The use of secondary interactions between substrates and catalysts is a promising strategy to discover selective transition metal catalysts for atom-economy C-H bond functionalization. The most powerful catalysts are found via trial-and-error screening due to the low association constants between the substrate and the catalyst in which small stereo-electronic modifications within them can lead to very different reactivities. To circumvent these limitations and to increase the level of reactivity prediction in these important reactions, we report herein a supramolecular catalyst harnessing Zn⋅⋅⋅N interactions that binds to pyridine-like substrates as tight as it can be found in some enzymes. The distance and spatial geometry between the active site and the substrate binding site is ideal to target unprecedented meta-selective iridium-catalyzed C-H bond borylations with enzymatic Michaelis-Menten kinetics, besides unique substrate selectivity and dormant reactivity patterns.
Collapse
Affiliation(s)
| | - Paolo Zardi
- Univ Rennes, CNRS, ISCR-UMR6226, 35000, Rennes, France
| | | | | | | |
Collapse
|
17
|
Mouarrawis V, Bobylev EO, Bruin B, Reek JNH. Controlling the Activity of a Caged Cobalt‐Porphyrin‐Catalyst in Cyclopropanation Reactions with Peripheral Cage Substituents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Valentinos Mouarrawis
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Eduard O. Bobylev
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
18
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021; 60:19942-19948. [PMID: 34125989 DOI: 10.1002/anie.202107091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Two limiting cases of molecular recognition, induced fit (IF) and conformational selection (CS), play a central role in allosteric regulation of natural systems. The IF paradigm states that a substrate "instructs" the host to change its shape after complexation, while CS asserts that a guest "selects" the optimal fit from an ensemble of preexisting host conformations. With no studies that quantitatively address the interplay of two limiting pathways in abiotic systems, we herein and for the first time describe the way by which twisted capsule M-1, encompassing two conformers M-1(+) and M-1(-), trap CX4 (X=Cl, Br) to give CX4 ⊂M-1(+) and CX4 ⊂M-1(-), with all four states being in thermal equilibrium. With the assistance of 2D EXSY, we found that CBr4 would, at its lower concentrations, bind M-1 via a M-1(+)→M-1(-)→CBr4 ⊂M-1(-) pathway corresponding to conformational selection. For M-1 complexing CCl4 though, data from 2D EXSY measurements and 1D NMR line-shape analysis suggested that lower CCl4 concentrations would favor CS while the IF pathway prevailed at higher proportions of the guest. Since CS and IF are not mutually exclusive, we reason that our work sets the stage for characterizing the dynamics of a wide range of already existing hosts to broaden our fundamental understanding of their action. The objective is to master the way in which encapsulation takes place for designing novel and allosteric sequestering agents, catalysts and chemosensors akin to those found in nature.
Collapse
Affiliation(s)
- Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Remy F Lalisse
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Murat Güney
- Agri Ibrahim Çeçen University, Department of Chemistry, 04100, Agri, Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher M Hadad
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
19
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Remy F. Lalisse
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology University College London London WC1E 6BT UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Murat Güney
- Agri Ibrahim Çeçen University Department of Chemistry 04100 Agri Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher M. Hadad
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
20
|
Trouvé J, Zardi P, Al‐Shehimy S, Roisnel T, Gramage‐Doria R. Enzyme‐like Supramolecular Iridium Catalysis Enabling C−H Bond Borylation of Pyridines with
meta
‐Selectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Paolo Zardi
- Univ Rennes CNRS, ISCR-UMR6226 35000 Rennes France
| | | | | | | |
Collapse
|
21
|
Liu J, Luo T, Xue Y, Mao L, Stang PJ, Wang M. Hierarchical Self-assembly of Discrete Metal-Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angew Chem Int Ed Engl 2021; 60:5429-5435. [PMID: 33247547 DOI: 10.1002/anie.202013904] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Hierarchical self-assembly (HAS) is a powerful approach to create supramolecular nanostructures for biomedical applications. This potency, however, is generally challenged by the difficulty of controlling the HAS of biomacromolecules and the functionality of resulted HAS nanostructures. Herein, we report a modular approach for controlling the HAS of discrete metal-organic cages (MOC) into supramolecular nanoparticles, and its potential for intracellular protein delivery and cell-fate specification. The hierarchical coordination-driven self-assembly of adamantane-functionalized M12 L24 MOC (Ada-MOC) and the host-guest interaction of Ada-MOC with β-cyclodextrin-conjugated polyethylenimine (PEI-βCD) afford supramolecular nanoparticles in a controllable manner. HAS maintains high efficiency and orthogonality in the presence of protein, enabling the encapsulation of protein into the nanoparticles for intracellular protein delivery for therapeutic application and CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Ji Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianli Luo
