1
|
Zhang M, Liu Z, Zhao W. Rhodium-Catalyzed Remote Borylation of Alkynes and Vinylboronates. Angew Chem Int Ed Engl 2023; 62:e202215455. [PMID: 36445794 DOI: 10.1002/anie.202215455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Remote functionalization involving a fascinating chain-walking process has emerged as a powerful strategy for the rapid access to value-added functional molecules from readily available feedstocks. However, the scope of current methods is predominantly limited to mono- and di-substituted alkenes. The remote functionalization of multi- and heteroatom-substituted alkenes is challenging, and the use of alkynes in the chain walking is unexplored. We herein report a rhodium catalyzed remote borylation of internal alkynes, offering an unprecedented reaction mode of alkynes for the preparation of synthetically valuable 1,n-diboronates. The regioselective distal migratory hydroboration of sterically hindered tri- and tetra-substituted vinylboronates is also demonstrated to furnish various multi-boronic esters. Synthetic utilities are highlighted through the selective manipulation of the two boryl groups in products such as the regioselective cross coupling, oxidation, and amination.
Collapse
Affiliation(s)
- Minghao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Zheming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| |
Collapse
|
2
|
Zhang M, Xu P, Vendola AJ, Allais C, Dechert Schmitt AM, Singer RA, Morken JP. Stereocontrolled Pericyclic and Radical Cycloaddition Reactions of Readily Accessible Chiral Alkenyl Diazaborolidines. Angew Chem Int Ed Engl 2022; 61:e202205454. [PMID: 35587213 PMCID: PMC9296615 DOI: 10.1002/anie.202205454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 07/27/2023]
Abstract
In this paper is described an easily synthesized chiral diazaborolidine that is inexpensive, stable, and provides excellent stereoselection across a number of reaction classes. These versatile compounds possess utility in four different classes of cycloaddition reactions, offering good yield and stereoselectivity. X-ray structure analysis provides insight about the origin of stereocontrol.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Peilin Xu
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Alex J Vendola
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Christophe Allais
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06430, USA
| | | | - Robert A Singer
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06430, USA
| | - James P Morken
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
3
|
Dong W, Ye Z, Zhao W. Enantioselective Cobalt-Catalyzed Hydroboration of Ketone-Derived Silyl Enol Ethers. Angew Chem Int Ed Engl 2022; 61:e202117413. [PMID: 35488385 DOI: 10.1002/anie.202117413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Catalytic asymmetric hydroboration of alkenes is a powerful tool for the synthesis of natural products, agrochemicals, and pharmaceuticals via the versatile transformations of chiral alkyl boronic esters. However, the scope of available alkenes is limited to styrenes, activated alkenes, and compounds with directing groups. The catalytic enantioselective hydroboration of heteroatom-substituted alkenes is rarely explored and those catalyzed by earth-abundant metals are yet to be reported. Herein, we report a cobalt-catalyzed asymmetric hydroboration of ketone-derived silyl enol ethers and provide a convenient approach to access valuable enantiopure β-hydroxy boronic esters. This protocol features mild reaction conditions, a broad substrate scope, and excellent enantioselectivities (up to 99 % ee). This approach was applied in the successful synthesis of salmeterol and albuterol, demonstrating its potential to streamline complex molecule synthesis.
Collapse
Affiliation(s)
- Wenke Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhiyang Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
4
|
Sakuragi S, Akiba T, Tanahashi T, Fujihara T. Synthesis of Cyclic Allylborates from 1,3-Dienes and a Diboron Reagent. Angew Chem Int Ed Engl 2022; 61:e202202226. [PMID: 35294096 DOI: 10.1002/anie.202202226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/16/2023]
Abstract
The synthesis of cyclic allylborates was achieved by the reaction of 1,3-dienes and B2 pin2 using a copper catalyst. Several 1,3-dienes were converted to the corresponding cyclic allylborates in moderate to high yields. The cyclic allylborate obtained could be used in several organic transformations such as allylation of electrophiles and Suzuki-Miyaura coupling.
