1
|
Kirchgäßner S, Braun MB, Bartlick N, Koç C, Reinkemeier CD, Lemke EA, Stehle T, Schwarzer D. Synthesis, Biochemical Characterization, and Genetic Encoding of a 1,2,4-Triazole Amino Acid as an Acetyllysine Mimic for Bromodomains of the BET Family. Angew Chem Int Ed Engl 2023; 62:e202215460. [PMID: 36585954 DOI: 10.1002/anie.202215460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Lysine acetylation is a charge-neutralizing post-translational modification of proteins bound by bromodomains (Brds). A 1,2,4-triazole amino acid (ApmTri) was established as acetyllysine (Kac) mimic recruiting Brds of the BET family in contrast to glutamine commonly used for simulating this modification. Optimization of triazole substituents and side chain spacing allowed BET Brd recruitment to ApmTri-containing peptides with affinities similar to native substrates. Crystal structures of ApmTri-containing peptides in complex with two BET Brds revealed the binding mode which mirrored that of Kac ligands. ApmTri was genetically encoded and recombinant ApmTri-containing proteins co-enriched BRD3(2) from cellular lysates. This interaction was blocked by BET inhibitor JQ1. With genetically encoded ApmTri, biochemistry is now provided with a stable Kac mimic reflecting charge neutralization and Brd recruitment, allowing new investigations into BET proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Sören Kirchgäßner
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Michael B Braun
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Natascha Bartlick
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Cengiz Koç
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany.,Current address: Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, The Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
| | - Christopher D Reinkemeier
- Biocenter, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.,Institute of Molecular Biology Mainz, 55128, Mainz, Germany.,Current address: Department of Biosystems Science and Engineering Basel, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.,Institute of Molecular Biology Mainz, 55128, Mainz, Germany
| | - Thilo Stehle
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| |
Collapse
|
2
|
Mitry MMA, Greco F, Osborn HMI. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chemistry 2023; 29:e202203942. [PMID: 36656616 DOI: 10.1002/chem.202203942] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Bioorthogonal chemistry involves selective biocompatible reactions between functional groups that are not normally present in biology. It has been used to probe biomolecules in living systems, and has advanced biomedical strategies such as diagnostics and therapeutics. In this review, the challenges and opportunities encountered when translating in vitro bioorthogonal approaches to in vivo settings are presented, with a focus on methods to deliver the bioorthogonal reaction components. These methods include metabolic bioengineering, active targeting, passive targeting, and simultaneously used strategies. The suitability of bioorthogonal ligation reactions and bond cleavage reactions for in vivo applications is critically appraised, and practical considerations such as the optimum scheduling regimen in pretargeting approaches are discussed. Finally, we present our own perspectives for this area and identify what, in our view, are the key challenges that must be overcome to maximise the impact of these approaches.
Collapse
Affiliation(s)
- Madonna M A Mitry
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
3
|
Kang D, Cheung ST, Kim J. Bioorthogonal Hydroamination of Push-Pull-Activated Linear Alkynes. Angew Chem Int Ed Engl 2021; 60:16947-16952. [PMID: 34019705 DOI: 10.1002/anie.202104863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/16/2021] [Indexed: 01/14/2023]
Abstract
A bioorthogonal reaction between N,N-dialkylhydroxylamines and push-pull-activated halogenated alkynes is described. We explore the use of rehybridization effects in activating alkynes, and we show that electronic effects, when competing stereoelectronic and inductive factors are properly balanced, sufficiently activate a linear alkyne in the uncatalyzed conjugative retro-Cope elimination reaction while adequately protecting it against cellular nucleophiles. This design preserves the low steric profile of an alkyne and pairs it with a comparably unobtrusive hydroxylamine. The kinetics are on par with those of the fastest strain-promoted azide-alkyne cycloaddition reactions, the products regioselectively formed, the components sufficiently stable and easily installed, and the reaction suitable for cellular labeling.
Collapse
Affiliation(s)
- Dahye Kang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sheldon T Cheung
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Kang D, Cheung ST, Kim J. Bioorthogonal Hydroamination of Push–Pull‐Activated Linear Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dahye Kang
- Department of Cancer Biology Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA
| | - Sheldon T. Cheung
- Department of Cancer Biology Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA
| | - Justin Kim
- Department of Cancer Biology Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
5
|
Reiber T, Zavoiura O, Dose C, Yushchenko DA. Fluorophore Multimerization as an Efficient Approach towards Bright Protein Labels. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thorge Reiber
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
| | - Oleksandr Zavoiura
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
| | - Christian Dose
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
| | - Dmytro A. Yushchenko
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
- Laboratory of Chemical Biology The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo namesti 2 16610 Prague 6 Czech Republic
| |
Collapse
|
6
|
Zhao Q, Guo G, Zhu W, Zhu L, Da Y, Han Y, Xu H, Wu S, Cheng Y, Zhou Y, Cai X, Jiang X. Suzuki Cross-Coupling Reaction with Genetically Encoded Fluorosulfates for Fluorogenic Protein Labeling. Chemistry 2020; 26:15938-15943. [PMID: 32776653 DOI: 10.1002/chem.202002037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Indexed: 11/09/2022]
Abstract
A palladium-catalyzed cross-coupling reaction with aryl halide functionalities has recently emerged as a valuable tool for protein modification. Herein, a new fluorogenic modification methodology for proteins, with genetically encoded fluorosulfate-l-tyrosine, which exhibits high efficiency and biocompatibility in bacterial cells as well as in aqueous medium, is described. Furthermore, the cross-coupling of 4-cyanophenylboronic acid on green fluorescent protein was shown to possess a unique fluorogenic property, which could open up the possibility of a responsive "off/on" switch with great potential to enable spectroscopic imaging of proteins with minimal background noise. Taken together, a convenient and efficient catalytic system has been developed that may provide broad utilities in protein visualization and live-cell imaging.