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Merget S, Catti L, Zev S, Major DT, Trapp N, Tiefenbacher K. Concentration-Dependent Self-Assembly of an Unusually Large Hexameric Hydrogen-Bonded Molecular Cage. Chemistry 2021; 27:4447-4453. [PMID: 33346916 DOI: 10.1002/chem.202005046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 01/08/2023]
Abstract
The sizes of available self-assembled hydrogen-bond-based supramolecular capsules and cages are rather limited. The largest systems have volumes of approximately 1400-2300 Å3 . Herein, we report a large, hexameric cage based on intermolecular amide-amide dimerization. The unusual structure with openings, reminiscent of covalently linked cages, is held together by 24 hydrogen bonds. With a diameter of 2.3 nm and a cavity volume of ∼2800 Å3 , the assembly is larger than any previously known capsule/cage structure relying exclusively on hydrogen bonds. The self-assembly process in chlorinated, organic solvents was found to be strongly concentration dependent, with the monomeric form prevailing at low concentrations. Additionally, the formation of host-guest complexes with fullerenes (C60 and C70 ) was observed.
Collapse
Affiliation(s)
- Severin Merget
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Lorenzo Catti
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Shani Zev
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Dan T Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Nils Trapp
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
23
|
Goswami A, Gaikwad S, Schmittel M. A Switchable Catalyst Duo for Acyl Transfer Proximity Catalysis and Regulation of Substrate Selectivity. Chemistry 2021; 27:2997-3001. [PMID: 33022776 PMCID: PMC7898682 DOI: 10.1002/chem.202004416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Enzymes are encoded with a gamut of information to catalyze a highly selective transformation by selecting the proper reactants from an intricate mixture of constituents. Mimicking biological machinery, two switchable catalysts with differently sized cavities and allosteric control are conceived that allow complementary size-selective acyl transfer in an on/off manner by modulating the effective local concentration of the substrates. Selective activation of one of two catalysts in a mixture of reactants of similar reactivity enabled upregulation of the desired product.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
24
|
Liu J, Luo T, Xue Y, Mao L, Stang PJ, Wang M. Hierarchical Self‐assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ji Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tianli Luo
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peter J. Stang
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Ming Wang
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
25
|
Swartjes A, White PB, Lammertink M, Elemans JAAW, Nolte RJM. Host-Guest Exchange of Viologen Guests in Porphyrin Cage Compounds as Studied by Selective Exchange Spectroscopy (1D EXSY) NMR. Angew Chem Int Ed Engl 2021; 60:1254-1262. [PMID: 33016567 PMCID: PMC7839762 DOI: 10.1002/anie.202010335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/18/2022]
Abstract
Dynamics in complexes of porphyrin cage compounds and viologen-derived guest molecules are investigated by selective exchange NMR spectroscopy (1D EXSY). Exchange rates were found to be independent of excess guest concentration, revealing a dissociative exchange mechanism, which is accompanied by negative activation entropies, indicating significant reorganization of the host-guest complex during dissociation. Nonsymmetric viologen guests with bulky head groups had more unidirectional binding and slower exchange rates than guests with less-bulky head groups. Thermodynamic and kinetic studies revealed that the exchange process is primarily driven by the thermodynamics of binding and that guest binding can be influenced by introducing steric and electronic groups on the host . Exchange studies with guests bearing a polymer chain revealed that both slippage and full dissociation takes place and the rate constants for both processes were determined. The slippage rate constant revealed that for smaller guests exchange takes place nearly exclusively under thermodynamic control.
