1
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
2
|
Luo Y, Cao B, Zhong M, Liu M, Xiong X, Zou T. Organogold(III) Complexes Display Conditional Photoactivities: Evolving From Photodynamic into Photoactivated Chemotherapy in Response to O 2 Consumption for Robust Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202212689. [PMID: 36109339 DOI: 10.1002/anie.202212689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 11/09/2022]
Abstract
Photodynamic therapy (PDT) is a spatiotemporally controllable, powerful approach in combating cancers but suffers from low activity under hypoxia, whereas photoactivated chemotherapy (PACT) operates in an O2 -independent manner but compromises the ability to harness O2 for potent photosensitization. Herein we report that cyclometalated gold(III)-alkyne complexes display a PDT-to-PACT evolving photoactivity for efficient cancer treatment. On the one hand, the gold(III) complexes can act as dual photosensitizers and substrates, leading to conditional PDT activity in oxygenated condition that progresses to highly efficient PACT (ϕ up to 0.63) when O2 is depleted in solution and under cellular environment. On the other hand, the conditional PDT-to-PACT reactivity can be triggered by external photosensitizers in a similar manner in vitro and in vivo, giving additional tumor-selectivity and/or deep tissue penetration by red-light irradiation that leads to robust anticancer efficacy.
Collapse
Affiliation(s)
- Yunli Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Mingjie Zhong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Moyi Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Gil‐Moles M, Türck S, Basu U, Pettenuzzo A, Bhattacharya S, Rajan A, Ma X, Büssing R, Wölker J, Burmeister H, Hoffmeister H, Schneeberg P, Prause A, Lippmann P, Kusi‐Nimarko J, Hassell‐Hart S, McGown A, Guest D, Lin Y, Notaro A, Vinck R, Karges J, Cariou K, Peng K, Qin X, Wang X, Skiba J, Szczupak Ł, Kowalski K, Schatzschneider U, Hemmert C, Gornitzka H, Milaeva ER, Nazarov AA, Gasser G, Spencer J, Ronconi L, Kortz U, Cinatl J, Bojkova D, Ott I. Metallodrug Profiling against SARS-CoV-2 Target Proteins Identifies Highly Potent Inhibitors of the S/ACE2 interaction and the Papain-like Protease PL pro. Chemistry 2021; 27:17928-17940. [PMID: 34714566 PMCID: PMC8653295 DOI: 10.1002/chem.202103258] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/11/2022]
Abstract
The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for dedicated antiviral therapeutics. Metal complexes are commonly underrepresented in compound libraries that are used for screening in drug discovery campaigns, however, there is growing evidence for their role in medicinal chemistry. Based on previous results, we have selected more than 100 structurally diverse metal complexes for profiling as inhibitors of two relevant SARS-CoV-2 replication mechanisms, namely the interaction of the spike (S) protein with the ACE2 receptor and the papain-like protease PLpro . In addition to many well-established types of mononuclear experimental metallodrugs, the pool of compounds tested was extended to approved metal-based therapeutics such as silver sulfadiazine and thiomersal, as well as polyoxometalates (POMs). Among the mononuclear metal complexes, only a small number of active inhibitors of the S/ACE2 interaction was identified, with titanocene dichloride as the only strong inhibitor. However, among the gold and silver containing complexes many turned out to be very potent inhibitors of PLpro activity. Highly promising activity against both targets was noted for many POMs. Selected complexes were evaluated in antiviral SARS-CoV-2 assays confirming activity for gold complexes with N-heterocyclic carbene (NHC) or dithiocarbamato ligands, a silver NHC complex, titanocene dichloride as well as a POM compound. These studies might provide starting points for the design of metal-based SARS-CoV-2 antiviral agents.