Collapse
Affiliation(s)
- Qian Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Guoying Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Liping Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P.R. China
| | - Yifan Da
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Ying Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Hongjiao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Shuohan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yaping Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yani Zhou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| |
Collapse
|
7
|
Abstract
Genetic code expansion is one of the most powerful technologies in protein engineering. In addition to the 20 canonical amino acids, the expanded genetic code is supplemented by unnatural amino acids, which have artificial side chains that can be introduced into target proteins in vitro and in vivo. A wide range of chemical groups have been incorporated co-translationally into proteins in single cells and multicellular organisms by using genetic code expansion. Incorporated unnatural amino acids have been used for novel structure-function relationship studies, bioorthogonal labelling of proteins in cellulo for microscopy and in vivo for tissue-specific proteomics, the introduction of post-translational modifications and optical control of protein function, to name a few examples. In this Minireview, the development of genetic code expansion technology is briefly introduced, then its applications in neurobiology are discussed, with a focus on studies using mammalian cells and mice as model organisms.
Collapse
Affiliation(s)
- Ivana Nikić‐Spiegel
- Werner Reichardt Centre for Integrative NeuroscienceUniversity of TübingenOtfried-Müller-Strasse 2572076TübingenGermany
| |
Collapse
|
8
|
Baalmann M, Neises L, Bitsch S, Schneider H, Deweid L, Werther P, Ilkenhans N, Wolfring M, Ziegler MJ, Wilhelm J, Kolmar H, Wombacher R. A Bioorthogonal Click Chemistry Toolbox for Targeted Synthesis of Branched and Well-Defined Protein-Protein Conjugates. Angew Chem Int Ed Engl 2020; 59:12885-12893. [PMID: 32342666 PMCID: PMC7496671 DOI: 10.1002/anie.201915079] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Indexed: 01/19/2023]
Abstract
Bioorthogonal chemistry holds great potential to generate difficult-to-access protein-protein conjugate architectures. Current applications are hampered by challenging protein expression systems, slow conjugation chemistry, use of undesirable catalysts, or often do not result in quantitative product formation. Here we present a highly efficient technology for protein functionalization with commonly used bioorthogonal motifs for Diels-Alder cycloaddition with inverse electron demand (DAinv ). With the aim of precisely generating branched protein chimeras, we systematically assessed the reactivity, stability and side product formation of various bioorthogonal chemistries directly at the protein level. We demonstrate the efficiency and versatility of our conjugation platform using different functional proteins and the therapeutic antibody trastuzumab. This technology enables fast and routine access to tailored and hitherto inaccessible protein chimeras useful for a variety of scientific disciplines. We expect our work to substantially enhance antibody applications such as immunodetection and protein toxin-based targeted cancer therapies.
Collapse
Affiliation(s)
- Mathis Baalmann
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Laura Neises
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Hendrik Schneider
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Lukas Deweid
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Philipp Werther
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Nadja Ilkenhans
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Martin Wolfring
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Michael J. Ziegler
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Jonas Wilhelm
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Richard Wombacher
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| |
Collapse
|
9
|
Müller D, Trucks S, Schwalbe H, Hengesbach M. Genetic Code Expansion Facilitates Position-Selective Modification of Nucleic Acids and Proteins. Chempluschem 2020; 85:1233-1243. [PMID: 32515171 DOI: 10.1002/cplu.202000150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Transcription and translation obey to the genetic code of four nucleobases and 21 amino acids evolved over billions of years. Both these processes have been engineered to facilitate the use of non-natural building blocks in both nucleic acids and proteins, enabling researchers with a decent toolbox for structural and functional analyses. Here, we review the most common approaches for how labeling of both nucleic acids as well as proteins in a site-selective fashion with either modifiable building blocks or spectroscopic probes can be facilitated by genetic code expansion. We emphasize methodological approaches and how these can be adapted for specific modifications, both during as well as after biomolecule synthesis. These modifications can facilitate, for example, a number of different spectroscopic analysis techniques and can under specific circumstances even be used in combination.
