1
|
Giacomazzo GE, Doria S, Revilla-Cuesta A, De Monte N, Pagliai M, Pietraperzia G, Valtancoli B, Torroba T, Conti L, Di Donato M, Giorgi C. Photosensitizers Based on Bichromophoric Dyads Combining Ru(II)-Polypyridyl Complexes and Dissymmetric Perylene Monoimide Derivatives: The Nontrivial Role of Ligand Substitution. Inorg Chem 2024; 63:6248-6259. [PMID: 38533555 DOI: 10.1021/acs.inorgchem.3c04569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The covalent modification of Ru(II) polypyridyl complexes (RPCs) with organic chromophores is a powerful strategy to obtain metal-based photosensitizer agents (PSs) with improved performance for application in photodynamic therapy (PDT). In this respect, perylene-imides are of particular interest due to their rich chemical-physical repertoire, and it is therefore quite surprising that their combination with RPCs has been poorly considered so far. Herein, we report on the photophysical behavior of two newly synthesized RPCs bearing a perylene monoimide appendant (PMI-Ad). Differently from the majority of RPCs-perylene-imides dyads, these chromophores are dissymmetric and are tethered to the metal centers through a single C-C bond in the 3- or 5-position of 1,10-phenanthroline (Ru-3PMI-Ad and Ru-5PMI-Ad). Both compounds show excellent singlet oxygen photosensitizing activity, with quantum yields reaching >90% in the case of Ru-3PMI-Ad. A combined spectroscopic and theoretical analysis, also involving transient absorption and luminescence lifetime measurements, demonstrates that both compounds undergo intersystem crossing on a very fast time scale (tens of picoseconds) and with high efficiency. Our results further demonstrate that the increased electron delocalization between the metal center and the PMI-Ad chromophore observed for Ru-3PMI-Ad additionally contributes to increase the singlet oxygen quantum yields by prolonging the lifetime of the triplet state.
Collapse
Affiliation(s)
- Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Sandra Doria
- European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
- CNR-ICCOM, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| | - Andrea Revilla-Cuesta
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, Burgos 09001, Spain
| | - Nicola De Monte
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Giangaetano Pietraperzia
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Tomás Torroba
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, Burgos 09001, Spain
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Mariangela Di Donato
- European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
- CNR-ICCOM, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
2
|
Zhang X, Tong W, Chen M, Xie J, Wang Y, Mo Z, Wu S, Niu Z, Li G. Synthesis, photophysical properties, and
DFT
calculation of yellow‐red phosphorescent iridium(
III
) complexes based on thiophen‐pyrimidine/pyridine derivatives. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao‐Bin Zhang
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Wan‐Yue Tong
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Meng‐Sen Chen
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Jian‐Li Xie
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Yi‐Tong Wang
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Zheng‐Rong Mo
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Shui‐Xing Wu
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Zhi‐Gang Niu
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Gao‐Nan Li
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| |
Collapse
|
3
|
Ruiz‐Zambrana C, Dubey RK, Poyatos M, Mateo‐Alonso A, Peris E. Redox-Switchable Complexes Based on Nanographene-NHCs. Chemistry 2022; 28:e202201384. [PMID: 35638131 PMCID: PMC9400984 DOI: 10.1002/chem.202201384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/22/2022]
Abstract
A series of rhodium and iridium complexes with a N-heterocyclic carbene (NHC) ligand decorated with a perylene-diimide-pyrene moiety are described. Electrochemical studies reveal that the complexes can undergo two successive one-electron reduction events, associated to the reduction of the PDI moiety attached to the NHC ligand. The reduction of the ligand produces a significant increase on its electron-donating character, as observed from the infrared spectroelectrochemical studies. The rhodium complex was tested in the [3+2] cycloaddition of diphenylcyclopropenone and methylphenylacetylene, where it displayed a redox-switchable behavior. The neutral complex showed moderate activity, which was suppressed when the catalyst was reduced.