Collapse
Affiliation(s)
- Anne Swartjes
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Paul B White
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Marijn Lammertink
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Johannes A A W Elemans
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Zhang YY, Qiu FY, Shi HT, Yu W. Self-assembly and guest-induced disassembly of triply interlocked [2]catenanes. Chem Commun (Camb) 2021; 57:3010-3013. [DOI: 10.1039/d0cc08052g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two triply interlocked [2]catenanes and one simple metallacage were constructed by tuning the widths of the organometallic dinuclear building blocks, and the interlocked architectures were disassembled by large aromatic molecules.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Center for Advanced Materials Research
- Henan Key Laboratory of Functional Salt Materials
- Zhongyuan University of Technology
- Zhengzhou
- P. R. China
| | - Feng-Yi Qiu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan
- P. R. China
| | - Hua-Tian Shi
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan
- P. R. China
| | - Weibin Yu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan
- P. R. China
| |
Collapse
|
27
|
Swartjes A, White PB, Lammertink M, Elemans JAAW, Nolte RJM. Host–Guest Exchange of Viologen Guests in Porphyrin Cage Compounds as Studied by Selective Exchange Spectroscopy (1D EXSY) NMR. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anne Swartjes
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Paul B. White
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Marijn Lammertink
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Johannes A. A. W. Elemans
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Roeland J. M. Nolte
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
28
|
Zeng H, Stewart-Yates L, Casey LM, Bampos N, Roberts DA. Covalent Post-Assembly Modification: A Synthetic Multipurpose Tool in Supramolecular Chemistry. Chempluschem 2020; 85:1249-1269. [PMID: 32529789 DOI: 10.1002/cplu.202000279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Indexed: 11/10/2022]
Abstract
The use of covalent post-assembly modification (PAM) in supramolecular chemistry has grown significantly in recent years, to the point where PAM is now a versatile synthesis tool for tuning, modulating, and expanding the functionality of self-assembled complexes and materials. PAM underpins supramolecular template-synthesis strategies, enables modular derivatization of supramolecular assemblies, permits the covalent 'locking' of unstable structures, and can trigger controlled structural transformations between different assembled morphologies. This Review discusses key examples of PAM spanning a range of material classes, including discrete supramolecular complexes, self-assembled soft nanostructures and hierarchically ordered polymeric and framework materials. As such, we hope to highlight how PAM has continued to evolve as a creative and functional addition to the synthetic chemist's toolbox for constructing bespoke self-assembled complexes and materials.
Collapse
Affiliation(s)
- Haoxiang Zeng
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Luke Stewart-Yates
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Louis M Casey
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Bampos
- Department of Chemistry, The University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Derrick A Roberts
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Salvio R, D'Abramo M. Conformational Mobility and Efficiency in Supramolecular Catalysis. A Computational Approach to Evaluate the Performances of Enzyme Mimics. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Riccardo Salvio
- Dipartimento di Scienze e Tecnologie Chimiche Università degli Studi di Roma “Tor Vergata” Via della Ricerca Scientifica 1 00133 Roma Italy
- ISB CNR Sezione Meccanismi di Reazione Università degli Studi di Roma La Sapienza 00185 Roma Italy
| | - Marco D'Abramo
- Dipartimento di Chimica Università degli Studi di Roma La Sapienza P. le Aldo Moro 5 00185 Roma Italy
| |
Collapse
|
30
|
Kieffer M, Bilbeisi RA, Thoburn JD, Clegg JK, Nitschke JR. Guest Binding Drives Host Redistribution in Libraries of Co II 4 L 4 Cages. Angew Chem Int Ed Engl 2020; 59:11369-11373. [PMID: 32243707 PMCID: PMC7383889 DOI: 10.1002/anie.202004627] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/29/2022]
Abstract
Two CoII 4 L4 tetrahedral cages prepared from similar building blocks showed contrasting host-guest properties. One cage did not bind guests, whereas the second encapsulated a series of anions, due to electronic and geometric effects. When the building blocks of both cages were present during self-assembly, a library of five CoII LA x LB 4-x cages was formed in a statistical ratio in the absence of guests. Upon incorporation of anions able to interact preferentially with some library members, the products obtained were redistributed in favor of the best anion binders. To quantify the magnitudes of these templation effects, ESI-MS was used to gauge the effect of each template upon library redistribution.
