1
|
Milne N, Sáez-Sáez J, Nielsen AM, Dyekjaer JD, Rago D, Kristensen M, Wulff T, Borodina I. Engineering Saccharomyces cerevisiae for the de novo Production of Halogenated Tryptophan and Tryptamine Derivatives. ChemistryOpen 2023; 12:e202200266. [PMID: 36929157 PMCID: PMC10068768 DOI: 10.1002/open.202200266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The indole scaffold is a recurring structure in multiple bioactive heterocycles and natural products. Substituted indoles like the amino acid tryptophan serve as a precursor for a wide range of natural products with pharmaceutical or agrochemical applications. Inspired by the versatility of these compounds, medicinal chemists have for decades exploited indole as a core structure in the drug discovery process. With the aim of tuning the properties of lead drug candidates, regioselective halogenation of the indole scaffold is a common strategy. However, chemical halogenation is generally expensive, has a poor atom economy, lacks regioselectivity, and generates hazardous waste streams. As an alternative, in this work we engineer the industrial workhorse Saccharomyces cerevisiae for the de novo production of halogenated tryptophan and tryptamine derivatives. Functional expression of bacterial tryptophan halogenases together with a partner flavin reductase and a tryptophan decarboxylase resulted in the production of halogenated tryptophan and tryptamine with chlorine or bromine. Furthermore, by combining tryptophan halogenases, production of di-halogenated molecules was also achieved. Overall, this works paves the road for the production of new-to-nature halogenated natural products in yeast.
Collapse
Affiliation(s)
- Nicholas Milne
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Javier Sáez-Sáez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Annette Munch Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Jane Dannow Dyekjaer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Li RN, Chen SL. Mechanism for the Halogenation and Azidation of Lysine Catalyzed by Non-heme Iron BesD Enzyme. Chem Asian J 2022; 17:e202200438. [PMID: 35763338 DOI: 10.1002/asia.202200438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Indexed: 11/09/2022]
Abstract
Selective halogenation is important in synthetic chemistry. BesD, a new member of the non-heme Fe(II)/α-ketoglutarate (αKG)-dependent halogenase family, can activate the sp3 C-H bond and halogenate lysine, in particular without a carrier protein. Using the density functional calculations, a chlorination mechanism in BesD has been proposed, mainly including the formation of Cl-Fe(IV)=O through the αKG decarboxylation, the isomerization of Cl-Fe(IV)=O, the substrate hydrogen abstraction by Fe(IV)=O, and the rebound of chloro to the substrate carbon radical. The hydrogen abstraction is rate-limiting. The isomerization of Cl-Fe(IV)=O is essential for the hydrogen abstraction and the chiral selectivity. The BesD-catalyzed bromination and azidation of lysine adopt the same mechanism as the chlorination. The hardly-changed overall barriers indicate that the introduced ligands (X) do not affect the reaction rate significantly, implying that the X-introduced reactions catalyzed by BesD may be extended to other X anions.
Collapse
Affiliation(s)
- Rui-Ning Li
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 100081, Beijing, CHINA
| | - Shi-Lu Chen
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 5th, ZhongGuanCun South Street, 100081, Beijing, CHINA
| |
Collapse
|
3
|
Grünenfelder DC, Navarro R, Wang H, Fastuca NJ, Butler JR, Reisman SE. Enantioselective Synthesis of (-)-10-Hydroxyacutuminine. Angew Chem Int Ed Engl 2022; 61:e202117480. [PMID: 35112449 DOI: 10.1002/anie.202117480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/08/2022]
Abstract
An enantioselective synthesis of (-)-10-hydroxyacutuminine is reported. Central to our strategy is a photochemical [2+2] cycloaddition that forges two of the quaternary stereocenters present in the acutumine alkaloids. A subsequent retro-aldol/Dieckmann sequence furnishes the spirocyclic cyclopentenone. Efforts to chlorinate the acutumine scaffold at C10 under heterolytic or radical deoxychlorination conditions led to the synthesis of an unexpected cyclopropane-containing pentacycle.