Collapse
Affiliation(s)
- Diana Müller
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Baalmann M, Neises L, Bitsch S, Schneider H, Deweid L, Werther P, Ilkenhans N, Wolfring M, Ziegler MJ, Wilhelm J, Kolmar H, Wombacher R. A Bioorthogonal Click Chemistry Toolbox for Targeted Synthesis of Branched and Well‐Defined Protein–Protein Conjugates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mathis Baalmann
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Laura Neises
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Hendrik Schneider
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Philipp Werther
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Nadja Ilkenhans
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Martin Wolfring
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Michael J. Ziegler
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Jonas Wilhelm
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
11
|
Dziuba D, Hoffmann J, Hentze MW, Schultz C. A Genetically Encoded Diazirine Analogue for RNA-Protein Photo-crosslinking. Chembiochem 2020; 21:88-93. [PMID: 31658407 PMCID: PMC7003851 DOI: 10.1002/cbic.201900559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 01/05/2023]
Abstract
Ultraviolent crosslinking is a key experimental step in the numerous protocols that have been developed for capturing and dissecting RNA-protein interactions in living cells. UV crosslinking covalently stalls dynamic interactions between RNAs and the directly contacting RNA-binding proteins and enables stringent denaturing downstream purification conditions needed for the enrichment and biochemical analysis of RNA-protein complexes. Despite its popularity, conventional 254 nm UV crosslinking possesses a set of intrinsic drawbacks, with the low photochemical efficiency being the central caveat. Here we show that genetically encoded photoreactive unnatural amino acids bearing a dialkyl diazirine photoreactive group can address this problem. Using the human iron regulatory protein 1 (IRP1) as a model RNA-binding protein, we show that the photoreactive amino acids can be introduced into the protein without diminishing its RNA-binding properties. A sevenfold increase in the crosslinking efficiency compared to conventional 254 nm UV crosslinking was achieved using the diazirine-based unnatural amino acid DiAzKs. This finding opens an avenue for new applications of the unnatural amino acids in studying RNA-protein interactions.
Collapse
Affiliation(s)
- Dmytro Dziuba
- European Molecular Biology LaboratoryMeyerhofstrasse 169117HeidelbergGermany
| | - Jan‐Erik Hoffmann
- European Molecular Biology LaboratoryMeyerhofstrasse 169117HeidelbergGermany
- Department of Chemical Physiology and BiochemistryOregon Health and Science UniversityL334, 3181 SW Sam Jackson Park RoadPortlandOR97239-3098USA
| | - Matthias W. Hentze
- European Molecular Biology LaboratoryMeyerhofstrasse 169117HeidelbergGermany
| | - Carsten Schultz
- European Molecular Biology LaboratoryMeyerhofstrasse 169117HeidelbergGermany
- Department of Chemical Physiology and BiochemistryOregon Health and Science UniversityL334, 3181 SW Sam Jackson Park RoadPortlandOR97239-3098USA
| |
Collapse
|
12
|
Kugele A, Silkenath B, Langer J, Wittmann V, Drescher M. Protein Spin Labeling with a Photocaged Nitroxide Using Diels-Alder Chemistry. Chembiochem 2019; 20:2479-2484. [PMID: 31090999 PMCID: PMC6790680 DOI: 10.1002/cbic.201900318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/31/2022]
Abstract
EPR spectroscopy of diamagnetic bio-macromolecules is based on site-directed spin labeling (SDSL). Herein, a novel labeling strategy for proteins is presented. A nitroxide-based spin label has been developed and synthesized that can be ligated to proteins by an inverse-electron-demand Diels-Alder (DAinv ) cycloaddition to genetically encoded noncanonical amino acids. The nitroxide moiety is shielded by a photoremovable protecting group with an attached tetra(ethylene glycol) unit to achieve water solubility. SDSL is demonstrated on two model proteins with the photoactivatable nitroxide for DAinv reaction (PaNDA) label. The strategy features high reaction rates, combined with high selectivity, and the possibility to deprotect the nitroxide in Escherichia coli lysate.
Collapse
Affiliation(s)
- Anandi Kugele
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Bjarne Silkenath
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Jakob Langer
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Valentin Wittmann
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Malte Drescher
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
13
|
Kormos A, Koehler C, Fodor EA, Rutkai ZR, Martin ME, Mező G, Lemke EA, Kele P. Bistetrazine-Cyanines as Double-Clicking Fluorogenic Two-Point Binder or Crosslinker Probes. Chemistry 2018; 24:8841-8847. [PMID: 29676491 DOI: 10.1002/chem.201800910] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Fluorogenic probes can be used to minimize the background fluorescence of unreacted and nonspecifically adsorbed reagents. The preceding years have brought substantial developments in the design and synthesis of bioorthogonally applicable fluorogenic systems mainly based on the quenching effects of azide and tetrazine moieties. The modulation power exerted by these bioorthogonal motifs typically becomes less efficient on more conjugated systems; that is, on probes with redshifted emission wavelength. To reach efficient quenching, that is, fluorogenicity, even in the red range of the spectrum, we present the synthesis, fluorogenic, and conjugation characterization of bistetrazine-cyanine probes with emission maxima between 600 and 620 nm. The probes can bind to genetically altered proteins harboring an 11-amino acid peptide tag with two appending cyclooctyne motifs. Moreover, we also demonstrate the use of these bistetrazines as fluorogenic, covalent cross-linkers between monocyclooctynylated proteins.