Collapse
Affiliation(s)
- César Ruiz‐Zambrana
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Rajeev K. Dubey
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
- Ikerbasque, Basque Foundation for Science48009BilbaoSpain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| |
Collapse
|
4
|
Schmid M, Brückmann J, Bösking J, Nauroozi D, Karnahl M, Rau S, Tschierlei S. Merging of a Perylene Moiety Enables a Ru II Photosensitizer with Long-Lived Excited States and the Efficient Production of Singlet Oxygen. Chemistry 2022; 28:e202103609. [PMID: 34767288 PMCID: PMC9299699 DOI: 10.1002/chem.202103609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 01/09/2023]
Abstract
Multichromophoric systems based on a RuII polypyridine moiety containing an additional organic chromophore are of increasing interest with respect to different light-driven applications. Here, we present the synthesis and detailed characterization of a novel RuII photosensitizer, namely [(tbbpy)2 Ru((2-(perylen-3-yl)-1H-imidazo[4,5-f][1,10]-phenanthrolline))](PF6 )2 RuipPer, that includes a merged perylene dye in the back of the ip ligand. This complex features two emissive excited states as well as a long-lived (8 μs) dark state in acetonitrile solution. Compared to prototype [(bpy)3 Ru]2+ -like complexes, a strongly altered absorption (ϵ=50.3×103 M-1 cm-1 at 467 nm) and emission behavior caused by the introduction of the perylene unit is found. A combination of spectro-electrochemistry and time-resolved spectroscopy was used to elucidate the nature of the excited states. Finally, this photosensitizer was successfully used for the efficient formation of reactive singlet oxygen.
Collapse
Affiliation(s)
- Marie‐Ann Schmid
- Department of Energy ConversionInstitute of Physical and Theoretical ChemistryTechnische Universität BraunschweigRebenring 3138106BraunschweigGermany
| | - Jannik Brückmann
- Institute of Inorganic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Julian Bösking
- Institute of Inorganic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Djawed Nauroozi
- Institute of Inorganic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Michael Karnahl
- Department of Energy ConversionInstitute of Physical and Theoretical ChemistryTechnische Universität BraunschweigRebenring 3138106BraunschweigGermany
| | - Sven Rau
- Institute of Inorganic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Stefanie Tschierlei
- Department of Energy ConversionInstitute of Physical and Theoretical ChemistryTechnische Universität BraunschweigRebenring 3138106BraunschweigGermany
| |
Collapse
|
5
|
Sinha N, Jiménez J, Pfund B, Prescimone A, Piguet C, Wenger OS. A Near-Infrared-II Emissive Chromium(III) Complex. Angew Chem Int Ed Engl 2021; 60:23722-23728. [PMID: 34125469 PMCID: PMC8597102 DOI: 10.1002/anie.202106398] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The combination of π-donating amido with π-accepting pyridine coordination units in a tridentate chelate ligand causes a strong nephelauxetic effect in a homoleptic CrIII complex, which shifts its luminescence to the NIR-II spectral range. Previously explored CrIII polypyridine complexes typically emit between 727 and 778 nm (in the red to NIR-I spectral region), and ligand design strategies have so far concentrated on optimizing the ligand field strength. The present work takes a fundamentally different approach and focusses on increasing metal-ligand bond covalence to shift the ruby-like 2 E emission of CrIII to 1067 nm at 77 K.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Juan‐Ramón Jiménez
- Department of Inorganic and Analytical ChemistryUniversity of Geneva30 quai E. Ansermet1211Geneva 4Switzerland
| | - Björn Pfund
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Alessandro Prescimone
- Department of ChemistryUniversity of Basel, BPR 1096Mattenstrasse 24a4058BaselSwitzerland
| | - Claude Piguet
- Department of Inorganic and Analytical ChemistryUniversity of Geneva30 quai E. Ansermet1211Geneva 4Switzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
6
|
Sinha N, Jiménez J, Pfund B, Prescimone A, Piguet C, Wenger OS. A Near‐Infrared‐II Emissive Chromium(III) Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Narayan Sinha
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| | - Björn Pfund
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry University of Basel, BPR 1096 Mattenstrasse 24a 4058 Basel Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
7
|
Deckers J, Cardeynaels T, Lutsen L, Champagne B, Maes W. Heavy-Atom-Free Bay-Substituted Perylene Diimide Donor-Acceptor Photosensitizers. Chemphyschem 2021; 22:1488-1496. [PMID: 34031956 DOI: 10.1002/cphc.202100269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Indexed: 11/05/2022]
Abstract
Perylene diimide (PDI) dyes are extensively investigated because of their favorable photophysical characteristics for a wide range of organic material applications. Fine-tuning of the optoelectronic properties is readily achieved by functionalization of the electron-deficient PDI scaffold. Here, we present four new donor-acceptor type dyads, wherein the electron donor units - benzo[1,2-b : 4,5-b']dithiophene, 9,9-dimethyl-9,10-dihydroacridine, dithieno[3,2-b : 2',3'-d]pyrrole, and triphenylamine-are attached to the bay-positions of the PDI acceptor. Intersystem crossing occurs for these systems upon photoexcitation, without the aid of heavy atoms, resulting in singlet oxygen quantum yields up to 80 % in toluene solution. Furthermore, this feature is retained when the system is directly irradiated with energy corresponding to the intramolecular charge-transfer absorption band (at 639 nm). Geometrical optimization and (time-dependent) density functional theory calculations afford more insights into the requirements for intersystem crossing such as spin-orbit coupling, dihedral angles, the involvement of charge-transfer states, and energy level alignment.