Collapse
Affiliation(s)
- Denise C Grünenfelder
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Raul Navarro
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoxuan Wang
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nicholas J Fastuca
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John R Butler
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Li X, Zhang B, Zhao B, Wang X, Xu L, Du Y. Synthesis of 3‐Halogenated Quinolin‐2‐Ones from
N
‐Arylpropynamides
via
Hypervalent Iodine(III)−Mediated Umpolung Process. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Bingyue Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Xiaofan Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Lingzhi Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| |
Collapse
|
5
|
Grünenfelder DC, Navarro R, Wang H, Fastuca NJ, Butler JR, Reisman SE. Enantioselective Synthesis of (−)‐10‐Hydroxyacutuminine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Denise C. Grünenfelder
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Raul Navarro
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Haoxuan Wang
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Nicholas J. Fastuca
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - John R. Butler
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Sarah E. Reisman
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
6
|
Wannenmacher N, Keim N, Frey W, Peters R. Catalytic Asymmetric Chlorination of Isoxazolinones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Noah Keim
- University of Stuttgart: Universitat Stuttgart Chemistry GERMANY
| | - Wolfgang Frey
- University of Stuttgart: Universitat Stuttgart Chemistry GERMANY
| | - René Peters
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55Raum 06.301 70569 Stuttgart GERMANY
| |
Collapse
|
7
|
Thadathil DA, Varghese A, Radhakrishnan KV. The Renaissance of Electro‐Organic Synthesis for the Difunctionalization of Alkenes and Alkynes: A Sustainable Approach. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| |
Collapse
|
8
|
Rubio‐Presa R, García‐Pedrero O, López‐Matanza P, Barrio P, Rodríguez F. Dihalogenation of Alkenes Using Combinations of
N
‐Halosuccinimides and Alkali Metal Halides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rubén Rubio‐Presa
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| | - Olaya García‐Pedrero
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| | - Pablo López‐Matanza
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| | - Pablo Barrio
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| | - Félix Rodríguez
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| |
Collapse
|
9
|
Bhattacharya A, mani Shukla P, Maji B. “Haliranium Ion”‐Induced Intermolecular Friedel‐Crafts Alkylation in HFIP: Synthesis of β,β‐Diaryl α‐Halo carbonyl Compounds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Aditya Bhattacharya
- Department of Chemistry Indira Gandhi National Tribal University Amarkantak Anuppur-484886 India
| | - Pushpendra mani Shukla
- Department of Chemistry Indira Gandhi National Tribal University Amarkantak Anuppur-484886 India
| | - Biswajit Maji
- Department of Chemistry Indira Gandhi National Tribal University Amarkantak Anuppur-484886 India
| |
Collapse
|
10
|
Guria S, Daniliuc CG, Hennecke U. Brønsted Acid‐Catalyzed Enantioselective Iodocycloetherification Enabled by Triphenylphosphine Selenide Cocatalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sudip Guria
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussel Belgium
| | | | - Ulrich Hennecke
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussel Belgium
| |
Collapse
|
11
|
Chen Y, He R, Song H, Yu G, Li C, Liu Y, Wang Q. Two‐Step Protocol for Iodotrimethylsilane‐Mediated Deoxy‐Functionalization of Alcohols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuming Chen
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Ru He
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Guoqing Yu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd 262725 Shouguang People's Republic of China
| | - Chenglin Li
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd 262725 Shouguang People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| |
Collapse
|
12
|
Chen Y, Lu F, Li R, Guan Z, He Y. Visible‐light‐mediated Synthesis of Bromo‐containing Azaspirotrienediones from
N
‐phenylpropynamides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuan Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Fo‐Yun Lu
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Rui‐Xue Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
13
|
Wienhold M, Molloy JJ, Daniliuc CG, Gilmour R. Coumarins by Direct Annulation: β‐Borylacrylates as Ambiphilic C
3
‐Synthons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Max Wienhold
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - John J. Molloy
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
14
|
Wienhold M, Molloy JJ, Daniliuc CG, Gilmour R. Coumarins by Direct Annulation: β-Borylacrylates as Ambiphilic C 3 -Synthons. Angew Chem Int Ed Engl 2021; 60:685-689. [PMID: 32975367 PMCID: PMC7839779 DOI: 10.1002/anie.202012099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Modular β-borylacrylates have been validated as programmable, ambiphilic C3 -synthons in the cascade annulation of 2-halo-phenol derivatives to generate structurally and electronically diverse coumarins. Key to this [3+3] disconnection is the BPin unit which serves a dual purpose as both a traceless linker for C(sp2 )-C(sp2 ) coupling, and as a chromophore extension to enable inversion of the alkene geometry via selective energy transfer catalysis. Mild isomerisation is a pre-condition to access 3-substituted coumarins and provides a handle for divergence. The method is showcased in the synthesis of representative natural products that contain this venerable chemotype. Facile entry into π-expanded estrone derivatives modified at the A-ring is disclosed to demonstrate the potential of the method in bioassay development or in drug repurposing.