Collapse
Affiliation(s)
- Seiya Sakuragi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Tomofumi Akiba
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Takumi Tanahashi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
5
|
Zhang M, Xu P, Vendola AJ, Allais C, Dechert Schmitt A, Singer RA, Morken JP. Stereocontrolled Pericyclic and Radical Cycloaddition Reactions of Readily Accessible Chiral Alkenyl Diazaborolidines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Peilin Xu
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Alex J. Vendola
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Christophe Allais
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06430 USA
| | | | - Robert A. Singer
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06430 USA
| | - James P. Morken
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
6
|
Dong W, Ye Z, Zhao W. Enantioselective Cobalt‐Catalyzed Hydroboration of Ketone‐Derived Silyl Enol Ethers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenke Dong
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Zhiyang Ye
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Wanxiang Zhao
- Hunan University chemistry Yuelushan, Changsha 410082 changsha CHINA
| |
Collapse
|
7
|
Huang M, Hu J, Shi S, Friedrich A, Krebs J, Westcott SA, Radius U, Marder TB. Selective, Transition Metal-free 1,2-Diboration of Alkyl Halides, Tosylates, and Alcohols. Chemistry 2022; 28:e202200480. [PMID: 35179269 PMCID: PMC9314653 DOI: 10.1002/chem.202200480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Defunctionalization of readily available feedstocks to provide alkenes for the synthesis of multifunctional molecules represents an extremely useful process in organic synthesis. Herein, we describe a transition metal-free, simple and efficient strategy to access alkyl 1,2-bis(boronate esters) via regio- and diastereoselective diboration of secondary and tertiary alkyl halides (Br, Cl, I), tosylates, and alcohols. Control experiments demonstrated that the key to this high reactivity and selectivity is the addition of a combination of potassium iodide and N,N-dimethylacetamide (DMA). The practicality and industrial potential of this transformation are demonstrated by its operational simplicity, wide functional group tolerance, and the late-stage modification of complex molecules. From a drug discovery perspective, this synthetic method offers control of the position of diversification and diastereoselectivity in complex ring scaffolds, which would be especially useful in a lead optimization program.
Collapse
Affiliation(s)
- Mingming Huang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Shasha Shi
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
8
|
Sakuragi S, Akiba T, Tanahashi T, Fujihara T. Synthesis of Cyclic Allylborates from 1,3‐Dienes and a Diboron Reagent. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seiya Sakuragi
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Tomofumi Akiba
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Takumi Tanahashi
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| |
Collapse
|
9
|
Zhao Q, Yao Q, Dou T, Xu T, Zhang J, Chen X. Catalysts Based on the C−H⋅⋅⋅M Weak Interaction: Synthesis, Characterization and Catalytic Application of Bis(pyrazolyl)borate Cu(I) Complexes in Carbene Insertion into Heteroatom Hydrogen Bonds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Qiu‐Yue Yao
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Ting Dou
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Ting Xu
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
10
|
Manjón‐Mata I, Quirós MT, Velasco‐Juárez E, Buñuel E, Cárdenas DJ. Nickel‐Catalyzed Hydroborylative Polycyclization of Allenynes: an Atom‐Economical and Diastereoselective Synthesis of Bicyclic 5‐5 Fused Rings. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inés Manjón‐Mata
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - M. Teresa Quirós
- Department of Organic Chemistry and Inorganic Chemistry Facultad de Farmacia Universidad de Alcalá Campus Universitario. Ctra. Madrid-Barcelona, Km. 33,600. Alcalá de Henares 28871 Madrid Spain
| | - Elena Velasco‐Juárez
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Elena Buñuel
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
11
|
Huang M, Hu J, Krummenacher I, Friedrich A, Braunschweig H, Westcott SA, Radius U, Marder TB. Base-Mediated Radical Borylation of Alkyl Sulfones. Chemistry 2022; 28:e202103866. [PMID: 34713940 PMCID: PMC9299846 DOI: 10.1002/chem.202103866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/06/2022]
Abstract
A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2 neop2 ), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.
Collapse
Affiliation(s)
- Mingming Huang
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
12
|
Zhao YT, Su YX, Li XY, Yang LL, Huang MY, Zhu SF. Dirhodium-Catalyzed Enantioselective B-H Bond Insertion of gem-Diaryl Carbenes: Efficient Access to gem-Diarylmethine Boranes. Angew Chem Int Ed Engl 2021; 60:24214-24219. [PMID: 34476881 DOI: 10.1002/anie.202109447] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Indexed: 01/29/2023]
Abstract
The scarcity of reliable methods for synthesizing chiral gem-diarylmethine borons limits their applications. Herein, we report a method for highly enantioselective dirhodium-catalyzed B-H bond insertion reactions with diaryl diazomethanes as carbene precursors. These reactions afforded chiral gem-diarylmethine borane compounds in high yield (up to 99 % yield), high activity (turnover numbers up to 14 300), high enantioselectivity (up to 99 % ee) and showed unprecedented broad functional group tolerance. The borane compounds synthesized by this method could be efficiently transformed into diaryl methanol, diaryl methyl amine, and triaryl methane derivatives with good stereospecificity. Mechanistic studies suggested that the borane adduct coordinated to the rhodium catalyst and thus interfered with decomposition of the diazomethane, and that insertion of a rhodium carbene (generated from the diaryl diazomethane) into the B-H bond was most likely the rate-determining step.
