1
|
Liu Z, Zhang L, Cui T, Ma M, Ren J, Qu X. A Nature-Inspired Metal-Organic Framework Discriminator for Differential Diagnosis of Cancer Cell Subtypes. Angew Chem Int Ed Engl 2021; 60:15436-15444. [PMID: 33960090 DOI: 10.1002/anie.202102286] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Metabolic glycan labeling (MGL) followed by bioorthogonal chemistry provides a powerful tool for tumor imaging and therapy. However, selectively metabolic labeling of cells or tissues of interest remains a challenge. Particularly, owing to tumor heterogeneity including tumor subtypes and interpatient heterogeneity, it is far more difficult to realize tumor-cell-selective metabolic labeling for precise diagnosis. Inspired by nature, we designed azidosugar-functionalized metal-organic frameworks camouflaged with cancer cell membranes to accomplish cancer-cell-selective MGL in vivo. With abundant receptors, this biomimetic platform not only selectively targets homotypic cells but also realizes different breast cancer subtype-selective MGL. Moreover, the endo/lysosomal-escaped ZIF-8 can make azidosugar escape from lysosomes and accelerate its metabolic incorporation. This strategy also takes advantage of cancer-tissue-derived cell membranes, which may have huge potential for personalized diagnosis and therapy.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Liu Z, Zhang L, Cui T, Ma M, Ren J, Qu X. A Nature‐Inspired Metal–Organic Framework Discriminator for Differential Diagnosis of Cancer Cell Subtypes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
3
|
Pedowitz NJ, Pratt MR. Design and Synthesis of Metabolic Chemical Reporters for the Visualization and Identification of Glycoproteins. RSC Chem Biol 2021; 2:306-321. [PMID: 34337414 PMCID: PMC8323544 DOI: 10.1039/d1cb00010a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylation events play an invaluable role in regulating cellular processes including enzymatic activity, immune recognition, protein stability, and cell-cell interactions. However, researchers have yet to realize the full range of glycan mediated biological functions due to a lack of appropriate chemical tools. Fortunately, the past 25 years has seen the emergence of modified sugar analogs, termed metabolic chemical reporters (MCRs), which are metabolized by endogenous enzymes to label complex glycan structures. Here, we review the major reporters for each class of glycosylation and highlight recent applications that have made a tremendous impact on the field of glycobiology.
Collapse
Affiliation(s)
- Nichole J Pedowitz
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
4
|
Zhang R, Zheng J, Zhang T. In vivo selective imaging of metabolic glycosylation with a tetrazine-modified upconversion nanoprobe. RSC Adv 2020; 10:15990-15996. [PMID: 35493688 PMCID: PMC9052955 DOI: 10.1039/d0ra01832e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/03/2020] [Indexed: 01/20/2023] Open
Abstract
A novel nanoprobe (UCNP-T) for the specific labeling and real-time imaging of glycans on the cell membrane via ratiometric UCL imaging was developed.
Collapse
Affiliation(s)
- Ruijing Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Judun Zheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| |
Collapse
|
5
|
Hong S, Sahai-Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single-Step Metabolic Labeling with Fluorophore-Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019; 58:14327-14333. [PMID: 31295389 PMCID: PMC6820142 DOI: 10.1002/anie.201907410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Dynamic turnover of cell-surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two-step labeling sequence is required, which suffers from the tissue-penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single-step fluorescent glycan labeling strategy by using fluorophore-tagged analogues of the nucleotide sugars. Injecting fluorophore-tagged sialic acid and fucose into the yolk of zebrafish embryos at the one-cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pankaj Sahai-Hernandez
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | | | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
In vivo cancer targeting via glycopolyester nanoparticle mediated metabolic cell labeling followed by click reaction. Biomaterials 2019; 218:119305. [DOI: 10.1016/j.biomaterials.2019.119305] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/18/2023]
|
7
|
Hong S, Sahai‐Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single‐Step Metabolic Labeling with Fluorophore‐Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Pankaj Sahai‐Hernandez
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | | | - Kelley W. Moremen
- Complex Carbohydrate Research Center University of Georgia Athens GA 30602 USA
| | - David Traver
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | - Peng Wu
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
8
|
Wang W, Zhao Z, Zhang Z, Zhang C, Xiao S, Ye X, Zhang L, Xia Q, Zhou D. Redirecting Killer T Cells through Incorporation of Azido Sugars for Tethering Ligands. Chembiochem 2017; 18:2082-2086. [PMID: 28862366 DOI: 10.1002/cbic.201700340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Indexed: 01/23/2023]
Abstract
The genetic expression of chimeric antigen receptors (CARs) on the surfaces of T cells enables the redirection of T cell specificity. To enhance the versatility of T cells as tumor-specific killers, we developed a nongenetic approach by which azide-containing sialic acids were metabolically incorporated into T cells to modify cellular sialyl glycans. After successful display of these moieties on the T cells, small-molecule ligands such as RGD and folate (as proof-of-concept, rather than supersized antibodies) were clicked orthogonally, leading to highly selective time- and dose-dependent cytotoxicity to integrin αv β3 - and folate-receptor-positive cells, respectively. This chemical approach provides a facile platform for rational design of tumor-specific cytotoxic T cells for targeted immunotherapy.