Collapse
Affiliation(s)
- Max Wienhold
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - John J. Molloy
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
15
|
Bock J, Guria S, Wedek V, Hennecke U. Enantioselective Dihalogenation of Alkenes. Chemistry 2021; 27:4517-4530. [DOI: 10.1002/chem.202003176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/01/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Jonathan Bock
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Sudip Guria
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Volker Wedek
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Ulrich Hennecke
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
16
|
Adak T, Hoffmann M, Witzel S, Rudolph M, Dreuw A, Hashmi ASK. Visible Light-Enabled sp 3 -C-H Functionalization with Chloro- and Bromoalkynes: Chemoselective Route to Vinylchlorides or Alkynes. Chemistry 2020; 26:15573-15580. [PMID: 32472581 PMCID: PMC7756539 DOI: 10.1002/chem.202001259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/26/2020] [Indexed: 12/21/2022]
Abstract
An unprecedented direct atom-economic chemo- and regioselective hydroalkylation of chloroalkynes and an sp3 -C-H alkynylation of bromoalkynes was achieved. The reaction partners are unfunctionalized ethers, alcohols, amides, and even non-activated hydrocarbons. We found that a household fluorescent bulb was able to excite a diaryl ketone, which then selectively abstracts a H-atom from an sp3 -C-H bond. The product of a formal alkyne insertion into the sp3 -C-H bond was obtained with chloroalkynes, providing valuable vinyl chlorides. The photo-organocatalytic hydrogen atom transfer strategy gives rise to a broad range of diversely functionalized olefins. When bromoalkynes are applied in the presence of a base, a chemoselectivity switch to an alkynylation is observed. This reaction can even be performed for the alkynylation of unactivated sp3 -C-H bonds, in this case with a preference of the more substituted carbon. Accompanying quantum chemical calculations indicate a vinyl radical intermediate with pronounced linear coordination of the carbon radical center, thus enabling the formation of both diastereoisomers after H-atom abstraction, suggesting that the (Z)-diastereoisomer is preferred, which supports the experimentally observed (E/Z)-distribution.
Collapse
Affiliation(s)
- Tapas Adak
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Marvin Hoffmann
- Theoretical and Computational ChemistryInterdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - Sina Witzel
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Andreas Dreuw
- Theoretical and Computational ChemistryInterdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
17
|
Lian P, Long W, Li J, Zheng Y, Wan X. Visible‐Light‐Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Wenhao Long
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
18
|
Lian P, Long W, Li J, Zheng Y, Wan X. Visible‐Light‐Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl
2. Angew Chem Int Ed Engl 2020; 59:23603-23608. [DOI: 10.1002/anie.202010801] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Wenhao Long
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
19
|
Qu Z, Zhu H, Grimme S. Mechanistic Insights for Aniline‐Catalyzed Halogenation Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng‐Wang Qu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| |
Collapse
|
20
|
Transition‐Metal‐Catalyzed Carbohalogenative 1,2‐Difunctionalization of C−C Multiple Bonds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000630] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Lv S, Yan X, Li C, Zhou S, Shoberu A, Zou J. Copper‐Catalyzed
sp
3
‐Carbon Radical/Halogen Radical Cross Coupling: Selective Halogenation of 1,3‐Dicarbonyl Compounds. ChemistrySelect 2020. [DOI: 10.1002/slct.202000947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shuai‐Shuai Lv
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences Soochow University Suzhou, Jiangsu 215123 China
| | - Xu‐Ping Yan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences Soochow University Suzhou, Jiangsu 215123 China
| | - Cheng‐Kun Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences Soochow University Suzhou, Jiangsu 215123 China
| | - Shao‐Fang Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences Soochow University Suzhou, Jiangsu 215123 China
| | - Adedamola Shoberu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences Soochow University Suzhou, Jiangsu 215123 China
| | - Jian‐Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences Soochow University Suzhou, Jiangsu 215123 China
| |
Collapse
|
22
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
23
|