Collapse
Affiliation(s)
- Yu-Tao Zhao
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xuan Su
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao-Yu Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liang-Liang Yang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Zhao Y, Su Y, Li X, Yang L, Huang M, Zhu S. Dirhodium‐Catalyzed Enantioselective B−H Bond Insertion of
gem
‐Diaryl Carbenes: Efficient Access to
gem
‐Diarylmethine Boranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu‐Tao Zhao
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yu‐Xuan Su
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Yu Li
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Liang‐Liang Yang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ming‐Yao Huang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shou‐Fei Zhu
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Tao L, Yang W, Zhao W. Synthesis of Carboxylic Acids, Esters, and Amides from 1,1‐Dibromoalkenes via Oxidation of Alkynyl Boronate Intermediates. ChemistrySelect 2021. [DOI: 10.1002/slct.202102150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University South Lushan Road Changsha 410082 P. R. China
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University South Lushan Road Changsha 410082 P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University South Lushan Road Changsha 410082 P. R. China
| |
Collapse
|
15
|
Huang M, Wu Z, Krebs J, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Ni-Catalyzed Borylation of Aryl Sulfoxides. Chemistry 2021; 27:8149-8158. [PMID: 33851475 PMCID: PMC8252015 DOI: 10.1002/chem.202100342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/21/2022]
Abstract
A nickel/N-heterocyclic carbene (NHC) catalytic system has been developed for the borylation of aryl sulfoxides with B2 (neop)2 (neop=neopentyl glycolato). A wide range of aryl sulfoxides with different electronic and steric properties were converted into the corresponding arylboronic esters in good yields. The regioselective borylation of unsymmetric diaryl sulfoxides was also feasible leading to borylation of the sterically less encumbered aryl substituent. Competition experiments demonstrated that an electron-deficient aryl moiety reacts preferentially. The origin of the selectivity in the Ni-catalyzed borylation of electronically biased unsymmetrical diaryl sulfoxide lies in the oxidative addition step of the catalytic cycle, as oxidative addition of methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide to the Ni(0) complex occurs selectively to give the structurally characterized complex trans-[Ni(ICy)2 (4-CF3 -C6 H4 ){(SO)-4-MeO-C6 H4 }] 4. For complex 5, the isomer trans-[Ni(ICy)2 (C6 H5 )(OSC6 H5 )] 5-I was structurally characterized in which the phenyl sulfinyl ligand is bound via the oxygen atom to nickel. In solution, the complex trans-[Ni(ICy)2 (C6 H5 )(OSC6 H5 )] 5-I is in equilibrium with the S-bonded isomer trans-[Ni(ICy)2 (C6 H5 )(SOC6 H5 )] 5, as shown by NMR spectroscopy. DFT calculations reveal that these isomers are separated by a mere 0.3 kJ/mol (M06/def2-TZVP-level of theory) and connected via a transition state trans-[Ni(ICy)2 (C6 H5 )(η2 -{SO}-C6 H5 )], which lies only 10.8 kcal/mol above 5.
Collapse
Affiliation(s)
- Mingming Huang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional MaterialsCollege of ChemistryChongqing Normal UniversityChongqing401331China
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
16
|
Rodgers G, Wilson EJ, Robertson CC, Cox DJ, Partridge BM. Synthesis of Boronic Ester γ‐Lactam Building Blocks. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- George Rodgers
- Department of Chemistry University of Sheffield, Dainton Building Sheffield S3 7HF United Kingdom
| | - Ellen J. Wilson
- Department of Chemistry University of Sheffield, Dainton Building Sheffield S3 7HF United Kingdom
| | - Craig C. Robertson
- Department of Chemistry University of Sheffield, Dainton Building Sheffield S3 7HF United Kingdom
| | - Daniel J. Cox
- Redbrick Molecular Ltd. 217 Portobello Sheffield S1 4DP United Kingdom
| | - Benjamin M. Partridge
- Department of Chemistry University of Sheffield, Dainton Building Sheffield S3 7HF United Kingdom
| |
Collapse
|
17
|
Shi C, Eun J, Newhouse TR, Yin L. Copper(I)‐Catalyzed Asymmetric Conjugate 1,6‐, 1,8‐, and 1,10‐Borylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chang‐Yun Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jungmin Eun
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06520-8105 USA
| | - Timothy R. Newhouse
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06520-8105 USA
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
18
|
Shi CY, Eun J, Newhouse TR, Yin L. Copper(I)-Catalyzed Asymmetric Conjugate 1,6-, 1,8-, and 1,10-Borylation. Angew Chem Int Ed Engl 2021; 60:9493-9499. [PMID: 33543574 DOI: 10.1002/anie.202016081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Indexed: 01/01/2023]
Abstract
Catalytic asymmetric remote conjugate borylation is challenging as the control of regioselectivity is not trivial, the electrophilicity of remote sites is extenuated, and the remote asymmetric induction away from the carbonyl group is difficult. Herein, catalytic asymmetric conjugate 1,6-, 1,8- and 1,10-borylation was developed with excellent regioselectivity, which delivered α-chiral boronates in moderate to high yields with high enantioselectivity. The produced chiral boronate smoothly underwent oxidation, cross-coupling, and one-carbon homologation to give synthetically versatile chiral compounds in moderate yields with excellent stereoretention. Furthermore, a stereomechanistic analysis was conducted using DFT calculations, which provides insights into the origins of the regioselectivity. Finally, the present 1,6-borylation was successfully applied in an efficient one-pot asymmetric synthesis of (-)-7,8-dihydrokavain.