Collapse
|
5
|
Scoditti S, Mazzone G, Sicilia E. Computational Analysis of Photophysical Properties and Reactivity of a New Phototherapeutic Cyclometalated Au(III)-Hydride Complex. Chemistry 2021; 27:15528-15535. [PMID: 34546592 DOI: 10.1002/chem.202102701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 01/25/2023]
Abstract
Gold(III) complexes have recently emerged as new versatile and efficacious metal containing anticancer agents. In an attempt to reconcile the specific affinity of such complexes for target sulfur containing biomolecules with their capability to strongly bind thiol-containing compounds widely distributed in non-tumoral cells, a new series of cyclometalated Au(III)-hydride complexes has been proposed as photoactivatable anticancer prodrugs. Here, the computational exploration of the photophysical properties and reactivity in dark and under light irradiation of the first member of the series, named 1 a, is reported. Complex 1 a low hydricity in dark together with facile hydride substitution leading to H2 elimination under excitation by visible light have been examined by means of DFT and TD-DFT computations. Both singlet and triplet excited states have been characterized, allowing the identification of the active species involved in photoactivation pathways leading to the controlled detachment of the hydride ligand. Also the viable two-photon activation at the ideal phototherapeutic window has been investigated.
Collapse
Affiliation(s)
- Stefano Scoditti
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy
| |
Collapse
|
6
|
Tabrizi L, Yang WS, Chintha C, Morrison L, Samali A, Ramos JW, Erxleben A. Gold(I) Complexes with a Quinazoline Carboxamide Alkynyl Ligand: Synthesis, Cytotoxicity, and Mechanistic Studies. Eur J Inorg Chem 2021; 2021:1921-1928. [PMID: 34248416 PMCID: PMC8252463 DOI: 10.1002/ejic.202100120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/20/2021] [Indexed: 12/22/2022]
Abstract
A series of gold(I) complexes with the general formula [Au(L2)(L')] (L2=4-phenyl-N-(prop-2-yn-1-yl)quinazoline-2-carboxamide, L'=PPh3 (triphenylphosphine), 1; TPA (1,3,5-triaza-7-phosphaadamantane), 2, and Me2-imy (1,3-dimethylimidazol-2-ylidene), 3) were synthesized and fully characterized by spectroscopic methods. The alkynyl ligand L2 belongs to the quinazoline carboxamide class of ligands that are known to bind to the translocator protein (TSPO) at the outer mitochondrial membrane. 1 and 2 exert cytotoxic effects in bladder cancer cells with IC50 values in the low micromolar range. Further mechanistic analysis indicated that the two complexes both act by inducing reactive oxygen species and caspase-mediated apoptosis. The complexes inhibit thioredoxin reductase, an established target of anticancer gold(I) complexes. Docking studies confirmed that after ligand exchange the free ligand L2 can interact with the TSPO binding site.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of ChemistryNational University of Ireland GalwayGalwayIreland
| | - Won Seok Yang
- University of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluUSA
| | - Chetan Chintha
- Apoptosis Research CentreSchool of Natural SciencesNational University of Ireland GalwayGalwayIreland
| | - Liam Morrison
- Earth and Ocean SciencesSchool of Natural Sciences and Ryan InstituteNational University of Ireland GalwayGalwayIreland
| | - Afshin Samali
- Apoptosis Research CentreSchool of Natural SciencesNational University of Ireland GalwayGalwayIreland
| | - Joe W. Ramos
- University of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluUSA
| | - Andrea Erxleben
- School of ChemistryNational University of Ireland GalwayGalwayIreland
| |
Collapse
|
7
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
8
|
Bär SI, Gold M, Schleser SW, Rehm T, Bär A, Köhler L, Carnell LR, Biersack B, Schobert R. Guided Antitumoural Drugs: (Imidazol-2-ylidene)(L)gold(I) Complexes Seeking Cellular Targets Controlled by the Nature of Ligand L. Chemistry 2021; 27:5003-5010. [PMID: 33369765 PMCID: PMC7986617 DOI: 10.1002/chem.202005451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Three [1,3-diethyl-4-(p-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)imidazol-2-ylidene](L)gold(I) complexes, 4 a (L=Cl), 5 a (L=PPh3 ), and 6 a (L=same N-heterocyclic carbene (NHC)), and their fluorescent [4-(anthracen-9-yl)-1,3-diethyl-5-phenylimidazol-2-ylidene](L)gold(I) analogues, 4 b, 5 b, and 6 b, respectively, were studied for their localisation and effects in cancer cells. Despite their identical NHC ligands, the last three accumulated in different compartments of melanoma cells, namely, the nucleus (4 b), mitochondria (5 b), or lysosomes (6 b). Ligand L was also more decisive for the site of accumulation than the NHC ligand because the couples 4 a/4 b, 5 a/5 b, and 6 a/6 b, carrying different NHC ligands, afforded similar results in cytotoxicity tests, and tests on targets typically found at their sites of accumulation, such as DNA in nuclei, reactive oxygen species and thioredoxin reductase in mitochondria, and lysosomal membranes. Regardless of the site of accumulation, cancer cell apoptosis was eventually induced. The concept of guiding a bioactive complex fragment to a particular subcellular target by secondary ligand L could reduce unwanted side effects.