Collapse
Affiliation(s)
- Attila Kormos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Christine Koehler
- Departments of Biology and Chemistry, Pharmacy and Geosciences, Johannes Gutenberg-University Mainz, Johannes-von-Mullerweg 6, 55128, Mainz, Germany.,Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Eszter A Fodor
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Zsófia R Rutkai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Madison E Martin
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Pázmány Péter sétány 1a, 1117, Budapest, Hungary
| | - Edward A Lemke
- Departments of Biology and Chemistry, Pharmacy and Geosciences, Johannes Gutenberg-University Mainz, Johannes-von-Mullerweg 6, 55128, Mainz, Germany.,Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Péter Kele
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| |
Collapse
|
14
|
de la Concepción JG, Ávalos M, Cintas P, Jiménez JL. Computational Screening of New Orthogonal Metal-Free Dipolar Cycloadditions of Mesomeric Betaines. Chemistry 2018. [PMID: 29534312 DOI: 10.1002/chem.201800869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computational strategies have gained increasing impact in the de novo design of large molecular sets targeted to a desired application. Herein, DFT-assisted theoretical analyses of cycloadditions, involving mesoionic dipoles and strained cycloalkynes, unveil a series of unexplored mesomeric betaines as vastly superior candidates for orthogonal applications. Thus, isosydnones; thiosydnones; and a six-membered homolog, 6-oxo-1,3-oxazinium-4-olate, exhibit enhanced reactivity with respect to sydnone, which is the archetypal mesoionic ring employed so far in orthogonal chemistry. These compounds were found by assessing energy barriers and transition structures, which are largely governed by electron fluxes from dipolarophile to dipole and noncovalent interactions. Charge-transfer analysis also accounts for previous experimental and theoretical results gathered in the literature, and provides a rationale for further substitution variations. The above naked dipoles release only CO2 as a byproduct through retro-Diels-Alder of the resulting cycloadducts. These results should invite practitioners to look at such underestimated dipoles and could also help to minimize the number of experiments.
Collapse
Affiliation(s)
- Juan García de la Concepción
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas S/N, Badajoz, 06006, Spain
| | - Martín Ávalos
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas S/N, Badajoz, 06006, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas S/N, Badajoz, 06006, Spain
| | - José Luis Jiménez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas S/N, Badajoz, 06006, Spain
| |
Collapse
|
15
|
Gust A, Jakob L, Zeitler DM, Bruckmann A, Kramm K, Willkomm S, Tinnefeld P, Meister G, Grohmann D. Site-Specific Labelling of Native Mammalian Proteins for Single-Molecule FRET Measurements. Chembiochem 2018; 19:780-783. [PMID: 29394002 DOI: 10.1002/cbic.201700696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 12/31/2022]
Abstract
Human cells are complex entities in which molecular recognition and selection are critical for cellular processes often driven by structural changes and dynamic interactions. Biomolecules appear in different chemical states, and modifications, such as phosphorylation, affect their function. Hence, using proteins in their chemically native state in biochemical and biophysical assays is essential. Single-molecule FRET measurements allow exploration of the structure, function and dynamics of biomolecules but cannot be fully exploited for the human proteome, as a method for the site-specific coupling of organic dyes into native, non-recombinant mammalian proteins is lacking. We address this issue showing the site-specific engineering of fluorescent dyes into human proteins on the basis of bioorthogonal reactions. We show the applicability of the method to study functional and post-translationally modified proteins on the single-molecule level, among them the hitherto inaccessible human Argonaute 2.
Collapse
Affiliation(s)
- Alexander Gust
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Lab, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Leonhard Jakob
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Lab, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Daniela M Zeitler
- Department for Biochemistry I, Biochemistry Centre University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Kevin Kramm
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Lab, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Sarah Willkomm
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Lab, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Gunter Meister
- Department for Biochemistry I, Biochemistry Centre University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Dina Grohmann
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Lab, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
16
|
Bharathi MV, De S, Lavanya T, Maiti S, Sarkar B, Ashok Kumar SK, Paira P. Surface immobilization of biotin-DNA conjugates on polystyrene beads via SPAAC for biological interaction and cancer theranostic applications. NEW J CHEM 2018. [DOI: 10.1039/c8nj00814k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here, surface immobilization of DNA conjugates via SPAAC for cancer theranostic applications was reported.