Collapse
Affiliation(s)
- Marion Kieffer
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Rana A. Bilbeisi
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of Civil and Environmental EngineeringAmerican University of BeirutBeirutLebanon
| | - John D. Thoburn
- Department of ChemistryRandolph-Macon CollegeAshlandVA23005USA
| | - Jack K. Clegg
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLD4072Australia
| | | |
Collapse
|
31
|
Wang K, Jordan JH, Hu X, Wang L. Supramolecular Strategies for Controlling Reactivity within Confined Nanospaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kaiya Wang
- School of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Jacobs H. Jordan
- The Southern Regional Research Center Agricultural Research Service, USDA New Orleans LA 70124 USA
| | - Xiao‐Yu Hu
- School of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
32
|
Wang K, Jordan JH, Hu X, Wang L. Supramolecular Strategies for Controlling Reactivity within Confined Nanospaces. Angew Chem Int Ed Engl 2020; 59:13712-13721. [DOI: 10.1002/anie.202000045] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Kaiya Wang
- School of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Jacobs H. Jordan
- The Southern Regional Research Center Agricultural Research Service, USDA New Orleans LA 70124 USA
| | - Xiao‐Yu Hu
- School of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
33
|
Mikolajczak DJ, Berger AA, Koksch B. Catalytically Active Peptide-Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes. Angew Chem Int Ed Engl 2020; 59:8776-8785. [PMID: 31905254 PMCID: PMC7318681 DOI: 10.1002/anie.201908625] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/27/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of peptides onto the surface of gold nanoparticles has emerged as a promising strategy towards the creation of artificial enzymes. The resulting high local peptide density surrounding the nanoparticle leads to cooperative and synergistic effects, which result in rate accelerations and distinct catalytic properties compared to the unconjugated peptide. This Minireview summarizes contributions to and progress made in the field of catalytically active peptide-gold nanoparticle conjugates. The origin of distinct properties, as well as potential applications, are also discussed.
Collapse
Affiliation(s)
- Dorian J. Mikolajczak
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Allison A. Berger
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Beate Koksch
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
34
|
|
35
|
Mikolajczak DJ, Berger AA, Koksch B. Catalytically Active Peptide–Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201908625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dorian J. Mikolajczak
- Department of Biology, Chemistry and Pharmacy Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Allison A. Berger
- Department of Biology, Chemistry and Pharmacy Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Beate Koksch
- Department of Biology, Chemistry and Pharmacy Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
36
|
Guo J, Fan Y, Lu Y, Zheng S, Su C. Visible‐Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage‐Confined Nanospace Merging Chirality with Triplet‐State Photosensitization. Angew Chem Int Ed Engl 2020; 59:8661-8669. [DOI: 10.1002/anie.201916722] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yan‐Zhong Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shao‐Ping Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
37
|
Guo J, Fan Y, Lu Y, Zheng S, Su C. Visible‐Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage‐Confined Nanospace Merging Chirality with Triplet‐State Photosensitization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yan‐Zhong Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shao‐Ping Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
38
|
Jongkind LJ, Reek JNH. Asymmetric Hydroformylation Using a Rhodium Catalyst Encapsulated in a Chiral Capsule. Chem Asian J 2020; 15:867-875. [PMID: 32020766 PMCID: PMC7155075 DOI: 10.1002/asia.201901771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Indexed: 11/10/2022]
Abstract
Supramolecular capsules can be used to change the activity and selectivity of a catalyst through the influence of the second coordination sphere, reminiscent of how enzymes control the selectivity of their processes. In enzymes, this approach is used to also control the enantioselectivity of reactions in which the active catalytic site is often not chiral but the second coordination sphere is. We are interested in the possibility to generate a chiral second coordination sphere around an otherwise achiral transition metal complex for asymmetric catalysis. In this paper we show that the ligand template approach can be used to generate a chiral second coordination sphere around a rhodium complex, which is used in asymmetric hydroformylation.