Collapse
Affiliation(s)
- Sofia I. Bär
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Madeleine Gold
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Sebastian W. Schleser
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Tobias Rehm
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Alexander Bär
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Leonhard Köhler
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Lucas R. Carnell
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Bernhard Biersack
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Rainer Schobert
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| |
Collapse
|
9
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
10
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020; 60:4133-4141. [DOI: 10.1002/anie.202013366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
11
|
Jakob CHG, Dominelli B, Schlagintweit JF, Fischer PJ, Schuderer F, Reich RM, Marques F, Correia JDG, Kühn FE. Improved Antiproliferative Activity and Fluorescence of a Dinuclear Gold(I) Bisimidazolylidene Complex via Anthracene-Modification. Chem Asian J 2020; 15:4275-4279. [PMID: 33405335 PMCID: PMC7756789 DOI: 10.1002/asia.202001104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Indexed: 12/26/2022]
Abstract
A straightforward modification route to obtain mono- and di-substituted anthroyl ester bridge functionalized dinuclear Au(I) bis-N-heterocyclic carbene complexes is presented. The functionalization can be achieved starting from a hydroxyl-functionalized ligand precursor followed by transmetallation of the corresponding Ag complex or via esterification of the hydroxyl-functionalized gold complex. The compounds are characterized by NMR-spectroscopy, ESI-MS, elemental analysis and SC-XRD. The mono-ester Au complex shows quantum yields around 18%. In contrast, the corresponding syn-di-ester Au complex, exhibits significantly lower quantum yields of around 8%. Due to insufficient water solubility of the di-ester, only the mono-ester complex has been tested regarding its antiproliferative activity against HeLa- (cervix) and MCF-7- (breast) cancer cell lines and a healthy fibroblast cell line (V79). IC50 values of 7.26 μM in the HeLa cell line and 7.92 μM in the MCF-7 cell line along with selectivity indices of 8.8 (HeLa) and 8.0 (MCF-7) are obtained. These selectivity indices are significantly higher than those obtained for the reference drugs cisplatin or auranofin.