Collapse
Affiliation(s)
- Jasper Deckers
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Tom Cardeynaels
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium.,UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Laurence Lutsen
- IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Benoît Champagne
- UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Wouter Maes
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| |
Collapse
|
8
|
Yang Y, Brückmann J, Frey W, Rau S, Karnahl M, Tschierlei S. Electron Storage Capability and Singlet Oxygen Productivity of a Ru II Photosensitizer Containing a Fused Naphthaloylenebenzene Moiety at the 1,10-Phenanthroline Ligand. Chemistry 2020; 26:17027-17034. [PMID: 32519770 PMCID: PMC7820985 DOI: 10.1002/chem.202001564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Indexed: 01/29/2023]
Abstract
As a novel rylene type dye a diimine ligand with a fully rigid and extended π-system in its backbone was prepared by directly fusing a 1,10-phenanthroline building block with 1,8-naphthalimide. The corresponding heteroleptic ruthenium photosensitizer bearing one biipo and two tbbpy ligands was synthesized and extensively analyzed by a combination of NMR, single crystal X-ray diffraction, steady-state absorption and emission, time-resolved spectroscopy and different electrochemical measurements supported by time-dependent density functional theory calculations. The cyclic and differential pulse voltammograms revealed, that the naphthaloylenebenzene moiety enables an additional second reduction of the ligand. Moreover, this ligand possesses a very broad absorption in the visible region. In the RuII complex this causes an overlap of ligand-centered and metal-to-ligand charge transfer transitions. The emission of the complex is clearly redshifted compared to the ligand emission with very long-lived excited states lifetimes of 1.7 and 24.7 μs in oxygen-free acetonitrile solution. This behavior is accompanied by a surprisingly high oxygen sensitivity. Finally, this photosensitizer was successfully applied for the effective evolution of singlet oxygen challenging some of the common RuII prototype complexes.
Collapse
Affiliation(s)
- Yingya Yang
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Jannik Brückmann
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Wolfgang Frey
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Michael Karnahl
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigGaußstraße 1738106BraunschweigGermany
| |
Collapse
|
9
|
Karges J, Chao H, Gasser G. Synthesis, Characterization, and Biological Evaluation of the Polymeric Encapsulation of a Ruthenium(II) Polypyridine Complex with Pluronic F‐127/Poloxamer‐407 for Photodynamic Therapy Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes Karges
- Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology Chimie ParisTech, PSL University, CNRS 75005 Paris France
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou People's Republic of China
| | - Gilles Gasser
- Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology Chimie ParisTech, PSL University, CNRS 75005 Paris France
| |
Collapse
|
10
|
Kuila S, Ghorai A, Samanta PK, Siram RBK, Pati SK, Narayan KS, George SJ. Red-Emitting Delayed Fluorescence and Room Temperature Phosphorescence from Core-Substituted Naphthalene Diimides. Chemistry 2019; 25:16007-16011. [PMID: 31617260 DOI: 10.1002/chem.201904651] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Unprecedented ambient triplet-mediated emission in core-substituted naphthalene diimide (cNDI) derivatives is unveiled via delayed fluorescence and room temperature phosphorescence. Carbazole core-substituted cNDIs, with a donor-acceptor design, showed deep-red triplet emission in solution processable films with high quantum yield. This study, with detailed theoretical calculations and time-resolved emission experiments, enables new design insights into the triplet harvesting of cNDIs; an important family of molecules which has been, otherwise, extensively been investigated for its n-type electronic character and tunable singlet fluorescence.