Collapse
Affiliation(s)
- Lukas J. Jongkind
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
39
|
Nishimura T, Sasaki Y, Tachi Y, Suzuki S, Okada K, Kozaki M. Inhibition of Ligand Binding Ability of Three Porphyrins by an Organic Effector. Chem Asian J 2020; 15:594-600. [PMID: 31903693 DOI: 10.1002/asia.201901711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Indexed: 11/09/2022]
Abstract
A stimulus-responsive receptor 1 was designed and prepared to control the ligand-binding ability of three active sites, two zinc tetraphenylporphyrin units (P1) and one zinc diethynyldiphenylporphyrin unit (P2), with one effector molecule 2. Bulky hexarylbenzene units were incorporated as shielding panels in the middle of the flexible side arms of 1. Spectroscopic titrations indicated that a stable supramolecular complex 1⋅2 (K1⋅2 =6.7×106 m-1 ) was produced by the cooperative formation of multiple hydrogen and coordination bonds. As a result, the binding of a ligand to P1 was inhibited by 2 in a competitive manner. Additionally, the formation of 1⋅2 brought about conformational restriction of the side arms to cover both faces of P2 with the shielding panels. The binding constant of 4-phenylpyridine with P2 in 1⋅2 decreased to 8.9 % of that in 1. Namely, the ligand-binding ability of P2 was inhibited according to an allosteric mechanism.
Collapse
Affiliation(s)
- Tomoaki Nishimura
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshito Sasaki
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshimitsu Tachi
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Shuichi Suzuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Keiji Okada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.,Osaka City University, Advanced Research Institute for Natural Science and Technology (OCARINA), Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Masatoshi Kozaki
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.,Osaka City University, Advanced Research Institute for Natural Science and Technology (OCARINA), Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
40
|
Ren CZJ, Solís Muñana P, Dupont J, Zhou SS, Chen JLY. Reversible Formation of a Light-Responsive Catalyst by Utilizing Intermolecular Cooperative Effects. Angew Chem Int Ed Engl 2019; 58:15254-15258. [PMID: 31414710 DOI: 10.1002/anie.201907078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Indexed: 12/20/2022]
Abstract
A photoresponsive system where structure formation is coupled to catalytic activity is presented. The observed catalytic activity is reliant on intermolecular cooperative effects that are present when amphiphiles assemble into vesicular structures. Photoresponsive units within the amphiphilic pre-catalysts allow for switching between assembled and disassembled states, thereby modulating the catalytic activity. The ability to reversibly form cooperative catalysts within a dynamic self-assembled system represents a conceptually new tool for the design of complex artificial systems in water.
Collapse
Affiliation(s)
- Chloe Z-J Ren
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Pablo Solís Muñana
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Julien Dupont
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Silvia Siru Zhou
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jack L-Y Chen
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
41
|
Inoue M, Kamiguchi S, Ugawa K, Hkiri S, Bouffard J, Sémeril D, Iwasawa T. Evaluation of the Catalytic Capability of cis
- and trans
-Diquinoxaline Spanned Cavitands. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mami Inoue
- Department of Materials Chemistry; Ryukoku University; 520-2194 Seta Otsu, Shiga Japan
| | - Shinsuke Kamiguchi
- Department of Materials Chemistry; Ryukoku University; 520-2194 Seta Otsu, Shiga Japan
| | - Katto Ugawa
- Department of Materials Chemistry; Ryukoku University; 520-2194 Seta Otsu, Shiga Japan
| | - Shaima Hkiri
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177; Université de Strasbourg; 4 rue Blaise Pascal 67070 Strasbourg Cedex France
- Faculté des Sciences de Bizerte; Université de Carthage; 7021 Jarzouna Bizerte Tunisia
| | - Jules Bouffard
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177; Université de Strasbourg; 4 rue Blaise Pascal 67070 Strasbourg Cedex France
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177; Université de Strasbourg; 4 rue Blaise Pascal 67070 Strasbourg Cedex France
| | - Tetsuo Iwasawa
- Department of Materials Chemistry; Ryukoku University; 520-2194 Seta Otsu, Shiga Japan
| |
Collapse
|
42
|
Ren CZ, Solís Muñana P, Dupont J, Zhou SS, Chen JL. Reversible Formation of a Light‐Responsive Catalyst by Utilizing Intermolecular Cooperative Effects. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chloe Z.‐J. Ren
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Pablo Solís Muñana
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Julien Dupont
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Silvia Siru Zhou
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Jack L.‐Y. Chen
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
43
|