Collapse
Affiliation(s)
- Chang-Yun Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jungmin Eun
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06520-8105, USA
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06520-8105, USA
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
19
|
You C, Studer A. Synthesis of 1,3-Bis-(boryl)alkanes through Boronic Ester Induced Consecutive Double 1,2-Migration. Angew Chem Int Ed Engl 2020; 59:17245-17249. [PMID: 32579295 PMCID: PMC7540398 DOI: 10.1002/anie.202007541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 01/03/2023]
Abstract
A general and efficient approach for the preparation of 1,3-bis-(boryl)alkanes is introduced. It is shown that readily generated vinylboron ate complexes react with commercially available ICH2 Bpin to valuable 1,3-bis-(boryl)alkanes. The introduced transformation, which is experimentally easy to conduct, shows broad substrate scope and high functional-group tolerance. Mechanistic studies reveal that the reaction does not proceed via radical intermediates. Instead, an unprecedented boronic ester induced sequential bis-1,2-migration cascade is suggested.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
20
|
You C, Studer A. Synthesis of 1,3‐Bis‐(boryl)alkanes through Boronic Ester Induced Consecutive Double 1,2‐Migration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
21
|
Jian J, He Z, Zhang Y, Liu T, Liu L, Wang Z, Wang H, Wang S, Zeng Z. Palladium‐Catalyzed Suzuki Coupling of
N
‐Acyloxazolidinones via Selective Cleavage of C–N Bonds. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Junsheng Jian
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Zhanyu He
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Yuqi Zhang
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Tingting Liu
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Lizhen Liu
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Zijia Wang
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Hui Wang
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Sanyong Wang
- Guangye L&P Food Ingredient Co., Ltd. 510308 Guangzhou Guangdong P. R. China
| | - Zhuo Zeng
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| |
Collapse
|
22
|
Li C, Zhao P, Li R, Zhang B, Zhao W. Oxidation of Alkynyl Boronates to Carboxylic Acids, Esters, and Amides. Angew Chem Int Ed Engl 2020; 59:10913-10917. [PMID: 32219974 DOI: 10.1002/anie.202000988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/16/2020] [Indexed: 12/13/2022]
Abstract
A general efficient protocol was developed for the synthesis of carboxylic acids, esters, and amides through oxidation of alkynyl boronates, generated directly from terminal alkynes. This protocol represents the first example of C(sp)-B bond oxidation. This approach displays a broad substrate scope, including aryl and alkyl alkynes, and exhibits excellent functional group tolerance. Water, primary and secondary alcohols, and amines are suitable nucleophiles for this transformation. Notably, amino acids and peptides can be used as nucleophiles, providing an efficient method for the synthesis and modification of peptides. The practicability of this methodology was further highlighted by the preparation of pharmaceutical molecules.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Pei Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ruoling Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
23
|
Chen G, Wang L, Liu X, Liu P. Visible‐Light‐Induced Radical Defluoroborylation of Trifluoromethyl Alkenes: An Access to
gem
‐Difluoroallylboranes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000257] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guojun Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of PharmacyZunyi Medical University Zunyi 563000 People's Republic of China
| | - Liling Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of PharmacyZunyi Medical University Zunyi 563000 People's Republic of China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of PharmacyZunyi Medical University Zunyi 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical University Zunyi 563000 People's Republic of China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of PharmacyZunyi Medical University Zunyi 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical University Zunyi 563000 People's Republic of China