Collapse
Affiliation(s)
- Suman Kuila
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Anaranya Ghorai
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Pralok K Samanta
- Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Raja B K Siram
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Swapan K Pati
- Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - K S Narayan
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| |
Collapse
|
11
|
Amati A, Natali M, Indelli MT, Iengo E, Würthner F. Photoinduced Energy- and Electron-Transfer Processes in a Side-to-Face Ru II -Porphyrin/Perylene-bisimide Array. Chemphyschem 2019; 20:2195-2203. [PMID: 31322816 DOI: 10.1002/cphc.201900611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/19/2019] [Indexed: 11/10/2022]
Abstract
A side-to-face array DPy-gPBI[Ru(4-tBuTPP)(CO)]2 , based on a "green" perylene bisimide chromophore sandwiched between two RuII -porphyrins, has been prepared by self-assembly. Its photophysical properties have been characterized in detail by a combination of steady-state and time-resolved techniques upon selective excitation of the two different components. Different photoinduced processes are observed as a function of the excitation wavelength. Electron transfer quenching is attained upon "red light" excitation of the perylene unit, whilst an energy transfer pathway is followed upon "green light" excitation of the metallo-porphyrin moiety. Regardless of the excitation wavelength efficient population of the triplet excited state of the perylene chromophore is achieved. The photophysical results are discussed within the framework of classical electron transfer theory and compared with those of a previously reported system.
Collapse
Affiliation(s)
- Agnese Amati
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Current address: Institut de Chimie de Strasbourg, Université de Strasbourg, rue Blaise Pascal 4, 67000, Strasbourg, France
| | - Mirco Natali
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Maria Teresa Indelli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Elisabetta Iengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
12
|
Merz J, Steffen A, Nitsch J, Fink J, Schürger CB, Friedrich A, Krummenacher I, Braunschweig H, Moos M, Mims D, Lambert C, Marder TB. Synthesis, photophysical and electronic properties of tetra-donor- or acceptor-substituted ortho-perylenes displaying four reversible oxidations or reductions. Chem Sci 2019; 10:7516-7534. [PMID: 31588303 PMCID: PMC6761871 DOI: 10.1039/c9sc02420d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023] Open
Abstract
Via regioselective Ir-catalyzed C-H borylation and subsequent reactions (i.e., via Br4-Per or (BF3K)4-Per intermediates), we have introduced strong π-donors and acceptors at the 2,5,8,11-positions of perylene leading to unusual properties. Thus, incorporation of four donor diphenylamine (DPA) or four acceptor Bmes2 (mes = 2,4,6-Me3C6H2) moieties yields novel compounds which can be reversibly oxidized or reduced four times, respectively, an unprecedented behavior for monomeric perylene derivatives. Spectroelectrochemical measurements show NIR absorptions up to 3000 nm for the mono-cation radical of (DPA)4-Per and a strong electronic coupling over the perylene bridge was observed indicative of fully delocalized Robin-Day Class III behavior. Both (DPA)4-Per and (Bmes2)4-Per derivatives possess unusually long intrinsic singlet lifetimes (τ 0), e.g., 94 ns for the former one. The compounds are emissive in solution, thin films, and the solid state, with apparent Stokes shifts that are exceptionally large for perylene derivatives. Transient absorption measurements on (DPA)4-Per reveal an additional excited state, with a long lifetime of 500 μs, which sensitizes singlet oxygen effectively.
Collapse
Affiliation(s)
- Julia Merz
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Andreas Steffen
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany
| | - Jörn Nitsch
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Julian Fink
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Claudia B Schürger
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Alexandra Friedrich
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Ivo Krummenacher
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Holger Braunschweig
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Michael Moos
- Institut für Organische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - David Mims
- Institut für Organische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Christoph Lambert
- Institut für Organische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Todd B Marder
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| |
Collapse
|
13
|