Li W, Zhou P, Li G, Lin L, Feng X. Catalytic Asymmetric Halohydroxylation of α,β‐Unsaturated Ketones with Water as the Nucleophile. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Weiwei Li
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Pengfei Zhou
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Gonglin Li
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| |
Collapse
|
24
|
Exploring the Biocatalytic Potential of Fe/α‐Ketoglutarate‐Dependent Halogenases. Chemistry 2020; 26:7336-7345. [DOI: 10.1002/chem.201905752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/18/2022]
|
25
|
Sadhukhan S, Santhi J, Baire B. The α,α‐Dihalocarbonyl Building Blocks: An Avenue for New Reaction Development in Organic Synthesis. Chemistry 2020; 26:7145-7175. [DOI: 10.1002/chem.201905475] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Santu Sadhukhan
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| | - Jampani Santhi
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| | - Beeraiah Baire
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
26
|
Lee J, Kim J, Kim H, Kim EJ, Jeong HJ, Choi KY, Kim BG. Characterization of a Tryptophan 6-Halogenase from Streptomyces albus and Its Regioselectivity Determinants. Chembiochem 2020; 21:1446-1452. [PMID: 31916339 DOI: 10.1002/cbic.201900723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 11/08/2022]
Abstract
Tryptophan halogenases are found in diverse organisms and catalyze regiospecific halogenation. They play an important role in the biosynthesis of halogenated indole alkaloids, which are biologically active and of therapeutic importance. Here, a tryptophan 6-halogenase (SatH) from Streptomyces albus was characterized by using a whole-cell reaction system in Escherichia coli. SatH showed substrate specificity for chloride and bromide ions, leading to regiospecific halogenation at the C6-position of l-tryptophan. In addition, SatH exhibited higher performance in bromination than that of previously reported tryptophan halogenases in the whole-cell reaction system. Through structure-based protein mutagenesis, it has been revealed that two consecutive residues, A78/V79 in SatH and G77/I78 in PyrH, are key determinants in the regioselectivity difference between tryptophan 6- and 5-halogenases. Substituting the AV with GI residues switched the regioselectivity of SatH by moving the orientation of tryptophan. These data contribute to an understanding of the key residues that determine the regioselectivity of tryptophan halogenases.
Collapse
Affiliation(s)
- Jeongchan Lee
- School of Chemical and Biological Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joonwon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Institute of Engineering Research, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyun Kim
- School of Chemical and Biological Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Jung Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-ro 2639, Jochiwon-eup, Sejong, 30016, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, Ajou University, World cup-ro 206, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Institute of Engineering Research, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Institute of Bioengineering in Bio-Max, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Interdisciplinary Program of Bioengineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
27
|
Liu C, Zhu C, Cai Y, Yang Z, Zeng H, Chen F, Jiang H. Fluorohalogenation of
gem
‐Difluoroalkenes: Synthesis and Applications of α‐Trifluoromethyl Halides. Chemistry 2020; 26:1953-1957. [DOI: 10.1002/chem.201905445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Zhiyi Yang
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Hao Zeng
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Fulin Chen
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
28
|
Goto M, Maejima S, Yamaguchi E, Itoh A. Regioselective Carboiodination of Styrenes:
N
‐Iodosuccinimide Affords Complete Reaction Regioselectivity. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mayuki Goto
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Saki Maejima
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| |
Collapse
|
29
|
Huy PH. Lewis Base Catalysis Promoted Nucleophilic Substitutions – Recent Advances and Future Directions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter H. Huy
- Institute for Organic Chemistry Saarland University P. O. Box 151150 66041 Saarbruecken Germany
| |
Collapse
|
30
|
Zhang Q, Tiefenbacher K. Sesquiterpene Cyclizations inside the Hexameric Resorcinarene Capsule: Total Synthesis of δ‐Selinene and Mechanistic Studies. Angew Chem Int Ed Engl 2019; 58:12688-12695. [DOI: 10.1002/anie.201906753] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationCollege of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of Basel Postfach 3350, Mattenstrasse 24a 4002 Basel Switzerland