| |
Collapse
|
24
|
Li C, Zhao P, Li R, Zhang B, Zhao W. Oxidation of Alkynyl Boronates to Carboxylic Acids, Esters, and Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Pei Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Ruoling Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Bing Zhang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
25
|
Yoshinaga Y, Yamamoto T, Suginome M. Stereoinvertive C–C Bond Formation at the Boron‐Bound Stereogenic Centers through Copper‐Bipyridine‐Catalyzed Intramolecular Coupling of α‐Aminobenzylboronic Esters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yukako Yoshinaga
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Takeshi Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
26
|
Xia P, Song D, Ye Z, Hu Y, Xiao J, Xiang H, Chen X, Yang H. Photoinduced Single‐Electron Transfer as an Enabling Principle in the Radical Borylation of Alkenes with NHC–Borane. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peng‐Ju Xia
- College of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Dan Song
- College of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Zhi‐Peng Ye
- College of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Yuan‐Zhuo Hu
- College of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Jun‐An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and PhysicsNanning Normal University Nanning 530001 Guangxi P. R. China
| | - Hao‐Yue Xiang
- College of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Xiao‐Qing Chen
- College of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha 410083 P. R. China
| | - Hua Yang
- College of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha 410083 P. R. China
| |
Collapse
|
27
|
Yoshinaga Y, Yamamoto T, Suginome M. Stereoinvertive C–C Bond Formation at the Boron‐Bound Stereogenic Centers through Copper‐Bipyridine‐Catalyzed Intramolecular Coupling of α‐Aminobenzylboronic Esters. Angew Chem Int Ed Engl 2020; 59:7251-7255. [DOI: 10.1002/anie.201914864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Yukako Yoshinaga
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Takeshi Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
28
|
Xia PJ, Song D, Ye ZP, Hu YZ, Xiao JA, Xiang HY, Chen XQ, Yang H. Photoinduced Single-Electron Transfer as an Enabling Principle in the Radical Borylation of Alkenes with NHC-Borane. Angew Chem Int Ed Engl 2020; 59:6706-6710. [PMID: 31849140 DOI: 10.1002/anie.201913398] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/28/2019] [Indexed: 11/06/2022]
Abstract
A photoinduced SET process enables the direct B-H bond activation of NHC-boranes. In contrast to common hydrogen atom transfer (HAT) strategies, this photoinduced reaction simply takes advantage of the beneficial redox potentials of NHC-boranes, thus obviating the need for extra radical initiators. The resulting NHC-boryl radical was used for the borylation of a wide range of α-trifluoromethylalkenes and alkenes with diverse electronic and structural features, providing facile access to highly functionalized borylated molecules. Labeling and photoquenching experiments provide insight into the mechanism of this photoinduced SET pathway.
Collapse
Affiliation(s)
- Peng-Ju Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Dan Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, Guangxi, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
29
|
Wu J, Bär RM, Guo L, Noble A, Aggarwal VK. Photoinduced Deoxygenative Borylations of Aliphatic Alcohols. Angew Chem Int Ed Engl 2019; 58:18830-18834. [PMID: 31613033 DOI: 10.1002/anie.201910051] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/14/2019] [Indexed: 01/14/2023]
Abstract
A photochemical method for converting aliphatic alcohols into boronic esters is described. Preactivation of the alcohol as a 2-iodophenyl-thionocarbonate enables a novel Barton-McCombie-type radical deoxygenation that proceeds efficiently with visible light irradiation and without the requirement for a photocatalyst, a radical initiator, or tin or silicon hydrides. The resultant alkyl radical is intercepted by bis(catecholato)diboron, furnishing boronic esters from a diverse range of structurally complex alcohols.