Collapse
Affiliation(s)
- Christian H. G. Jakob
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Bruno Dominelli
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Jonas F. Schlagintweit
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Pauline J. Fischer
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Franziska Schuderer
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Robert M. Reich
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e Nuclear, Estrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e Nuclear, Estrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Fritz E. Kühn
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| |
Collapse
|
12
|
Stenger‐Smith JR, Mascharak PK. Gold Drugs with {Au(PPh
3
)}
+
Moiety: Advantages and Medicinal Applications. ChemMedChem 2020; 15:2136-2145. [DOI: 10.1002/cmdc.202000608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Jenny R. Stenger‐Smith
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
13
|
Zhang J, Abu el Maaty MA, Hoffmeister H, Schmidt C, Muenzner JK, Schobert R, Wölfl S, Ott I. A Multitarget Gold(I) Complex Induces Cytotoxicity Related to Aneuploidy in HCT-116 Colorectal Carcinoma Cells. Angew Chem Int Ed Engl 2020; 59:16795-16800. [PMID: 32529715 PMCID: PMC7540060 DOI: 10.1002/anie.202006212] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/17/2022]
Abstract
A novel alkynyl phosphane gold(I) complex (trimethylphosphane)(3-(1,3-dimethylxanthine-7-yl)prop-1-yn-1-yl)gold(I) 1 displayed mutiple biological activites including selective proliferation inhibitory, anti-metastatic, and anti-angiogenic effects. The complex also induced effects related to aneuploidy in HCT-116 colon carcinoma cells, which might be mainly ascribed to the dysfunction of mitochondrial bioenergetics and downregulation of glycolysis. Induction of aneuploidy beyond a critical level can provide an effective strategy to target cancer, in particular colorectal tumours with a low tolerance of aneuploidy, and could be of relevance for 1 and other metallodrugs.
Collapse
Affiliation(s)
- Jing‐Jing Zhang
- School of PharmacyChina Pharmaceutical UniversityNanjing210009China
- Institute of Pharmacy and Molecular BiotechnologyRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| | - Mohamed A. Abu el Maaty
- Institute of Pharmacy and Molecular BiotechnologyRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Henrik Hoffmeister
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| | - Julienne K. Muenzner
- Department of Organic ChemistryUniversity BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Rainer Schobert
- Department of Organic ChemistryUniversity BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular BiotechnologyRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| |
Collapse
|
14
|
Zhang J, Abu el Maaty MA, Hoffmeister H, Schmidt C, Muenzner JK, Schobert R, Wölfl S, Ott I. Ein Multitarget‐Gold(I)‐Komplex induziert Zytotoxizität im Zusammenhang mit Aneuploidie in HCT‐116‐Kolorektalkarzinomzellen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jing‐Jing Zhang
- School of PharmacyChina Pharmaceutical University Nanjing 210009 China
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Deutschland
- Institut für Medizinische und Pharmazeutische ChemieTechnische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Deutschland
| | - Mohamed A. Abu el Maaty
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Deutschland
| | - Henrik Hoffmeister
- Institut für Medizinische und Pharmazeutische ChemieTechnische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Deutschland
| | - Claudia Schmidt
- Institut für Medizinische und Pharmazeutische ChemieTechnische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Deutschland
| | - Julienne K. Muenzner
- Abteilung für Organische ChemieUniversität Bayreuth Universitätsstr. 30 95440 Bayreuth Deutschland
| | - Rainer Schobert
- Abteilung für Organische ChemieUniversität Bayreuth Universitätsstr. 30 95440 Bayreuth Deutschland
| | - Stefan Wölfl
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Deutschland
| | - Ingo Ott
- Institut für Medizinische und Pharmazeutische ChemieTechnische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Deutschland
| |
Collapse
|
15
|
Luo H, Cao B, Chan ASC, Sun RW, Zou T. Cyclometalated Gold(III)‐Hydride Complexes Exhibit Visible Light‐Induced Thiol Reactivity and Act as Potent Photo‐Activated Anti‐Cancer Agents. Angew Chem Int Ed Engl 2020; 59:11046-11052. [DOI: 10.1002/anie.202000528] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/14/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education DivisionThe Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Albert S. C. Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination ChemistryNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