- Department of Biosystems Science and EngineeringETH Zurich Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
31
|
Zhang Q, Tiefenbacher K. Sesquiterpene Cyclizations inside the Hexameric Resorcinarene Capsule: Total Synthesis of δ‐Selinene and Mechanistic Studies. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationCollege of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of Basel Postfach 3350, Mattenstrasse 24a 4002 Basel Switzerland
- Department of Biosystems Science and EngineeringETH Zurich Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
32
|
Chen B, Yang Y, Yang Y, Liu S, Chen Q, Zeng X, Xu B. Effects of the Hydrogen Bonding Network on Electrophilic Activation and Electrode Passivation: Electrochemical Chlorination and Bromination of Aromatics. ChemElectroChem 2019. [DOI: 10.1002/celc.201900869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bocheng Chen
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| | - Yi Yang
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| | - Yuhao Yang
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| | - Shiwen Liu
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| | - Xiaojun Zeng
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| |
Collapse
|
33
|
Maji B. Stereoselective Haliranium, Thiiranium and Seleniranium Ion‐Triggered Friedel–Crafts‐Type Alkylations for Polyene Cyclizations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Maji
- Department of ChemistryIndira Gandhi National Tribal University Amarkantak – 484886 Madhya Pradesh India
| |
Collapse
|
34
|
Wedek V, Van Lommel R, Daniliuc CG, De Proft F, Hennecke U. Organokatalytische, enantioselektive Dichlorierung unfunktionalisierter Alkene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Volker Wedek
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Deutschland
| | - Ruben Van Lommel
- General Chemistry Research GroupDepartment of ChemistryVrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgien
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Deutschland
| | - Frank De Proft
- General Chemistry Research GroupDepartment of ChemistryVrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgien
| | - Ulrich Hennecke
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Deutschland
- Organic Chemistry Research GroupDepartment of Chemistry and Department of Bioengineering SciencesVrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgien
| |
Collapse
|
35
|
Wedek V, Van Lommel R, Daniliuc CG, De Proft F, Hennecke U. Organocatalytic, Enantioselective Dichlorination of Unfunctionalized Alkenes. Angew Chem Int Ed Engl 2019; 58:9239-9243. [PMID: 31012510 DOI: 10.1002/anie.201901777] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/27/2019] [Indexed: 12/14/2022]
Abstract
The use of a new class of unsymmetrical cinchona-alkaloid-based, phthalazine-bridged organocatalysts enabled the highly enantioselective dichlorination of unfunctionalized alkenes. In combination with the electrophilic chlorinating agent 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) and triethylsilyl chloride (TES-Cl) as the source of nucleophilic chloride, 1-aryl-2-alkyl alkenes were dichlorinated with enantioselectivities of up to 94:6 er. Initial mechanistic investigations suggest that no free chlorine is formed, and by replacement of the chloride by fluoride, enantioselective chlorofluorinations of alkenes are possible.
Collapse
Affiliation(s)
- Volker Wedek
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany
| | - Ruben Van Lommel
- General Chemistry Research Group, Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany
| | - Frank De Proft
- General Chemistry Research Group, Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | - Ulrich Hennecke
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany.,Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
36
|
Del Castillo E, Martínez MD, Bosnidou AE, Duhamel T, O'Broin CQ, Zhang H, Escudero-Adán EC, Martínez-Belmonte M, Muñiz K. Multiple Halogenation of Aliphatic C-H Bonds within the Hofmann-Löffler Manifold. Chemistry 2018; 24:17225-17229. [PMID: 30189118 DOI: 10.1002/chem.201804504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/17/2022]
Abstract
An innovative approach to position-selective polyhalogenation of aliphatic hydrocarbon bonds is presented. The reaction proceeded within the Hofmann-Löffler manifold with amidyl radicals as the sole mediators to induce selective 1,5- and 1,6-hydrogen-atom transfer followed by halogenation. Multiple halogenation events of up to four innate C-H bond functionalizations were accomplished. The broad applicability of this new entry into polyhalogenation and the resulting synthetic possibilities were demonstrated for a total of 27 different examples including mixed halogenations.