Ji C, Cheng W, Yuan Q, Müllen K, Yin M. From Dyestuff Chemistry to Cancer Theranostics: The Rise of Rylenecarboximides. Acc Chem Res 2019; 52:2266-2277. [PMID: 31373482 DOI: 10.1021/acs.accounts.9b00221] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fighting cancer with the means of chemistry remains a tremendous challenge and defines a pressing societal need. Compounds based on synthetic organic dyes have long been recognized as vital tools for cancer diagnosis and therapy (theranostics). Fluorescence and photoacoustic imaging of cancer as well as cancer treatment protocols such as photodynamic and photothermal therapy are all photobased technologies that require chromophores. However, a serious drawback of most chromophoric molecules is photobleaching over the course of their use in biological environments, which severely compromises the desired theranostic effects. At this point, rylenecarboximide (RI) dyes with ultrahigh photostability hold enormous promise. RI stands for a homologous series of dyes consisting of an aromatic core and carboximide auxochromic groups. They possess high molar extinction coefficients and finely tunable photophysical properties. RIs such as perylenebiscarboxylic acid monoimide (PMI), perylenetetracarboxylic acid diimide (PDI), terrylenetetracarboxylic acid diimide (TDI), and quaterrylene tetracarboxylic acid diimide (QDI) have attracted great scientific attention as colorants, components of organic photovoltaics and organic field-effect transistors, as well as tools for biological applications. PDI has appeared as one of the most widely studied RI dyes for fluorescence bioimaging. Our recent breakthroughs including chemotherapy with PDI-based DNA intercalators and photothermal therapy guided by photoacoustic imaging using PDI, TDI, or QDI, define urgent needs for further scientific research and clinical translation. In this Account, we tackle the relationship between chemical structures and photophysical and pharmacologic properties of RIs aiming at new contrast and anticancer agents, which then lay the ground for further biomedical applications. First, we introduce the design concepts for RIs with a focus on their structure-property relationships. Chemical structure has an enormous impact on the fluorescent, chemotoxic, photodynamic, and photothermal performance of RIs. Next, based on the resulting performance criteria, we employ RIs for fluorescence and photoacoustic cancer imaging as well as cancer therapies. When carrying electron donating substituents, PDIs and PMIs possess high fluorescence quantum yield and red-shifted emission which qualifies them for use in cancer fluorescence imaging. Also, some fluorescent PDIs are combined with chemodrugs or developed into DNA intercalators for chemotherapy. PDI-based photosensitizers are prepared by "heavy atom" substitution, showing potential for photodynamic therapy. Further, photothermal agents using PDI, TDI, and QDI with near-infrared absorption and excellent photothermal conversion efficiency offer high promise in photothermal cancer therapy monitored by photoacoustic imaging. Finally, looking jointly at the outstanding properties of RIs and the demands of current biomedicine, we offer an outlook toward further modifications of RIs as a powerful and practical platform for advanced cancer theranostics as well as treatment of other diseases.
Collapse
Affiliation(s)
- Chendong Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Wenyu Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
14
|
Shamsieva AV, Musina EI, Gerasimova TP, Fayzullin RR, Kolesnikov IE, Samigullina AI, Katsyuba SA, Karasik AA, Sinyashin OG. Intriguing Near-Infrared Solid-State Luminescence of Binuclear Silver(I) Complexes Based on Pyridylphospholane Scaffolds. Inorg Chem 2019; 58:7698-7704. [DOI: 10.1021/acs.inorgchem.8b03474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aliia V. Shamsieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Elvira I. Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Tatiana P. Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Ilya E. Kolesnikov
- Center for Optical and Laser Materials Research, Research Park of St. Petersburg State University, Ulianovskaya Street 5, 198504 St. Petersburg, Russian Federation
| | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Sergey A. Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Andrey A. Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| |
Collapse
|
15
|
Liu B, Lystrom L, Cameron CG, Kilina S, McFarland SA, Sun W. Monocationic Iridium(III) Complexes with Far‐Red Charge‐Transfer Absorption and Near‐IR Emission: Synthesis, Photophysics, and Reverse Saturable Absorption. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| | - Levi Lystrom
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry University of North Carolina at Greensboro Greensboro North Carolina 27402‐6170 USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry University of North Carolina at Greensboro Greensboro North Carolina 27402‐6170 USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| |
Collapse
|
16
|
Wu C, Li Q, Zhang X, Shi C, Li G, Wang M, Li K, Yuan A. Tuning the Photophysical and Excited State Properties of Phosphorescent Iridium(III) Complexes by Polycyclic Unit Substitution. ChemistryOpen 2019; 8:339-343. [PMID: 30976474 PMCID: PMC6437813 DOI: 10.1002/open.201900041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Indexed: 01/01/2023] Open
Abstract
Two novel N-embedded polycyclic units functionalized phosphorescent iridium(III) complexes (Ir-1 and Ir-2) with substituents in different positions have been prepared. Complex Ir-1 bearing the substituent at the 3-position shows a distinct blue shift single-peak emission (524 nm) with a higher luminescence efficiency (ΦPL=42 %) and shorter emission lifetime (τ=282 ns) by comparison with 4-position substitution based complex Ir-2 (ΦPL=23 %, τ=562 ns), which exhibits a dual-peak emission (564 nm and 602 nm), and phosphorescence color can be tuned from green to yellow. In addition, DFT calculations demonstrate that unusual ligand-to-metal charge transfer (3LMCT) excited state property can be found in Ir-2, which is in contrast to metal-to-ligand charge transfer (3MLCT) excited state character in Ir-1. This result can be attribute to strong electron-donating character and 4-position substitution effect of the unit.