16
|
Luo H, Cao B, Chan ASC, Sun RW, Zou T. Cyclometalated Gold(III)‐Hydride Complexes Exhibit Visible Light‐Induced Thiol Reactivity and Act as Potent Photo‐Activated Anti‐Cancer Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education DivisionThe Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Albert S. C. Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination ChemistryNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
17
|
Bian M, Sun Y, Liu Y, Xu Z, Fan R, Liu Z, Liu W. A Gold(I) Complex Containing an Oleanolic Acid Derivative as a Potential Anti‐Ovarian‐Cancer Agent by Inhibiting TrxR and Activating ROS‐Mediated ERS. Chemistry 2020; 26:7092-7108. [DOI: 10.1002/chem.202000045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Mianli Bian
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Ying Sun
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Yuanhao Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Zhongren Xu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Rong Fan
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Ziwen Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Wukun Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
18
|
Zhang J, Zou H, Lei J, He B, He X, Sung HHY, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Multifunctional Au
I
‐based AIEgens: Manipulating Molecular Structures and Boosting Specific Cancer Cell Imaging and Theranostics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jing Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Hang Zou
- Department of Laboratory Medicine Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Jinping Lei
- School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 China
| | - Benzhao He
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Xuewen He
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Herman H. Y. Sung
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Lei Zheng
- Department of Laboratory Medicine Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
19
|
Zhang J, Zou H, Lei J, He B, He X, Sung HHY, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Multifunctional Au
I
‐based AIEgens: Manipulating Molecular Structures and Boosting Specific Cancer Cell Imaging and Theranostics. Angew Chem Int Ed Engl 2020; 59:7097-7105. [DOI: 10.1002/anie.202000048] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jing Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Hang Zou
- Department of Laboratory Medicine Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Jinping Lei
- School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 China
| | - Benzhao He
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Xuewen He
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Herman H. Y. Sung
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Lei Zheng
- Department of Laboratory Medicine Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
20
|
Kuang S, Liao X, Zhang X, Rees TW, Guan R, Xiong K, Chen Y, Ji L, Chao H. FerriIridium: A Lysosome‐Targeting Iron(III)‐Activated Iridium(III) Prodrug for Chemotherapy in Gastric Cancer Cells. Angew Chem Int Ed Engl 2020; 59:3315-3321. [DOI: 10.1002/anie.201915828] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xianrui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional MoleculeSchool of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
21
|
Kuang S, Liao X, Zhang X, Rees TW, Guan R, Xiong K, Chen Y, Ji L, Chao H. FerriIridium: A Lysosome‐Targeting Iron(III)‐Activated Iridium(III) Prodrug for Chemotherapy in Gastric Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xianrui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
22
|
Abas E, Espallargas N, Burbello G, Mesonero JE, Rodriguez-Dieguez A, Grasa L, Laguna M. Anticancer Activity of Alkynylgold(I) with P(NMe2)3 Phosphane in Mouse Colon Tumors and Human Colon Carcinoma Caco-2 Cell Line. Inorg Chem 2019; 58:15536-15551. [DOI: 10.1021/acs.inorgchem.9b02528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Elisa Abas
- Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza−CSIC, Plaza S. Francisco s/n, 50009 Zaragoza, Spain
| | - Natalia Espallargas
- Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza−CSIC, Plaza S. Francisco s/n, 50009 Zaragoza, Spain
| | - Gianluca Burbello
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Jose E. Mesonero
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Antonio Rodriguez-Dieguez
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Laura Grasa
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Mariano Laguna
- Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza−CSIC, Plaza S. Francisco s/n, 50009 Zaragoza, Spain
| |
Collapse
|
23
|
Florès O, Velic D, Mabrouk N, Bettaïeb A, Tomasoni C, Robert J, Paul C, Goze C, Roussakis C, Bodio E. Rapid Synthesis and Antiproliferative Properties of Polyazamacrocycle‐Based Bi‐ and Tetra‐Gold(I) Phosphine Dithiocarbamate Complexes. Chembiochem 2019; 20:2255-2261. [DOI: 10.1002/cbic.201900227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Océane Florès
- CNRSUniversité Bourgogne Franche-ComtéICMUB UMR6302 9 avenue Alain Savary 21000 Dijon France
| | - Denis Velic
- Université de NantesUFR Sciences PharmaceutiquesLaboratoire IIciMed EA1155Département de Cancérologie 9 rue Bias 44035 Nantes France
| | - Nesrine Mabrouk
- EPHEPSL Research UniversityLaboratoire d'Immunologie et Immunothérapie des Cancers 60 Rue Mazarine 75006 Paris France
- Université Bourgogne Franche-ComtéLIIC, EA7269 7 Bd Jeanne d'Arc 21000 Dijon France
| | - Ali Bettaïeb
- EPHEPSL Research UniversityLaboratoire d'Immunologie et Immunothérapie des Cancers 60 Rue Mazarine 75006 Paris France
- Université Bourgogne Franche-ComtéLIIC, EA7269 7 Bd Jeanne d'Arc 21000 Dijon France
| | - Christophe Tomasoni
- Université de NantesUFR Sciences PharmaceutiquesLaboratoire IIciMed EA1155Département de Cancérologie 9 rue Bias 44035 Nantes France
| | - Jean‐Michel Robert
- Université de NantesUFR Sciences PharmaceutiquesLaboratoire IIciMed EA1155Département de Cancérologie 9 rue Bias 44035 Nantes France
| | - Catherine Paul
- EPHEPSL Research UniversityLaboratoire d'Immunologie et Immunothérapie des Cancers 60 Rue Mazarine 75006 Paris France
- Université Bourgogne Franche-ComtéLIIC, EA7269 7 Bd Jeanne d'Arc 21000 Dijon France
| | - Christine Goze
- CNRSUniversité Bourgogne Franche-ComtéICMUB UMR6302 9 avenue Alain Savary 21000 Dijon France
| | - Christos Roussakis
- Université de NantesUFR Sciences PharmaceutiquesLaboratoire IIciMed EA1155Département de Cancérologie 9 rue Bias 44035 Nantes France
| | - Ewen Bodio
- CNRSUniversité Bourgogne Franche-ComtéICMUB UMR6302 9 avenue Alain Savary 21000 Dijon France
| |
Collapse
|
24
|
Svahn N, Moro AJ, Roma-Rodrigues C, Puttreddy R, Rissanen K, Baptista PV, Fernandes AR, Lima JC, Rodríguez L. The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes. Chemistry 2018; 24:14654-14667. [DOI: 10.1002/chem.201802547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/13/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Noora Svahn
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica; Universitat de Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Artur J. Moro
- LAQV-REQUIMTE, Departamento de Química, CQFB; Universidade Nova de Lisboa; Monte de Caparica Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Rakesh Puttreddy
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; P.O. Box 35 40014 Jyväskylä Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; P.O. Box 35 40014 Jyväskylä Finland
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - João Carlos Lima
- LAQV-REQUIMTE, Departamento de Química, CQFB; Universidade Nova de Lisboa; Monte de Caparica Portugal
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica; Universitat de Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
- Institut de Nanociència i Nanotecnologia (IN2UB); Universitat de Barcelona; 08028 Barcelona Spain
| |
Collapse
|
25
|
Johnson A, Marzo I, Gimeno MC. Ylide Ligands as Building Blocks for Bioactive Group 11 Metal Complexes. Chemistry 2018; 24:11693-11702. [DOI: 10.1002/chem.201801600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Alice Johnson
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología CelularUniversidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
| |
Collapse
|
26
|
Bertrand B, Williams MRM, Bochmann M. Gold(III) Complexes for Antitumor Applications: An Overview. Chemistry 2018; 24:11840-11851. [DOI: 10.1002/chem.201800981] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Benoît Bertrand
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
- Sorbonne UniversitésUPMC Univ Paris 06CNRSInstitut Parisien de Chimie Moléculaire (IPCM) 4 Place Jussieu 75005 Paris France
| | | | - Manfred Bochmann
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
| |
Collapse
|
27
|
Kim N, Widenhoefer RA. Synthesis, Characterization, and Reactivity of Cationic Gold Diarylallenylidene Complexes. Angew Chem Int Ed Engl 2018; 57:4722-4726. [DOI: 10.1002/anie.201713209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/27/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Nana Kim
- French Family Science Center Duke University Durham NC 27708-0346 USA
| | | |
Collapse
|
28
|