Collapse
Affiliation(s)
- Estefanía Del Castillo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Mario D Martínez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Alexandra E Bosnidou
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Thomas Duhamel
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Facultad de Química, Universidad de Oviedo, C/Julián Clavería, 33006, Oviedo, Spain
| | - Calvin Q O'Broin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Hongwei Zhang
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Eduardo C Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Marta Martínez-Belmonte
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
37
|
Liu C, Xue Y, Ding L, Zhang H, Yang F. Au-Catalyzed Addition of Nucleophiles to Chloroalkynes: A Regio- and Stereoselective Synthesis of (Z
)-Alkenyl Chlorides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Congrong Liu
- School of Environment Engineering; Nanjing Institute of Technology; 1 Hongjingdadao 211167 Nanjing Jiangsu China
| | - Yunbo Xue
- School of Environment Engineering; Nanjing Institute of Technology; 1 Hongjingdadao 211167 Nanjing Jiangsu China
| | - Lianghui Ding
- School of Environment Engineering; Nanjing Institute of Technology; 1 Hongjingdadao 211167 Nanjing Jiangsu China
| | - Haiyun Zhang
- School of Environment Engineering; Nanjing Institute of Technology; 1 Hongjingdadao 211167 Nanjing Jiangsu China
| | - Fulai Yang
- Department State Key Laboratory of Natural Medicines; Department of Organic Chemistry; China Pharmaceutical University; 210009 Nanjing P. R. China
| |
Collapse
|
38
|
Huy PH, Filbrich I. A General Catalytic Method for Highly Cost- and Atom-Efficient Nucleophilic Substitutions. Chemistry 2018; 24:7410-7416. [PMID: 29508466 DOI: 10.1002/chem.201800588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 02/05/2023]
Abstract
A general formamide-catalyzed protocol for the efficient transformation of alcohols into alkyl chlorides, which is promoted by substoichiometric amounts (down to 34 mol %) of inexpensive trichlorotriazine (TCT), is introduced. This is the first example of a TCT-mediated dihydroxychlorination of an OH-containing substrate (e.g., alcohols and carboxylic acids) in which all three chlorine atoms of TCT are transferred to the starting material. The consequently enhanced atom economy facilitates a significantly improved waste balance (E-factors down to 4), cost efficiency, and scalability (>50 g). Furthermore, the current procedure is distinguished by high levels of functional-group compatibility and stereoselectivity, as only weakly acidic cyanuric acid is released as exclusive byproduct. Finally, a one-pot protocol for the preparation of amines, azides, ethers, and sulfides enabled the synthesis of the drug rivastigmine with twofold SN 2 inversion, which demonstrates the high practical value of the presented method.
Collapse
Affiliation(s)
- Peter H Huy
- Institute of Organic Chemistry, Saarland University, P. O. Box 151150, 66041, Saarbruecken, Germany
| | - Isabel Filbrich
- Institute of Organic Chemistry, Saarland University, P. O. Box 151150, 66041, Saarbruecken, Germany
| |
Collapse
|
39
|
Corrado ML, Knaus T, Mutti FG. A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation. Chembiochem 2018; 19:679-686. [PMID: 29378090 PMCID: PMC5900736 DOI: 10.1002/cbic.201700653] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/23/2022]
Abstract
The styrene monooxygenase (SMO) system from Pseudomonas sp. consists of two enzymes (StyA and StyB). StyB catalyses the reduction of FAD at the expense of NADH. After the transfer of FADH2 from StyB to StyA, reaction with O2 generates FAD-OOH, which is the epoxidising agent. The wastage of redox equivalents due to partial diffusive transfer of FADH2 , the insolubility of recombinant StyB and the impossibility of expressing StyA and StyB in a 1:1 molar ratio reduce the catalytic efficiency of the natural system. Herein we present a chimeric SMO (Fus-SMO) that was obtained by genetic fusion of StyA and StyB through a flexible linker. Thanks to a combination of: 1) balanced and improved expression levels of reductase and epoxidase units, and 2) intrinsically higher specific epoxidation activity of Fus-SMO in some cases, Escherichia coli cells expressing Fus-SMO possess about 50 % higher activity for the epoxidation of styrene derivatives than E. coli cells coexpressing StyA and StyB as discrete enzymes. The epoxidation activity of purified Fus-SMO was up to three times higher than that of the two-component StyA/StyB (1:1, molar ratio) system and up to 110 times higher than that of the natural fused SMO. Determination of coupling efficiency and study of the influence of O2 pressure were also performed. Finally, Fus-SMO and formate dehydrogenase were coexpressed in E. coli and applied as a self-sufficient biocatalytic system for epoxidation on greater than 500 mg scale.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