Collapse
Affiliation(s)
- Jingjing Wu
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Robin M Bär
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Lin Guo
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
30
|
Jang WJ, Yun J. Catalytic Asymmetric Conjugate Addition of a Borylalkyl Copper Complex for Chiral Organoboronate Synthesis. Angew Chem Int Ed Engl 2019; 58:18131-18135. [DOI: 10.1002/anie.201909712] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Won Jun Jang
- Department of ChemistrySungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of ChemistrySungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
31
|
Wu J, Bär RM, Guo L, Noble A, Aggarwal VK. Photoinduced Deoxygenative Borylations of Aliphatic Alcohols. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingjing Wu
- School of ChemistryUniversity of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Robin M. Bär
- School of ChemistryUniversity of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Lin Guo
- School of ChemistryUniversity of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of ChemistryUniversity of Bristol, Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
32
|
Jang WJ, Yun J. Catalytic Asymmetric Conjugate Addition of a Borylalkyl Copper Complex for Chiral Organoboronate Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Won Jun Jang
- Department of ChemistrySungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of ChemistrySungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
33
|
Bera S, Hu X. Nickel‐Catalyzed Regioselective Hydroalkylation and Hydroarylation of Alkenyl Boronic Esters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907045] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Srikrishna Bera
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| |
Collapse
|
34
|
Bera S, Hu X. Nickel-Catalyzed Regioselective Hydroalkylation and Hydroarylation of Alkenyl Boronic Esters. Angew Chem Int Ed Engl 2019; 58:13854-13859. [PMID: 31282601 DOI: 10.1002/anie.201907045] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/22/2022]
Abstract
Metal hydride catalyzed hydrocarbonation reactions of alkenes are an efficient approach to construct new carbon-carbon bonds from readily available alkenes. However, the regioselectivity of hydrocarbonation remains challenging to be controlled. In nickel hydride (NiH) catalyzed hydrocarbonation, linear selectivity is most often obtained because of the relative stability of the linear Ni-alkyl intermediate over its branched counterpart. Herein, we show that the boronic pinacol ester (Bpin) group directs a Ni-catalyzed hydrocarbonation to occur at its adjacent carbon center, resulting in formal branch selectivity. Both alkyl and aryl halides can be used as electrophiles in this hydrocarbonation, providing access to a wide range of secondary alkyl Bpin derivatives, which are valuable building blocks in synthetic chemistry. The utility of the method is demonstrated by the late-stage functionalization of natural products and drug molecules, the synthesis of an anticancer agent, and iterative syntheses.
Collapse
Affiliation(s)
- Srikrishna Bera
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| |
Collapse
|
35
|
Li Y, Pang H, Wu D, Li Z, Wang W, Wei H, Fu Y, Yin G. Nickel‐Catalyzed 1,1‐Alkylboration of Electronically Unbiased Terminal Alkenes. Angew Chem Int Ed Engl 2019; 58:8872-8876. [DOI: 10.1002/anie.201903890] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yangyang Li
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Hailiang Pang
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Dong Wu
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Zheqi Li
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Wang Wang
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Hong Wei
- College of ScienceNortheast Agricultural University Harbin 150030 P. R. China
| | - Ying Fu
- College of ScienceNortheast Agricultural University Harbin 150030 P. R. China
| | - Guoyin Yin
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
36
|
Li Y, Pang H, Wu D, Li Z, Wang W, Wei H, Fu Y, Yin G. Nickel‐Catalyzed 1,1‐Alkylboration of Electronically Unbiased Terminal Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yangyang Li
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Hailiang Pang
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Dong Wu
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Zheqi Li
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Wang Wang
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| | - Hong Wei
- College of ScienceNortheast Agricultural University Harbin 150030 P. R. China
| | - Ying Fu
- College of ScienceNortheast Agricultural University Harbin 150030 P. R. China
| | - Guoyin Yin
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
37
|
Milligan JA, Phelan JP, Badir SO, Molander GA. Alkyl Carbon-Carbon Bond Formation by Nickel/Photoredox Cross-Coupling. Angew Chem Int Ed Engl 2019; 58:6152-6163. [PMID: 30291664 PMCID: PMC6551614 DOI: 10.1002/anie.201809431] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 11/10/2022]
Abstract
The union of photoredox and nickel catalysis has resulted in a renaissance in radical chemistry as well as in the use of nickel-catalyzed transformations, specifically for carbon-carbon bond formation. Collectively, these advances address the longstanding challenge of late-stage cross-coupling of functionalized alkyl fragments. Empowered by the notion that photocatalytically generated alkyl radicals readily undergo capture by Ni complexes, wholly new feedstocks for cross-coupling have been realized. Herein, we highlight recent developments in several types of alkyl cross-couplings that are accessible exclusively through this approach.
Collapse
Affiliation(s)
- John A Milligan
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - James P Phelan
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Shorouk O Badir
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|
38
|
Magre M, Maity B, Falconnet A, Cavallo L, Rueping M. Magnesium‐Catalyzed Hydroboration of Terminal and Internal Alkynes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marc Magre
- Institute of Organic ChemistryRWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Bholanath Maity
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Alban Falconnet
- Institute of Organic ChemistryRWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- Institute of Organic ChemistryRWTH Aachen Landoltweg 1 52074 Aachen Germany
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
39
|
Magre M, Maity B, Falconnet A, Cavallo L, Rueping M. Magnesium-Catalyzed Hydroboration of Terminal and Internal Alkynes. Angew Chem Int Ed Engl 2019; 58:7025-7029. [PMID: 30977970 DOI: 10.1002/anie.201902188] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 11/10/2022]
Abstract
A magnesium-catalyzed hydroboration of alkynes providing good yields and selectivities for a wide range of terminal and symmetrical and unsymmetrical internal alkynes has been developed. The compatibility with many functional groups makes this magnesium catalyzed procedure attractive for late stage functionalization. Experimental mechanistic investigations and DFT calculations reveal insights into the reaction mechanism of the magnesium catalyzed protocol.