Synthesis, Characterization, and Reactivity of Cationic Gold Diarylallenylidene Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Estrada-Ortiz N, Guarra F, de Graaf IAM, Marchetti L, de Jager MH, Groothuis GMM, Gabbiani C, Casini A. Anticancer Gold N-Heterocyclic Carbene Complexes: A Comparative in vitro and ex vivo Study. ChemMedChem 2017; 12:1429-1435. [PMID: 28741878 DOI: 10.1002/cmdc.201700316] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/25/2017] [Indexed: 12/15/2022]
Abstract
A series of organometallic AuI N-heterocyclic carbene (NHC) complexes was synthesized and characterized for anticancer activity in four human cancer cell lines. The compounds' toxicity in healthy tissue was determined using precision-cut kidney slices (PCKS) as a tool to determine the potential selectivity of the gold complexes ex vivo. All evaluated compounds presented cytotoxic activity toward the cancer cells in the nano- or low micromolar range. The mixed AuI NHC complex, (tert-butylethynyl)-1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I), bearing an alkynyl moiety as ancillary ligand, showed high cytotoxicity in cancer cells in vitro, while being barely toxic in healthy rat kidney tissues. The obtained results open new perspectives toward the design of mixed NHC-alkynyl gold complexes for cancer therapy.
Collapse
Affiliation(s)
- Natalia Estrada-Ortiz
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Federica Guarra
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi, 3, 56124, Pisa, Italy
| | - Inge A M de Graaf
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Lorella Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi, 3, 56124, Pisa, Italy
| | - Marina H de Jager
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Geny M M Groothuis
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi, 3, 56124, Pisa, Italy
| | - Angela Casini
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.,School of Chemistry, Cardiff University, Main Building, Park Place, CF103AT, Cardiff, UK
| |
Collapse
|
30
|
Fung SK, Zou T, Cao B, Lee PY, Fung YME, Hu D, Lok CN, Che CM. Cyclometalated Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands Engage Multiple Anti-Cancer Molecular Targets. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sin Ki Fung
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Taotao Zou
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Bei Cao
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Pui-Yan Lee
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Di Hu
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen 518053 China
| |
Collapse
|
31
|
Fung SK, Zou T, Cao B, Lee PY, Fung YME, Hu D, Lok CN, Che CM. Cyclometalated Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands Engage Multiple Anti-Cancer Molecular Targets. Angew Chem Int Ed Engl 2017; 56:3892-3896. [PMID: 28247451 DOI: 10.1002/anie.201612583] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 01/03/2023]
Abstract
Metal N-heterocyclic carbene (NHC) complexes are a promising class of anti-cancer agents displaying potent in vitro and in vivo activities. Taking a multi-faceted approach employing two clickable photoaffinity probes, herein we report the identification of multiple molecular targets for anti-cancer active pincer gold(III) NHC complexes. These complexes display potent and selective cytotoxicity against cultured cancer cells and in vivo anti-tumor activities in mice bearing xenografts of human cervical and lung cancers. Our experiments revealed the specific engagement of the gold(III) complexes with multiple cellular targets, including HSP60, vimentin, nucleophosmin, and YB-1, accompanied by expected downstream mechanisms of action. Additionally, PtII and PdII analogues can also bind the cellular proteins targeted by the gold(III) complexes, uncovering a distinct pincer cyclometalated metal-NHC scaffold in the design of anti-cancer metal medicines with multiple molecular targets.
Collapse
Affiliation(s)
- Sin Ki Fung
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Taotao Zou
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bei Cao
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Pui-Yan Lee
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Di Hu
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| |
Collapse
|
32
|
De Nisi A, Bergamini C, Leonzio M, Sartor G, Fato R, Naldi M, Monari M, Calonghi N, Bandini M. Synthesis, cytotoxicity and anti-cancer activity of new alkynyl-gold(i) complexes. Dalton Trans 2016; 45:1546-53. [DOI: 10.1039/c5dt02905h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alkynyl(triphenylphosphine)gold(i) complexes carrying variously substituted propargylic amines have been synthesized and fully characterized in solution and solid state.