Collapse
Affiliation(s)
- Cuicui Wu
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China., .
| | - Qiuxia Li
- School of Material Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China.
| | - Xinghua Zhang
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China., .
| | - Chao Shi
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China., .
- School of Material Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China.
| | - Gang Li
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China., .
| | - Mingjie Wang
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China., .
| | - Kang Li
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China., .
| | - Aihua Yuan
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China., .
- School of Material Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212003P. R. China.
| |
Collapse
|
17
|
Xiao L, Fu H. Enhanced Room-Temperature Phosphorescence through Intermolecular Halogen/Hydrogen Bonding. Chemistry 2018; 25:714-723. [PMID: 30070738 DOI: 10.1002/chem.201802819] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/31/2022]
Abstract
Room-temperature phosphorescence (RTP) materials with high efficiency have attracted much attention because they have unique characteristics that cannot be realized in conventional fluorescent materials. Unfortunately, efficient RTP in metal-free organic materials is very rare and it has traditionally been considered as the feature to divide purely organic compounds from organometallic and inorganic compounds. There has been increasing research interest in the design and preparation of metal-free organic RTP materials in recent years. It has been reported that intermolecular interactions make a big difference to the photophysical behavior of organic molecules. In this regard, herein, the parameters that affect RTP efficiency are discussed, and a brief review of recent intermolecular halogen-/hydrogen-bonding strategies for efficient RTP in metal-free organic materials are provided. The opportunities and challenges are finally elaborated in the hope of guiding promising directions for the design and application of RTP materials.
Collapse
Affiliation(s)
- Lu Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Collaborative Innovation, Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| |
Collapse
|
18
|
Viable access to the triplet excited state in peryleneimide based palladium complex
$$^{\S }$$
§. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1537-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Otto S, Förster C, Wang C, Resch-Genger U, Heinze K. A Strongly Luminescent Chromium(III) Complex Acid. Chemistry 2018; 24:12555-12563. [DOI: 10.1002/chem.201802797] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Cui Wang
- Division 1.2 Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard Willstätter-Straße 11 12489 Berlin Germany
- Institut für Chemie und Biochemie; Freie Universität Berlin; 14195 Berlin Germany
| | - Ute Resch-Genger
- Division 1.2 Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard Willstätter-Straße 11 12489 Berlin Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
20
|
Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| | - Qin Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Xinghua Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Wenyan Yin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Zhihua Gan
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| |
Collapse
|
21
|
Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. Angew Chem Int Ed Engl 2018; 57:11384-11388. [DOI: 10.1002/anie.201807602] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| | - Qin Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Xinghua Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Wenyan Yin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Zhihua Gan
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| |
Collapse
|
22
|
Wang C, Otto S, Dorn M, Kreidt E, Lebon J, Sršan L, Di Martino-Fumo P, Gerhards M, Resch-Genger U, Seitz M, Heinze K. Deuterierter molekularer Rubin mit Rekord-Lumineszenzquantenausbeute. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cui Wang
- Fachbereich Biophotonik; Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Str. 11 12489 Berlin Deutschland
- Institut für Chemie und Biochemie; Freie Universität Berlin; 14195 Berlin Deutschland
| | - Sven Otto
- Institut für Anorganische Chemie und Analytische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
- Graduiertenschule Materials Science in Mainz - MAINZ; Staudingerweg 9 55128 Mainz Deutschland
| | - Matthias Dorn
- Institut für Anorganische Chemie und Analytische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Elisabeth Kreidt
- Institut für Anorganische Chemie, Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Jakob Lebon
- Institut für Anorganische Chemie, Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Laura Sršan
- Institut für Anorganische Chemie, Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Patrick Di Martino-Fumo
- Department of Chemistry and Research Center Optimas; Universität Kaiserslautern; Erwin-Schrödinger-Str. 67663 Kaiserslautern Deutschland
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas; Universität Kaiserslautern; Erwin-Schrödinger-Str. 67663 Kaiserslautern Deutschland
| | - Ute Resch-Genger
- Fachbereich Biophotonik; Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Str. 11 12489 Berlin Deutschland
| | - Michael Seitz
- Institut für Anorganische Chemie, Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Katja Heinze
- Institut für Anorganische Chemie und Analytische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
23
|
Wang C, Otto S, Dorn M, Kreidt E, Lebon J, Sršan L, Di Martino-Fumo P, Gerhards M, Resch-Genger U, Seitz M, Heinze K. Deuterated Molecular Ruby with Record Luminescence Quantum Yield. Angew Chem Int Ed Engl 2018; 57:1112-1116. [DOI: 10.1002/anie.201711350] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Cui Wang
- Division Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
- Institut für Chemie und Biochemie; Freie Universität Berlin; 14195 Berlin Germany
| | - Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Matthias Dorn
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Elisabeth Kreidt
- Institute of Inorganic Chemistry; University of Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jakob Lebon
- Institute of Inorganic Chemistry; University of Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Laura Sršan
- Institute of Inorganic Chemistry; University of Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Patrick Di Martino-Fumo
- Department of Chemistry and Research Center Optimas; University Kaiserslautern; Erwin-Schrödinger-Strasse 67663 Kaiserslautern Germany
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas; University Kaiserslautern; Erwin-Schrödinger-Strasse 67663 Kaiserslautern Germany
| | - Ute Resch-Genger
- Division Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry; University of Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
24
|
Xu WJ, Qin YY, Wei LW, Zhang KY, Liu SJ, Zhao Q. Boron-Functionalized Phosphorescent Iridium(III) Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen-Juan Xu
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| | - Yan-Yan Qin
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| | - Liu-Wei Wei
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| | - Shu-Juan Liu
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| |
Collapse
|
25
|
Abstract
Phosphorescence is a phenomenon of delayed luminescence that corresponds to the radiative decay of the molecular triplet state. As a general property of molecules, phosphorescence represents a cornerstone problem of chemical physics due to the spin prohibition of the underlying triplet-singlet emission and because its analysis embraces a deep knowledge of electronic molecular structure. Phosphorescence is the simplest physical process which provides an example of spin-forbidden transformation with a characteristic spin selectivity and magnetic field dependence, being the model also for more complicated chemical reactions and for spin catalysis applications. The bridging of the spin prohibition in phosphorescence is commonly analyzed by perturbation theory, which considers the intensity borrowing from spin-allowed electronic transitions. In this review, we highlight the basic theoretical principles and computational aspects for the estimation of various phosphorescence parameters, like intensity, radiative rate constant, lifetime, polarization, zero-field splitting, and spin sublevel population. Qualitative aspects of the phosphorescence phenomenon are discussed in terms of concepts like structure-activity relationships, donor-acceptor interactions, vibronic activity, and the role of spin-orbit coupling under charge-transfer perturbations. We illustrate the theory and principles of computational phosphorescence by highlighting studies of classical examples like molecular nitrogen and oxygen, benzene, naphthalene and their azaderivatives, porphyrins, as well as by reviewing current research on systems like electrophosphorescent transition metal complexes, nucleobases, and amino acids. We furthermore discuss modern studies of phosphorescence that cover topics of applied relevance, like the design of novel photofunctional materials for organic light-emitting diodes (OLEDs), photovoltaic cells, chemical sensors, and bioimaging.
Collapse
Affiliation(s)
- Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Bohdan Khmelnytsky National University , 18031 Cherkasy, Ukraine
| | - Boris Minaev
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Bohdan Khmelnytsky National University , 18031 Cherkasy, Ukraine
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University , Svobodny pr. 79, 660041 Krasnoyarsk, Russia
| |
Collapse
|
26
|
Li X, Tong X, Yan H, Lu C, Zhao Q, Huang W. A Convenient Approach To Synthesizeo-Carborane-Functionalized Phosphorescent Iridium(III) Complexes for Endocellular Hypoxia Imaging. Chemistry 2016; 22:17282-17290. [DOI: 10.1002/chem.201603340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Xiao Tong
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; Nanjing 210023 P.R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; Nanjing 210023 P.R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; Nanjing 210023 P.R. China
| |
Collapse
|
27
|
Mari C, Huang H, Rubbiani R, Schulze M, Würthner F, Chao H, Gasser G. Evaluation of Perylene Bisimide-Based RuIIand IrIIIComplexes as Photosensitizers for Photodynamic Therapy. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600516] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Mari
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Huaiyi Huang
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zürich Switzerland
- Sun Yat-Sen University; Guangzhou P. R. China
| | - Riccardo Rubbiani
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Marcus Schulze
- Institut für Organische Chemie and Center for Nanosystems Chemistry; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Hui Chao
- Sun Yat-Sen University; Guangzhou P. R. China
| | - Gilles Gasser
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
28
|
Yu Z, Wu Y, Peng Q, Sun C, Chen J, Yao J, Fu H. Accessing the Triplet State in Heavy-Atom-Free Perylene Diimides. Chemistry 2016; 22:4717-22. [PMID: 26853213 DOI: 10.1002/chem.201600300] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 11/12/2022]
Abstract
Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1 . Generation of a triplet excited state (T1 ) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy-atom-free strategy to prompt the T1 ←S1 intersystem crossing (ISC) by introducing electron-donating aryl (Ar) groups at the head positions of an electron-deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron-donating ability of head-substituted aryl groups from phenyl (p-PDI) to methoxyphenyl (MeO-PDI) and then to methylthioxyphenyl (MeS-PDI). By enhancing the intramolecular charge-transfer (ICT) interaction from p-PDI to MeO-PDI, and then to MeS-PDI, singlet oxygen generation via energy-transfer reactions from T1 of PDIs to (3)O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet-generating PDIs and related rylene diimides for optoelectronic applications.