Collapse
Affiliation(s)
- M. Vijaya Bharathi
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Sourav De
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - T. Lavanya
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Santanu Maiti
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Bidisha Sarkar
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - S. K. Ashok Kumar
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Priyankar Paira
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| |
Collapse
|
17
|
Brabham R, Fascione MA. Pyrrolysine Amber Stop-Codon Suppression: Development and Applications. Chembiochem 2017; 18:1973-1983. [DOI: 10.1002/cbic.201700148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Robin Brabham
- York Structural Biology Laboratory; Department of Chemistry; University of York; Heslington Road York YO10 5DD UK
| | - Martin A. Fascione
- York Structural Biology Laboratory; Department of Chemistry; University of York; Heslington Road York YO10 5DD UK
| |
Collapse
|
18
|
Kozma E, Demeter O, Kele P. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels-Alder Reactions. Chembiochem 2017; 18:486-501. [PMID: 28070925 PMCID: PMC5363342 DOI: 10.1002/cbic.201600607] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Bio-orthogonal labelling schemes based on inverse-electron-demand Diels-Alder (IEDDA) cycloaddition have attracted much attention in chemical biology recently. The appealing features of this reaction, such as the fast reaction kinetics, fully bio-orthogonal nature and high selectivity, have helped chemical biologists gain deeper understanding of biochemical processes at the molecular level. Listing the components and discussing the possibilities and limitations of these reagents, we provide a recent snapshot of the field of IEDDA-based biomolecular manipulation with special focus on fluorescent modulation approaches through the use of bio-orthogonalized building blocks. At the end, we discuss challenges that need to be addressed for further developments in order to overcome recent limitations and to enable researchers to answer biomolecular questions in more detail.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| | - Orsolya Demeter
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| | - Péter Kele
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| |
Collapse
|
19
|
Nikić I, Estrada Girona G, Kang JH, Paci G, Mikhaleva S, Koehler C, Shymanska NV, Ventura Santos C, Spitz D, Lemke EA. Debugging Eukaryotic Genetic Code Expansion for Site-Specific Click-PAINT Super-Resolution Microscopy. Angew Chem Int Ed Engl 2016; 55:16172-16176. [PMID: 27804198 PMCID: PMC5215487 DOI: 10.1002/anie.201608284] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/20/2016] [Indexed: 01/29/2023]
Abstract
Super‐resolution microscopy (SRM) greatly benefits from the ability to install small photostable fluorescent labels into proteins. Genetic code expansion (GCE) technology addresses this demand, allowing the introduction of small labeling sites, in the form of uniquely reactive noncanonical amino acids (ncAAs), at any residue in a target protein. However, low incorporation efficiency of ncAAs and high background fluorescence limit its current SRM applications. Redirecting the subcellular localization of the pyrrolysine‐based GCE system for click chemistry, combined with DNA‐PAINT microscopy, enables the visualization of even low‐abundance proteins inside mammalian cells. This approach links a versatile, biocompatible, and potentially unbleachable labeling method with residue‐specific precision. Moreover, our reengineered GCE system eliminates untargeted background fluorescence and substantially boosts the expression yield, which is of general interest for enhanced protein engineering in eukaryotes using GCE.
Collapse
Affiliation(s)
- Ivana Nikić
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Present address: Werner Reichardt Centre for Integrative, Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Gemma Estrada Girona
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Jun Hee Kang
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Giulia Paci
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sofya Mikhaleva
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Christine Koehler
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Nataliia V Shymanska
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Camilla Ventura Santos
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Daniel Spitz
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| |
Collapse
|
20
|
Nikić I, Estrada Girona G, Kang JH, Paci G, Mikhaleva S, Koehler C, Shymanska NV, Ventura Santos C, Spitz D, Lemke EA. Verbesserte Erweiterung des eukaryotischen genetischen Codes für seitenspezifische, hochauflösende Click-PAINT-Mikroskopie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ivana Nikić
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
- Aktuelle Adresse: Werner Reichardt Zentrum für integrative Neurowissenschaften; Universität Tübingen; 72076 Tübingen Deutschland
| | - Gemma Estrada Girona
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
| | - Jun Hee Kang
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
| | - Giulia Paci
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
| | - Sofya Mikhaleva
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
| | - Christine Koehler
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
| | - Nataliia V. Shymanska
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
| | - Camilla Ventura Santos
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
| | - Daniel Spitz
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
| | - Edward A. Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit; EMBL; Meyerhofstraße 1 69117 Heidelberg Deutschland
| |
Collapse
|
21
|
Kozma E, Nikić I, Varga BR, Aramburu IV, Kang JH, Fackler OT, Lemke EA, Kele P. Hydrophilic trans-Cyclooctenylated Noncanonical Amino Acids for Fast Intracellular Protein Labeling. Chembiochem 2016; 17:1518-24. [PMID: 27223658 DOI: 10.1002/cbic.201600284] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Indexed: 01/02/2023]
Abstract
Introduction of bioorthogonal functionalities (e.g., trans-cyclooctene-TCO) into a protein of interest by site-specific genetic encoding of non-canonical amino acids (ncAAs) creates uniquely targetable platforms for fluorescent labeling schemes in combination with tetrazine-functionalized dyes. However, fluorescent labeling of an intracellular protein is usually compromised by high background, arising from the hydrophobicity of ncAAs; this is typically compensated for by hours-long washout to remove excess ncAAs from the cellular interior. To overcome these problems, we designed, synthesized, and tested new, hydrophilic TCO-ncAAs. One derivative, DOTCO-lysine was genetically incorporated into proteins with good yield. The increased hydrophilicity shortened the excess ncAA washout time from hours to minutes, thus permitting rapid labeling and subsequent fluorescence microscopy.