Collapse
Affiliation(s)
- Assunta De Nisi
- Department of Chemistry “G. Ciamician”
- Alma Mater Studiorum – University of Bologna
- 40126 Bologna
- Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology
- Alma Mater Studiorum – University of Bologna
- 40126 Bologna
- Italy
| | - Marco Leonzio
- Department of Chemistry “G. Ciamician”
- Alma Mater Studiorum – University of Bologna
- 40126 Bologna
- Italy
| | - Giorgio Sartor
- Department of Pharmacy and Biotechnology
- Alma Mater Studiorum – University of Bologna
- 40126 Bologna
- Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology
- Alma Mater Studiorum – University of Bologna
- 40126 Bologna
- Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology
- Alma Mater Studiorum – University of Bologna
- 40126 Bologna
- Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”
- Alma Mater Studiorum – University of Bologna
- 40126 Bologna
- Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology
- Alma Mater Studiorum – University of Bologna
- 40126 Bologna
- Italy
| | - Marco Bandini
- Department of Chemistry “G. Ciamician”
- Alma Mater Studiorum – University of Bologna
- 40126 Bologna
- Italy
| |
Collapse
|
33
|
Păunescu E, Nowak-Sliwinska P, Clavel CM, Scopelliti R, Griffioen AW, Dyson PJ. Anticancer Organometallic Osmium(II)-p-cymene Complexes. ChemMedChem 2015; 10:1539-1547. [PMID: 26190176 DOI: 10.1002/cmdc.201500221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 01/04/2025]
Abstract
Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications.
Collapse
Affiliation(s)
- Emilia Păunescu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Patrycja Nowak-Sliwinska
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam (The Netherlands)
| | - Catherine M Clavel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam (The Netherlands)
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland).
| |
Collapse
|
34
|
Kriechbaum M, List M, Himmelsbach M, Redhammer GJ, Monkowius U. Peptide Coupling between Amino Acids and the Carboxylic Acid of a Functionalized Chlorido-gold(I)-phosphane. Inorg Chem 2014; 53:10602-10. [DOI: 10.1021/ic5017142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Günther J. Redhammer
- Materialwissenschaften
und Physik, Abteilung für Mineralogie, Paris-Lodron Universität Salzburg, Hellabrunner Strasse 34, 5020 Salzburg, Austria
| | | |
Collapse
|
35
|
Zou T, Lum CT, Lok CN, To WP, Low KH, Che CM. A Binuclear Gold(I) Complex with Mixed Bridging Diphosphine and Bis(N-Heterocyclic Carbene) Ligands Shows Favorable Thiol Reactivity and Inhibits Tumor Growth and Angiogenesis In Vivo. Angew Chem Int Ed Engl 2014; 53:5810-4. [DOI: 10.1002/anie.201400142] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Indexed: 12/25/2022]
|
36
|
Zou T, Lum CT, Lok CN, To WP, Low KH, Che CM. A Binuclear Gold(I) Complex with Mixed Bridging Diphosphine and Bis(N-Heterocyclic Carbene) Ligands Shows Favorable Thiol Reactivity and Inhibits Tumor Growth and Angiogenesis In Vivo. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Rubbiani R, Salassa L, de Almeida A, Casini A, Ott I. Cytotoxic Gold(I) N-heterocyclic Carbene Complexes with Phosphane Ligands as Potent Enzyme Inhibitors. ChemMedChem 2014; 9:1205-10. [DOI: 10.1002/cmdc.201400056] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Indexed: 11/09/2022]
|
38
|
Zou T, Lum CT, Chui SSY, Che CM. Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands: Thiol “Switch-on” Fluorescent Probes and Anti-Cancer Agents. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209787] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands: Thiol “Switch-on” Fluorescent Probes and Anti-Cancer Agents. Angew Chem Int Ed Engl 2013; 52:2930-3. [DOI: 10.1002/anie.201209787] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Indexed: 01/08/2023]
|