Collapse
Affiliation(s)
- Zhenyi Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yishi Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Qian Peng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chunlin Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianwei Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University, Beijing, 100048, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University, Beijing, 100048, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China.
| |
Collapse
|
29
|
Li X, Yan H, Zhao Q. Carboranes as a Tool to Tune Phosphorescence. Chemistry 2015; 22:1888-1898. [DOI: 10.1002/chem.201503456] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; Nanjing 210023 P. R. China
| |
Collapse
|
30
|
Wang S, Yan X, Cheng Z, Zhang H, Liu Y, Wang Y. Highly Efficient Near-Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene-Based Charge-Transfer Compound. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506687] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Wang S, Yan X, Cheng Z, Zhang H, Liu Y, Wang Y. Highly Efficient Near-Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene-Based Charge-Transfer Compound. Angew Chem Int Ed Engl 2015; 54:13068-72. [PMID: 26480338 DOI: 10.1002/anie.201506687] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 11/06/2022]
Abstract
Significant efforts have been made to develop high-efficiency organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) emitters with blue, green, yellow, and orange-red colors. However, efficient TADF materials with colors ranging from red, to deep-red, to near-infrared (NIR) have been rarely reported owing to the difficulty in molecular design. Herein, we report the first NIR TADF molecule TPA-DCPP (TPA=triphenylamine; DCPP=2,3-dicyanopyrazino phenanthrene) which has a small singlet-triplet splitting (ΔEST ) of 0.13 eV. Its nondoped OLED device exhibits a maximum external quantum efficiency (EQE) of 2.1 % with a Commission International de L'Éclairage (CIE) coordinate of (0.70, 0.29). Moreover, an extremely high EQE of nearly 10 % with an emission band at λ=668 nm has been achieved in the doped device, which is comparable to the most-efficient deep-red/NIR phosphorescent OLEDs with similar electroluminescent spectra.
Collapse
Affiliation(s)
- Shipan Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012 (P.R. China)
| | - Xianju Yan
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012 (P.R. China)
| | - Zong Cheng
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012 (P.R. China)
| | - Hongyu Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012 (P.R. China)
| | - Yu Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012 (P.R. China)
| | - Yue Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012 (P.R. China).
| |
Collapse
|
32
|
Otto S, Grabolle M, Förster C, Kreitner C, Resch-Genger U, Heinze K. [Cr(ddpd)2]3+: ein molekulares, wasserlösliches, hoch NIR-lumineszentes Rubin-Analogon. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504894] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Otto S, Grabolle M, Förster C, Kreitner C, Resch‐Genger U, Heinze K. [Cr(ddpd)
2
]
3+
: A Molecular, Water‐Soluble, Highly NIR‐Emissive Ruby Analogue. Angew Chem Int Ed Engl 2015; 54:11572-6. [DOI: 10.1002/anie.201504894] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Sven Otto
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg‐University of Mainz, Duesbergweg 10–14, 55128 Mainz (Germany)
| | - Markus Grabolle
- Division 1.10, Federal Institute for Materials Research and Testing (BAM), Richard‐Willstätter‐Strasse 11, 12489 Berlin (Germany)
| | - Christoph Förster
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg‐University of Mainz, Duesbergweg 10–14, 55128 Mainz (Germany)
| | - Christoph Kreitner
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg‐University of Mainz, Duesbergweg 10–14, 55128 Mainz (Germany)
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz (Germany)
| | - Ute Resch‐Genger
- Division 1.10, Federal Institute for Materials Research and Testing (BAM), Richard‐Willstätter‐Strasse 11, 12489 Berlin (Germany)
| | - Katja Heinze
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg‐University of Mainz, Duesbergweg 10–14, 55128 Mainz (Germany)
| |
Collapse
|