Collapse
Affiliation(s)
- Eszter Kozma
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Ivana Nikić
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Balázs R Varga
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Iker Valle Aramburu
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Jun Hee Kang
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Oliver T Fackler
- Center of Infectious Diseases, Integrative Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | - Péter Kele
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar tudósok krt. 2, 1117, Budapest, Hungary.
| |
Collapse
|
22
|
Development of background-free tame fluorescent probes for intracellular live cell imaging. Nat Commun 2016; 7:11964. [PMID: 27321135 PMCID: PMC4915154 DOI: 10.1038/ncomms11964] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/16/2016] [Indexed: 01/11/2023] Open
Abstract
Fluorescence labelling of an intracellular biomolecule in native living cells is a powerful strategy to achieve in-depth understanding of the biomolecule's roles and functions. Besides being nontoxic and specific, desirable labelling probes should be highly cell permeable without nonspecific interactions with other cellular components to warrant high signal-to-noise ratio. While it is critical, rational design for such probes is tricky. Here we report the first predictive model for cell permeable background-free probe development through optimized lipophilicity, water solubility and charged van der Waals surface area. The model was developed by utilizing high-throughput screening in combination with cheminformatics. We demonstrate its reliability by developing CO-1 and AzG-1, a cyclooctyne- and azide-containing BODIPY probe, respectively, which specifically label intracellular target organelles and engineered proteins with minimum background. The results provide an efficient strategy for development of background-free probes, referred to as ‘tame' probes, and novel tools for live cell intracellular imaging. The success of a fluorescent dye as a molecular probe to monitor the intracellular activity of biomolecules depends on its physicochemical characteristics. Here, the authors use a predictive model to identify key features that allow them to design cell permeable, background-free fluorescent probes.
Collapse
|
23
|
Knorr G, Kozma E, Herner A, Lemke EA, Kele P. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes. Chemistry 2016; 22:8972-9. [PMID: 27218228 DOI: 10.1002/chem.201600590] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 11/09/2022]
Abstract
The synthesis of a set of tetrazine-bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through-bond energy-transfer-based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse-electron-demand Diels-Alder reaction with proteins modified genetically with strained trans-cyclooctenes.
Collapse
Affiliation(s)
- Gergely Knorr
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Eszter Kozma
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - András Herner
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Péter Kele
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary.
| |
Collapse
|
24
|
Bharathi MV, Chhabra M, Paira P. Development of surface immobilized 3-azidocoumarin-based fluorogenic probe via strain promoted click chemistry. Bioorg Med Chem Lett 2015; 25:5737-42. [PMID: 26531149 DOI: 10.1016/j.bmcl.2015.10.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022]
Abstract
A new class of imaging probe, a fluorogenic version of 1, 3-dipolar cycloaddition of azides and alkynes has been developed. 3-azidocoumarin scaffolds were selectively immobilized on the DBCO modified bead surface via SPAAC and provide direct and strong fluorescence in fluorescence microscopy. This developed click-on beads could be applied to label various biomolecules, such as nucleic acids, proteins and other molecules. To this end, 5'(7-hydroxy 3-azido coumarin) labelled DNA primer also displayed strong fluorescence upon successful immobilization on the bead surface.
Collapse
Affiliation(s)
- M Vijaya Bharathi
- Pharmaceutical Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu, India
| | - Mohit Chhabra
- Pharmaceutical Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu, India
| | - Priyankar Paira
- Pharmaceutical Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
25
|
Hoffmann JE, Plass T, Nikić I, Aramburu IV, Koehler C, Gillandt H, Lemke EA, Schultz C. Highly Stabletrans-Cyclooctene Amino Acids for Live-Cell Labeling. Chemistry 2015; 21:12266-70. [DOI: 10.1002/chem.201501647] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/17/2022]
|
26
|
Wieneke R, Raulf A, Kollmannsperger A, Heilemann M, Tampé R. SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201503215] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Wieneke R, Raulf A, Kollmannsperger A, Heilemann M, Tampé R. SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Tian H, Sakmar TP, Huber T. Micelle-Enhanced Bioorthogonal Labeling of Genetically Encoded Azido Groups on the Lipid-Embedded Surface of a GPCR. Chembiochem 2015; 16:1314-22. [PMID: 25962668 PMCID: PMC5287413 DOI: 10.1002/cbic.201500030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 12/21/2022]
Abstract
Genetically encoded p-azido-phenylalanine (azF) residues in G protein-coupled receptors (GPCRs) can be targeted with dibenzocyclooctyne-modified (DIBO-modified) fluorescent probes by means of strain-promoted [3+2] azide-alkyne cycloaddition (SpAAC). Here we show that azF residues situated on the transmembrane surfaces of detergent-solubilized receptors exhibit up to 1000-fold rate enhancement relative to azF residues on water-exposed surfaces. We show that the amphipathic moment of the labeling reagent, consisting of hydrophobic DIBO coupled to hydrophilic Alexa dye, results in strong partitioning of the DIBO group into the hydrocarbon core of the detergent micelle and consequently high local reactant concentrations. The observed rate constant for the micelleenhanced SpAAC is comparable with those of the fastest bioorthogonal labeling reactions known. Targeting hydrophobic regions of membrane proteins by use of micelle-enhanced SpAAC should expand the utility of bioorthogonal labeling strategies.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA).
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Alfred Nobels Allé 23, 141 57 Huddinge (Sweden).