Collapse
Affiliation(s)
- Marc Magre
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Alban Falconnet
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany.,KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
40
|
Milligan JA, Phelan JP, Badir SO, Molander GA. Alkyl‐C‐C‐Bindungsbildung durch Nickel/Photoredox‐Kreuzkupplung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809431] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- John A. Milligan
- Department of ChemistryUniversity of PennsylvaniaRoy and Diana Vagelos Laboratories 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - James P. Phelan
- Department of ChemistryUniversity of PennsylvaniaRoy and Diana Vagelos Laboratories 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Shorouk O. Badir
- Department of ChemistryUniversity of PennsylvaniaRoy and Diana Vagelos Laboratories 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Gary A. Molander
- Department of ChemistryUniversity of PennsylvaniaRoy and Diana Vagelos Laboratories 231 S. 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
41
|
Ge Y, Cui X, Tan SM, Jiang H, Ren J, Lee N, Lee R, Tan C. Guanidine–Copper Complex Catalyzed Allylic Borylation for the Enantioconvergent Synthesis of Tertiary Cyclic Allylboronates. Angew Chem Int Ed Engl 2019; 58:2382-2386. [DOI: 10.1002/anie.201813490] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yicen Ge
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Xi‐Yang Cui
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Siu Min Tan
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Huan Jiang
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Jingyun Ren
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Nicholas Lee
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Richmond Lee
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Choon‐Hong Tan
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
42
|
Rubial B, Collins BSL, Bigler R, Aichhorn S, Noble A, Aggarwal VK. Enantiospecific Synthesis of ortho-Substituted 1,1-Diarylalkanes by a 1,2-Metalate Rearrangement/anti-S N 2' Elimination/Rearomatizing Allylic Suzuki-Miyaura Reaction Sequence. Angew Chem Int Ed Engl 2019; 58:1366-1370. [PMID: 30520228 PMCID: PMC6391954 DOI: 10.1002/anie.201811343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 12/12/2022]
Abstract
The one-pot sequential coupling of benzylamines, boronic esters, and aryl iodides has been investigated. In the presence of an N-activator, the boronate complex formed from an ortho-lithiated benzylamine and a boronic ester undergoes stereospecific 1,2-metalate rearrangement/anti-SN 2' elimination to form a dearomatized tertiary boronic ester. Treatment with an aryl iodide under palladium catalysis leads to rearomatizing γ-selective allylic Suzuki-Miyaura cross-coupling to generate 1,1-diarylalkanes. When enantioenriched α-substituted benzylamines are employed, the corresponding 1,1-diarylalkanes are formed with high stereospecificity.
Collapse
Affiliation(s)
- Belén Rubial
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Raphael Bigler
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Stefan Aichhorn
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
43
|
Ge Y, Cui XY, Tan SM, Jiang H, Ren J, Lee N, Lee R, Tan CH. Guanidine-Copper Complex Catalyzed Allylic Borylation for the Enantioconvergent Synthesis of Tertiary Cyclic Allylboronates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yicen Ge
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Xi-Yang Cui
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Siu Min Tan
- Singapore University of Technology and Design; 8 Somapah Road Singapore 487372 Singapore
| | - Huan Jiang
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Jingyun Ren
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Nicholas Lee
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Richmond Lee
- Singapore University of Technology and Design; 8 Somapah Road Singapore 487372 Singapore
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
44
|
Rubial B, Collins BSL, Bigler R, Aichhorn S, Noble A, Aggarwal VK. Enantiospecific Synthesis of ortho
-Substituted 1,1-Diarylalkanes by a 1,2-Metalate Rearrangement/anti
-S
N
2′ Elimination/Rearomatizing Allylic Suzuki-Miyaura Reaction Sequence. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Belén Rubial
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | | | - Raphael Bigler
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Stefan Aichhorn
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
45
|
Qi Q, Yang X, Fu X, Xu S, Negishi E. Highly Enantiospecific Borylation for Chiral α‐Amino Tertiary Boronic Esters. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qingqing Qi
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Xuena Yang
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Xiaoping Fu
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Shiqing Xu
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Ei‐ichi Negishi
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
46
|
Qi Q, Yang X, Fu X, Xu S, Negishi EI. Highly Enantiospecific Borylation for Chiral α-Amino Tertiary Boronic Esters. Angew Chem Int Ed Engl 2018; 57:15138-15142. [PMID: 30291671 DOI: 10.1002/anie.201809389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/30/2018] [Indexed: 12/12/2022]
Abstract
Herein we report a highly efficient and enantiospecific borylation method to synthesize a wide range of enantiopure (>99 % ee) α-amino tertiary boronic esters. The configurationally stable α-N-Boc substituted tertiary organolithium species and pinacolborane (HBpin) underwent enantiospecific borylation at -78 °C with the formation of a new stereogenic C-B bond. This reaction has a broad scope, enabling the synthesis of various α-amino tertiary boronic esters in excellent yields and, importantly, with universally excellent enantiospecificity (>99 % es) and complete retention of configuration.