40
|
Li Q, Zhou L, Shen XD, Yang KC, Zhang X, Dai QS, Leng HJ, Li QZ, Li JL. Stereoselective Construction of Halogenated Quaternary Carbon Centers by Brønsted Base Catalyzed [4+2] Cycloaddition of α-Haloaldehydes. Angew Chem Int Ed Engl 2018; 57:1913-1917. [DOI: 10.1002/anie.201711813] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/20/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Qiang Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Liang Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Xu-Dong Shen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Kai-Chuan Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Xiang Zhang
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Qing-Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| |
Collapse
|
41
|
Li Q, Zhou L, Shen XD, Yang KC, Zhang X, Dai QS, Leng HJ, Li QZ, Li JL. Stereoselective Construction of Halogenated Quaternary Carbon Centers by Brønsted Base Catalyzed [4+2] Cycloaddition of α-Haloaldehydes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qiang Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Liang Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Xu-Dong Shen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Kai-Chuan Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Xiang Zhang
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Qing-Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; Chengdu 610052 China
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| |
Collapse
|
42
|
Jiang HJ, Liu K, Yu J, Zhang L, Gong LZ. Switchable Stereoselectivity in Bromoaminocyclization of Olefins: Using Brønsted Acids of Anionic Chiral Cobalt(III) Complexes. Angew Chem Int Ed Engl 2017; 56:11931-11935. [PMID: 28745445 DOI: 10.1002/anie.201705066] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/30/2017] [Indexed: 01/11/2023]
Abstract
Brønsted acids of anionic chiral CoIII complexes act as bifunctional phase-transfer catalysts to shuttle the substrates across the solvent interface and control stereoselectivity. The diastereomeric chiral CoIII -templated Brønsted acids, with the same chiral ligands, enabled a switch in the enantioselective bromoaminocyclization of olefins to afford the two enantiomers of 2-substituted pyrrolidines with high enantioselectivities (up to 99:1 e.r.).
Collapse
Affiliation(s)
- Hua-Jie Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Kun Liu
- State Key Laboratory of Tea Plant Biology and Utilization and Department of Applied Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Jie Yu
- State Key Laboratory of Tea Plant Biology and Utilization and Department of Applied Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Ling Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
43
|
Jiang HJ, Liu K, Yu J, Zhang L, Gong LZ. Switchable Stereoselectivity in Bromoaminocyclization of Olefins: Using Brønsted Acids of Anionic Chiral Cobalt(III) Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hua-Jie Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Kun Liu
- State Key Laboratory of Tea Plant Biology and Utilization and Department of Applied Chemistry; Anhui Agricultural University; Hefei 230036 China
| | - Jie Yu
- State Key Laboratory of Tea Plant Biology and Utilization and Department of Applied Chemistry; Anhui Agricultural University; Hefei 230036 China
| | - Ling Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
44
|
Veiga N, Ramos JC, Seoane G, Brovetto M. Tetrahydrofuran Formation through Intramolecular Iodoetherification: Mechanistic Insights into the Neighbouring-Group Participation of an Ester. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nicolás Veiga
- Química Inorgánica; Departamento Estrella Campos; Facultad de Química; Universidad de la República; General Flores 2124 11800 Montevideo Uruguay
| | - Juan C. Ramos