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA).
| |
Collapse
|
29
|
Wan JP, Hu D, Liu Y, Sheng S. Azide-Free Synthesis of 1,2,3-Triazoles: New Opportunity for Sustainable Synthesis. ChemCatChem 2015. [DOI: 10.1002/cctc.201500001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Rutkowska A, Plass T, Hoffmann JE, Yushchenko DA, Feng S, Schultz C. T-CrAsH: A Heterologous Chemical Crosslinker. Chembiochem 2014; 15:1765-8. [DOI: 10.1002/cbic.201402189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 01/12/2023]
|
31
|
Denk C, Svatunek D, Filip T, Wanek T, Lumpi D, Fröhlich J, Kuntner C, Mikula H. Development of a (18) F-labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging. Angew Chem Int Ed Engl 2014; 53:9655-9. [PMID: 24989029 DOI: 10.1002/anie.201404277] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/09/2014] [Indexed: 11/07/2022]
Abstract
A low-molecular-weight (18) F-labeled tetrazine derivative was developed as a highly versatile tool for bioorthogonal PET imaging. Prosthetic groups and undesired carrying of (18) F through additional steps were evaded by direct (18) F-fluorination of an appropriate tetrazine precursor. Reaction kinetics of the cycloaddition with trans-cyclooctenes were investigated by applying quantum chemical calculations and stopped-flow measurements in human plasma; the results indicated that the labeled tetrazine is suitable as a bioorthogonal probe for the imaging of dienophile-tagged (bio)molecules. In vitro and in vivo investigations revealed high stability and PET/MRI in mice showed fast homogeneous biodistribution of the (18) F-labeled tetrazine that also passes the blood-brain barrier. An in vivo click experiment confirmed the bioorthogonal behavior of this novel tetrazine probe. Due to favorable chemical and pharmacokinetic properties this bioorthogonal agent should find application in bioimaging and biomedical research.
Collapse
Affiliation(s)
- Christoph Denk
- Institut für Angewandte Synthesechemie, Technische Universität Wien (TUW) (Austria)
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Denk C, Svatunek D, Filip T, Wanek T, Lumpi D, Fröhlich J, Kuntner C, Mikula H. Entwicklung eines18F-markierten Tetrazins mit vorteilhaften pharmakokinetischen Eigenschaften für die bioorthogonale Positronenemissionstomographie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Schmidt MJ, Weber A, Pott M, Welte W, Summerer D. Structural basis of furan-amino acid recognition by a polyspecific aminoacyl-tRNA-synthetase and its genetic encoding in human cells. Chembiochem 2014; 15:1755-60. [PMID: 24737732 DOI: 10.1002/cbic.201402006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 11/05/2022]
Abstract
The site-selective introduction of photo-crosslinking groups into proteins enables the discovery and mapping of weak and/or transient protein interactions with high spatiotemporal resolution, both in vitro and in vivo. We report the genetic encoding of a furan-based, photo-crosslinking amino acid in human cells; it can be activated with red light, thus offering high penetration depths in biological samples. This is achieved by activation of the amino acid and charging to its cognate tRNA by a pyrrolysyl-tRNA-synthetase (PylRS) mutant with broad polyspecificity. To gain insights into the recognition of this amino acid and to provide a rationale for its polyspecificity, we solved three crystal structures of the PylRS mutant: in its apo-form, in complex with adenosine 5'-(β,γ-imido)triphosphate (AMP-PNP) and in complex with the AMP ester of the furan amino acid. These structures provide clues for the observed polyspecificity and represent a promising starting point for the engineering of PylRS mutants with further increased substrate scope.
Collapse
Affiliation(s)
- Moritz J Schmidt
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | | | |
Collapse
|
34
|
Nikić I, Plass T, Schraidt O, Szymański J, Briggs JAG, Schultz C, Lemke EA. Minimal Tags for Rapid Dual-Color Live-Cell Labeling and Super-Resolution Microscopy. Angew Chem Int Ed Engl 2014; 53:2245-9. [DOI: 10.1002/anie.201309847] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Indexed: 12/21/2022]
|
35
|
Schnelle, zweifarbige Proteinmarkierung an lebenden Zellen für die hochauflösende Mikroskopie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309847] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Yang H, Srivastava P, Zhang C, Lewis JC. A general method for artificial metalloenzyme formation through strain-promoted azide-alkyne cycloaddition. Chembiochem 2013; 15:223-7. [PMID: 24376040 DOI: 10.1002/cbic.201300661] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 12/29/2022]
Abstract
Strain-promoted azide-alkyne cycloaddition (SPAAC) can be used to generate artificial metalloenzymes (ArMs) from scaffold proteins containing a p-azido-L-phenylalanine (Az) residue and catalytically active bicyclononyne-substituted metal complexes. The high efficiency of this reaction allows rapid ArM formation when using Az residues within the scaffold protein in the presence of cysteine residues or various reactive components of cellular lysate. In general, cofactor-based ArM formation allows the use of any desired metal complex to build unique inorganic protein materials. SPAAC covalent linkage further decouples the native function of the scaffold from the installation process because it is not affected by native amino acid residues; as long as an Az residue can be incorporated, an ArM can be generated. We have demonstrated the scope of this method with respect to both the scaffold and cofactor components and established that the dirhodium ArMs generated can catalyze the decomposition of diazo compounds and both Si-H and olefin insertion reactions involving these carbene precursors.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637 (USA)