Collapse
Affiliation(s)
- Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Zhiying Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Ziwei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| |
Collapse
|
9
|
Zhu Y, Chen X. Expanding the Scope of Metabolic Glycan Labeling in Arabidopsis thaliana. Chembiochem 2017; 18:1286-1296. [PMID: 28383803 DOI: 10.1002/cbic.201700069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Indexed: 12/26/2022]
Abstract
Metabolic glycan labeling (MGL) has gained wide utility and has become a useful tool for probing glycosylation in living systems. For the past three decades, the development and application of MGL have mostly focused on animal glycosylation. Recently, exploiting MGL for studying plant glycosylation has gained interest. Here, we describe a systematic evaluation of MGL for fluorescence imaging of root glycans in Arabidopsis thaliana. Nineteen monosaccharide analogues containing a bioorthogonal group (azide, alkyne, or cyclopropene) were synthesized and evaluated for metabolic incorporation into root glycans. Among these unnatural sugars, 14 (including three new compounds) were evaluated in plants for the first time. Our results showed that five unnatural sugars metabolically labeled root glycans efficiently, and enabled fluorescence imaging by bioorthogonal conjugation with fluorophores. We optimized the experimental procedures for MGL in Arabidopsis. Finally, distinct distribution patterns of the newly synthesized glycans were observed along the root developmental zones, thus indicating regulated biosynthesis of glycans during root development. We envision that MGL will find broad applications in plant glycobiology.
Collapse
Affiliation(s)
- Yuntao Zhu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center and, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Kuriki Y, Komatsu T, Ycas PD, Coulup SK, Carlson EJ, Pomerantz WCK. Meeting Proceedings ICBS2016-Translating the Power of Chemical Biology to Clinical Advances. ACS Chem Biol 2017; 12:869-877. [PMID: 28303709 DOI: 10.1021/acschembio.7b00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yugo Kuriki
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Peter D. Ycas
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Sara K. Coulup
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - Erick J. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
11
|
Neves AA, Wainman YA, Wright A, Kettunen MI, Rodrigues TB, McGuire S, Hu D, Bulat F, Geninatti Crich S, Stöckmann H, Leeper FJ, Brindle KM. Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 128:1308-1312. [PMID: 27346899 PMCID: PMC4848764 DOI: 10.1002/ange.201509858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 11/06/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification, present in over 50 % of the proteins in the human genome,1 with important roles in cell-cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases,2 including cancer.3 We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium-based bioorthogonal MRI probe. Significant N-azidoacetylgalactosamine dependent T1 contrast was observed in vivo two hours after probe administration. Tumor, kidney, and liver showed significant contrast, and several other tissues, including the pancreas, spleen, heart, and intestines, showed a very high contrast (>10-fold). This approach has the potential to enable the rapid and non-invasive magnetic resonance imaging of glycosylated tissues in vivo in preclinical models of disease.
Collapse
Affiliation(s)
- André A. Neves
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Yéléna A. Wainman
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Alan Wright
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Mikko I. Kettunen
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandNeulaniementie 270211KuopioFinland
| | - Tiago B. Rodrigues
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Sarah McGuire
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - De‐En Hu
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Flaviu Bulat
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health ScienceMolecular Imaging CenterVia Nizza 5210126TurinItaly
| | | | - Finian J. Leeper
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| |
Collapse
|
12
|
Neves AA, Wainman YA, Wright A, Kettunen MI, Rodrigues TB, McGuire S, Hu DE, Bulat F, Geninatti Crich S, Stöckmann H, Leeper FJ, Brindle KM. Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2015; 55:1286-90. [PMID: 26633082 PMCID: PMC4737346 DOI: 10.1002/anie.201509858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 11/23/2022]
Abstract
Glycosylation is a ubiquitous post‐translational modification, present in over 50 % of the proteins in the human genome,1 with important roles in cell–cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases,2 including cancer.3 We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium‐based bioorthogonal MRI probe. Significant N‐azidoacetylgalactosamine dependent T1 contrast was observed in vivo two hours after probe administration. Tumor, kidney, and liver showed significant contrast, and several other tissues, including the pancreas, spleen, heart, and intestines, showed a very high contrast (>10‐fold). This approach has the potential to enable the rapid and non‐invasive magnetic resonance imaging of glycosylated tissues in vivo in preclinical models of disease.
Collapse
Affiliation(s)
- André A Neves
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
| | - Yéléna A Wainman
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.,Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alan Wright
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Mikko I Kettunen
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Tiago B Rodrigues
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Sarah McGuire
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Flaviu Bulat
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Science, Molecular Imaging Center, Via Nizza 52, 10126, Turin, Italy
| | - Henning Stöckmann
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Finian J Leeper
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| |
Collapse
|
13
|
Cheng B, Xie R, Dong L, Chen X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. Chembiochem 2015; 17:11-27. [PMID: 26573222 DOI: 10.1002/cbic.201500344] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/14/2022]
Abstract
Cell-surface sialic acids are essential in mediating a variety of physiological and pathological processes. Sialic acid chemistry and biology remain challenging to investigate, demanding new tools for probing sialylation in living systems. The metabolic glycan labeling (MGL) strategy has emerged as an invaluable chemical biology tool that enables metabolic installation of useful functionalities into cell-surface sialoglycans by "hijacking" the sialic acid biosynthetic pathway. Here we review the principles of MGL and its applications in study and manipulation of sialic acid function, with an emphasis on recent advances.
Collapse
Affiliation(s)
- Bo Cheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ran Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lu Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|