- Departamento de Química Orgánica; Laboratorio de Síntesis Orgánica; Facultad de Química; Universidad de la República; General Flores 2124 11800 Montevideo Uruguay
| | - Gustavo Seoane
- Departamento de Química Orgánica; Laboratorio de Síntesis Orgánica; Facultad de Química; Universidad de la República; General Flores 2124 11800 Montevideo Uruguay
| | - Margarita Brovetto
- Departamento de Química Orgánica; Laboratorio de Síntesis Orgánica; Facultad de Química; Universidad de la República; General Flores 2124 11800 Montevideo Uruguay
| |
Collapse
|
45
|
Synthesis and Desymmetrization of meso-2,3-Diphenylpiperazine for Application in Asymmetric Transformations. ChemistrySelect 2017. [DOI: 10.1002/slct.201700488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Trost BM, Saget T, Hung CIJ. Efficient Access to Chiral Trisubstituted Aziridines via Catalytic Enantioselective Aza-Darzens Reactions. Angew Chem Int Ed Engl 2017; 56:2440-2444. [PMID: 28111864 PMCID: PMC5530870 DOI: 10.1002/anie.201607845] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/25/2016] [Indexed: 11/07/2022]
Abstract
Herein, we report a Zn-ProPhenol catalyzed aza-Darzens reaction using chlorinated aromatic ketones as nucleophilic partners for the efficient and enantioselective construction of complex trisubstituted aziridines. The α-chloro-β-aminoketone intermediates featuring a chlorinated tetrasubstituted stereocenter can be isolated in high yields and selectivities for further derivatization. Alternatively, they can be directly transformed to the corresponding aziridines in a one-pot fashion. Of note, the reaction can be run on gram-scale with low catalyst loading without impacting its efficiency. Moreover, this methodology was extended to α-bromoketones which are scarcely used in enantioselective catalysis because of their sensitivity and lack of accessibility.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA
| | - Tanguy Saget
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA
| | - Chao-I Joey Hung
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA
| |
Collapse
|
47
|
Trost BM, Saget T, Hung CIJ. Efficient Access to Chiral Trisubstituted Aziridines via Catalytic Enantioselective Aza-Darzens Reactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry; Stanford University; Stanford CA 94305-5080 USA
| | - Tanguy Saget
- Department of Chemistry; Stanford University; Stanford CA 94305-5080 USA
| | - Chao-I Joey Hung
- Department of Chemistry; Stanford University; Stanford CA 94305-5080 USA
| |
Collapse
|
48
|
Burckle AJ, Vasilev VH, Burns NZ. A Unified Approach for the Enantioselective Synthesis of the Brominated Chamigrene Sesquiterpenes. Angew Chem Int Ed Engl 2016; 55:11476-9. [PMID: 27506430 PMCID: PMC5505624 DOI: 10.1002/anie.201605722] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 11/09/2022]
Abstract
The brominated chamigrene sesquiterpenes constitute a large subclass of bromocyclohexane-containing natural products, yet no general enantioselective strategy for the synthesis of these small molecules exists. Herein we report a general strategy for accessing this family of secondary metabolites, including the enantioselective synthesis of (-)-α- and (-)-ent-β-bromochamigrene, (-)-dactylone, and (+)-aplydactone. Access to these molecules is enabled by a stereospecific bromopolyene cyclization initiated by the solvolysis of an enantiomerically enriched vicinal bromochloride.
Collapse
Affiliation(s)
- Alexander J Burckle
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Vasil H Vasilev
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Noah Z Burns
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
49
|
Burckle AJ, Vasilev VH, Burns NZ. A Unified Approach for the Enantioselective Synthesis of the Brominated Chamigrene Sesquiterpenes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander J. Burckle
- Department of Chemistry Stanford University 333 Campus Drive Stanford CA 94305 USA
| | - Vasil H. Vasilev
- Department of Chemistry Stanford University 333 Campus Drive Stanford CA 94305 USA
| | - Noah Z. Burns
- Department of Chemistry Stanford University 333 Campus Drive Stanford CA 94305 USA
| |
Collapse
|
50
|
Affiliation(s)
- Robin Meier
- Department Chemie; Ludwig-Maximilians-Universität München; 81377 München Deutschland
| | - Dirk Trauner
- Department Chemie; Ludwig-Maximilians-Universität München; 81377 München Deutschland
| |
Collapse
|