| | | | | | | |
Collapse
|
37
|
Schneider S, Gattner MJ, Vrabel M, Flügel V, López-Carrillo V, Prill S, Carell T. Structural Insights into Incorporation of Norbornene Amino Acids for Click Modification of Proteins. Chembiochem 2013; 14:2114-8. [DOI: 10.1002/cbic.201300435] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Indexed: 12/13/2022]
|
38
|
Li F, Zhang H, Sun Y, Pan Y, Zhou J, Wang J. Expanding the Genetic Code for Photoclick Chemistry inE. coli, Mammalian Cells, andA. thaliana. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Li F, Zhang H, Sun Y, Pan Y, Zhou J, Wang J. Expanding the Genetic Code for Photoclick Chemistry inE. coli, Mammalian Cells, andA. thaliana. Angew Chem Int Ed Engl 2013; 52:9700-4. [DOI: 10.1002/anie.201303477] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/24/2013] [Indexed: 12/25/2022]
|
40
|
Krueger AT, Imperiali B. Fluorescent Amino Acids: Modular Building Blocks for the Assembly of New Tools for Chemical Biology. Chembiochem 2013; 14:788-99. [DOI: 10.1002/cbic.201300079] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 12/16/2022]
|
41
|
Schmidt MJ, Summerer D. Durch rotes Licht kontrollierte Protein-RNA-Vernetzung mit einem genetisch kodierten Furan. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Red-Light-Controlled Protein-RNA Crosslinking with a Genetically Encoded Furan. Angew Chem Int Ed Engl 2013; 52:4690-3. [DOI: 10.1002/anie.201300754] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 12/12/2022]
|
43
|
Nadler A, Schultz C. The power of fluorogenic probes. Angew Chem Int Ed Engl 2013; 52:2408-10. [PMID: 23339134 DOI: 10.1002/anie.201209733] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Indexed: 12/18/2022]
Abstract
A definite turn-on: Turning on fluorescence only where successful labeling is happening sounds as desirable as delivering a drug only where the drug target resides. New fluorogenic xanthene derivatives from the Bertozzi research group are getting us closer to "magic bullet" dyes.
Collapse
Affiliation(s)
- André Nadler
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
44
|
|
45
|
Koo H, Lee S, Na JH, Kim SH, Hahn SK, Choi K, Kwon IC, Jeong SY, Kim K. Bioorthogonal Copper-Free Click Chemistry In Vivo for Tumor-Targeted Delivery of Nanoparticles. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206703] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Koo H, Lee S, Na JH, Kim SH, Hahn SK, Choi K, Kwon IC, Jeong SY, Kim K. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew Chem Int Ed Engl 2012; 51:11836-40. [PMID: 23081905 DOI: 10.1002/anie.201206703] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Heebeom Koo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
McLeod D, McNulty J. Mild Chemical and Biological Synthesis of Donor-Acceptor Flanked Reporter Stilbenes: Demonstration of a Physiological Wittig Olefination Reaction. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Yu Z, Pan Y, Wang Z, Wang J, Lin Q. Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chem Int Ed Engl 2012; 51:10600-4. [PMID: 22997015 DOI: 10.1002/anie.201205352] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/21/2012] [Indexed: 12/21/2022]
Abstract
We just click: Genetic incorporation of a cyclopropene amino acid CpK (see scheme) site-specifically into proteins in E. coli and mammalian cells was achieved using an orthogonal aminoacyl-tRNA synthetase/tRNA(CUA) pair (CpKRS/MbtRNA(CUA)). Cyclopropene exhibited fast reaction kinetics in the photoclick reaction and allowed rapid (ca. 2 min) labeling of proteins.
Collapse
Affiliation(s)
- Zhipeng Yu
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
49
|
Genetically Encoded Cyclopropene Directs Rapid, Photoclick-Chemistry-Mediated Protein Labeling in Mammalian Cells. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205352] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Borrmann A, Milles S, Plass T, Dommerholt J, Verkade JMM, Wiessler M, Schultz C, van Hest JCM, van Delft FL, Lemke EA. Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation. Chembiochem 2012; 13:2094-9. [PMID: 22945333 DOI: 10.1002/cbic.201200407] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 01/14/2023]
Abstract
Visualizing biomolecules by fluorescent tagging is a powerful method for studying their behaviour and function inside cells. We prepared and genetically encoded an unnatural amino acid (UAA) that features a bicyclononyne moiety. This UAA offered exceptional reactivity in strain-promoted azide-alkyne cycloadditions. Kinetic measurements revealed that the UAA reacted also remarkably fast in the inverse-electron-demand Diels-Alder cycloaddition with tetrazine-conjugated dyes. Genetic encoding of the new UAA inside mammalian cells and its subsequent selective labeling at low dye concentrations demonstrate the usefulness of the new amino acid for future imaging studies.
Collapse
Affiliation(s)
- Annika Borrmann
- Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|