Collapse
Affiliation(s)
- Qingqing Qi
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Xuena Yang
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Xiaoping Fu
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Shiqing Xu
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Ei-Ichi Negishi
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
47
|
Sandfort F, Strieth-Kalthoff F, Klauck FJR, James MJ, Glorius F. Deaminative Borylation of Aliphatic Amines Enabled by Visible Light Excitation of an Electron Donor-Acceptor Complex. Chemistry 2018; 24:17210-17214. [PMID: 30290050 DOI: 10.1002/chem.201804246] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 11/08/2022]
Abstract
A deaminative strategy for the borylation of aliphatic primary amines is described. Alkyl radicals derived from the single-electron reduction of redox-active pyridinium salts, which can be isolated or generated in situ, were borylated in a visible light-mediated reaction with bis(catecholato)diboron. No catalyst or further additives were required. The key electron donor-acceptor complex was characterized in detail by both experimental and computational investigations. The synthetic potential of this mild protocol was demonstrated through the late-stage functionalization of natural products and drug molecules.
Collapse
Affiliation(s)
- Frederik Sandfort
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Felix Strieth-Kalthoff
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Felix J R Klauck
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Michael J James
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
48
|
Wang Z, Bachman S, Dudnik AS, Fu GC. Nickel-Catalyzed Enantioconvergent Borylation of Racemic Secondary Benzylic Electrophiles. Angew Chem Int Ed Engl 2018; 57:14529-14532. [PMID: 30079625 PMCID: PMC6200647 DOI: 10.1002/anie.201806015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/10/2018] [Indexed: 12/15/2022]
Abstract
Nickel-catalyzed cross-coupling has emerged as the most versatile approach to date for achieving enantioconvergent carbon-carbon bond formation using racemic alkyl halides as electrophiles. In contrast, there have not yet been reports of the application of chiral nickel catalysts to the corresponding reactions with heteroatom nucleophiles to produce carbon-heteroatom bonds with good enantioselectivity. Herein, we establish that a chiral nickel/pybox catalyst can borylate racemic secondary benzylic chlorides to provide enantioenriched benzylic boronic esters, a highly useful family of compounds in organic synthesis. The method displays good functional group compatibility (e.g., being unimpeded by the presence of an indole, a ketone, a tertiary amine, or an unactivated alkyl bromide), and both of the catalyst components (NiCl2 ⋅glyme and the pybox ligand) are commercially available.
Collapse
Affiliation(s)
- Zhaobin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125 (USA)
| | - Shoshana Bachman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125 (USA)
| | - Alexander S. Dudnik
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125 (USA)
| | - Gregory C. Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125 (USA)
| |
Collapse
|
49
|
Liu S, Zeng X, Hammond GB, Xu B. Mild Base Promoted Nucleophilic Substitution of Unactivated
sp
3
‐Carbon Electrophiles with Alkenylboronic Acids. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shiwen Liu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Xiaojun Zeng
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Gerald B. Hammond
- Department of Chemistry University of Louisville Louisville, KY 40292 USA
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| |
Collapse
|
50
|
Wang Z, Bachman S, Dudnik AS, Fu GC. Nickel-Catalyzed Enantioconvergent Borylation of Racemic Secondary Benzylic Electrophiles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhaobin Wang
- Division of Chemistry and Chemical Engineering; California Institute of Technology; Pasadena CA 91125 USA
| | - Shoshana Bachman
- Division of Chemistry and Chemical Engineering; California Institute of Technology; Pasadena CA 91125 USA
| | - Alexander S. Dudnik
- Division of Chemistry and Chemical Engineering; California Institute of Technology; Pasadena CA 91125 USA
| | - Gregory C. Fu
- Division of Chemistry and Chemical Engineering; California Institute of Technology; Pasadena CA 91125 USA
| |
Collapse
|