Wang Z, Li Y, Wang H, Wan K, Liu Q, Shi X, Ding B. Enzyme Mimic Based on a Self‐Assembled Chitosan/DNA Hybrid Exhibits Superior Activity and Tolerance. Chemistry 2019; 25:12576-12582. [DOI: 10.1002/chem.201902509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Zhen‐Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Yunzhe Li
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
| | - Kaiwei Wan
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
44
|
Zhang Q, Tiefenbacher K. Sesquiterpene Cyclizations inside the Hexameric Resorcinarene Capsule: Total Synthesis of δ‐Selinene and Mechanistic Studies. Angew Chem Int Ed Engl 2019; 58:12688-12695. [DOI: 10.1002/anie.201906753] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationCollege of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of Basel Postfach 3350, Mattenstrasse 24a 4002 Basel Switzerland
- Department of Biosystems Science and EngineeringETH Zurich Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
45
|
Mondal P, Banerjee S, Rath SP. Controlling the Photophysics of Aromatic Guests Using a Cyclic Porphyrin Dimer: Synthesis, Structure, and Encapsulation‐Mediated “ON‐OFF” Switch. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pritam Mondal
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Sayantani Banerjee
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Sankar Prasad Rath
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| |
Collapse
|
46
|
Zhang Q, Tiefenbacher K. Sesquiterpene Cyclizations inside the Hexameric Resorcinarene Capsule: Total Synthesis of δ‐Selinene and Mechanistic Studies. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationCollege of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of Basel Postfach 3350, Mattenstrasse 24a 4002 Basel Switzerland
- Department of Biosystems Science and EngineeringETH Zurich Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
47
|
Zeng H, Xie M, Huang Y, Zhao Y, Xie X, Bai J, Wan M, Krishna R, Lu W, Li D. Induced Fit of C
2
H
2
in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angew Chem Int Ed Engl 2019; 58:8515-8519. [DOI: 10.1002/anie.201904160] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yong‐Liang Huang
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yifang Zhao
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Xiao‐Jing Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Jian‐Ping Bai
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Meng‐Yan Wan
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Weigang Lu
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
48
|
Zeng H, Xie M, Huang Y, Zhao Y, Xie X, Bai J, Wan M, Krishna R, Lu W, Li D. Induced Fit of C
2
H
2
in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yong‐Liang Huang
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yifang Zhao
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Xiao‐Jing Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Jian‐Ping Bai
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Meng‐Yan Wan
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Weigang Lu
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
49
|
Plajer AJ, Percástegui EG, Santella M, Rizzuto FJ, Gan Q, Laursen BW, Nitschke JR. Fluorometric Recognition of Nucleotides within a Water‐Soluble Tetrahedral Capsule. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alex J. Plajer
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Marco Santella
- Department of Chemistry & Nano-Science CenterUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Felix J. Rizzuto
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Quan Gan
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Bo W. Laursen
- Department of Chemistry & Nano-Science CenterUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
50
|
Schroeder S, Strauch C, Gaelings N, Niggemann M. Vinyl Triflimides-A Case of Assisted Vinyl Cation Formation. Angew Chem Int Ed Engl 2019; 58:5119-5123. [PMID: 30694004 DOI: 10.1002/anie.201810916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/28/2018] [Indexed: 12/31/2022]
Abstract
A new concept for selectivity control in carbocation-driven reactions has been identified which allows for the chemo-, regio-, and stereoselective addition of nucleophiles to alkynes-assisted vinyl cation formation-enabled by a Li+ -based supramolecular framework. Mechanistic analysis of a model complex (Li2 NTf2 + ⋅3 H2 O) confirms that solely the formation of a complex between the incoming nucleophile and the transition state of the alkyne protonation is responsible for the resulting selective N addition to the vinyl cation. Into the bargain, a general, operationally simple synthetic procedure to previously inaccessible vinyl triflimides is provided.
Collapse
Affiliation(s)
- Sebastian Schroeder
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52072, Aachen, Germany
| | - Christina Strauch
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52072, Aachen, Germany
| | - Niklas Gaelings
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52072, Aachen, Germany
| | - Meike Niggemann
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52072, Aachen, Germany
| |
Collapse
|