1
|
Kolb S, Werz DB. Correspondence on "Organo-Mediator Enabled Electrochemical Deuteration of Styrenes". Angew Chem Int Ed Engl 2024; 63:e202316037. [PMID: 38695672 DOI: 10.1002/anie.202316037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The recently reported electrochemical, organo-mediator enabled deuteration of styrenes, a reaction referred to as "electrochemical deuterium atom transfer", differs mechanistically from reported direct electrochemical hydrogenations/deuterations only by a mediated, homogeneous SET to the substrates. By comparing direct vs. mediated processes in general and for styrene reduction, we display that Qiu's work does not change the concept of this chemistry. Experiments with mediators and the direct reduction of examples from the reported scope show that even electron-rich substrates can be reduced when our direct protocol, published six months before Qiu's work, is applied.
Collapse
Affiliation(s)
- Simon Kolb
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Hatch CE, Chain WJ. Electrochemically Enabled Total Syntheses of Natural Products. ChemElectroChem 2023; 10:e202300140. [PMID: 38106361 PMCID: PMC10723087 DOI: 10.1002/celc.202300140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical techniques have helped to enable the total synthesis of natural products since the pioneering work of Kolbe in the mid 1800's. The electrochemical toolset grows every day and these new possibilities change the way chemists look at and think about natural products. This review provides a perspective on total syntheses wherein electrochemical techniques enabled the carbon─carbon bond formations in the skeletal assembly of important natural products, discussion of mechanistic details, and representative examples of the bond formations enabled over the last several decades. These bond formations are often distinctly different from those possible with conventional chemistries and allow assemblies complementary to other techniques.
Collapse
Affiliation(s)
- Chad E Hatch
- Chemical Biology, Memorial Sloan Kettering Cancer Center, 417 E. 68 St., New York, NY, 10065 (United States)
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716 (United States)
| |
Collapse
|
3
|
Changmai S, Sultana S, Saikia AK. Review of electrochemical transition‐metal‐catalyzed C−H functionalization reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Sumi Changmai
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology 785006 Jorhat India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | | | - Anil K. Saikia
- Indian Institute of Technology-Guwahati Department of Chemistry Guwahati 781039 Assam India
| |
Collapse
|
4
|
Chang X, Chen X, Lu S, Zhao Y, Ma Y, Zhang D, Yang L, Sun P. Electrochemical [3+2] Cycloaddition of Anilines and 1,3‐Dicarbonyl Compounds: Construction of Multisubstituted Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoqiang Chang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Xingyu Chen
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | - Sixian Lu
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Yifan Zhao
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | | | | | - Lan Yang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Peng Sun
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| |
Collapse
|
5
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
6
|
Kanchana US, Diana EJ, Mathew TV. Recent trends in Nickel‐Catalyzed C‐S Bond Formation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Thomas V Mathew
- St Thomas College Pala Chemistry Arunapuram P O 686574 Pala INDIA
| |
Collapse
|
7
|
Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. Electrochemical Oxo-Fluorosulfonylation of Alkynes under Air: Facile Access to β-Keto Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021; 60:27271-27276. [PMID: 34729882 DOI: 10.1002/anie.202112118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Indexed: 11/12/2022]
Abstract
Radical fluorosulfonylation is emerging as an appealing approach for the synthesis of sulfonyl fluorides, which have widespread applications in many fields, in particular in the context of chemical biology and drug development. Here, we report the first investigation of FSO2 radical generation under electrochemical conditions, and the establishment of a new and facile approach for the synthesis of β-keto sulfonyl fluorides via oxo-fluorosulfonylation of alkynes with sulfuryl chlorofluoride as the radical precursor and air as the oxidant. This electrochemical protocol is amenable to access two different products (β-keto sulfonyl fluorides or α-chloro-β-keto sulfonyl fluorides) with the same reactants. The β-keto sulfonyl fluoride products can be utilized as useful building blocks in the synthesis of various derivatives and heterocycles, including the first synthesis of an oxathiazole dioxide compound. Furthermore, some β-keto sulfonyl fluorides and derivatives exhibited notably potent activities against Bursaphelenchus xylophilus and Colletotrichum gloeosporioides.
Collapse
Affiliation(s)
- Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiheng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiuyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. Electrochemical Oxo‐Fluorosulfonylation of Alkynes under Air: Facile Access to β‐Keto Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yiheng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing 210037 China
| | - Qiuyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing 210037 China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing 210037 China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
9
|
Thadathil DA, Varghese A, Radhakrishnan KV. The Renaissance of Electro‐Organic Synthesis for the Difunctionalization of Alkenes and Alkynes: A Sustainable Approach. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| |
Collapse
|
10
|
Puthanveedu M, Khamraev V, Brieger L, Strohmann C, Antonchick AP. Electrochemical Dehydrogenative C(sp 2 )-H Amination. Chemistry 2021; 27:8008-8012. [PMID: 33931904 PMCID: PMC8251997 DOI: 10.1002/chem.202100960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 02/06/2023]
Abstract
A transition-metal-free direct electrolytic C-H amination involving an electrochemically generated nitrenium ion intermediate has been developed. The electrosynthesis takes place in the absence of any organoiodine catalysts and is enabled by an in situ generated electrolyte. A novel, efficient intramolecular and intermolecular C-H amination has been demonstrated using a simple reaction setup.
Collapse
Affiliation(s)
- Mahesh Puthanveedu
- Max-Planck-Institut für Molekulare PhysiologieAbteilung Chemische BiologieOtto-Hahn-Straße 1144227DortmundGermany
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieChemische BiologieOtto-Hahn-Straße 4a44221DortmundGermany
| | - Vladislav Khamraev
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieChemische BiologieOtto-Hahn-Straße 4a44221DortmundGermany
- North Caucasus Federal UniversityDepartment of Chemistry1a Pushkin St.355009StavropolRussian Federation
- Present address: D. I. Mendeleev University of Chemical Technology of Russia9 Miusskaya Square, 125047MoscowRussian Federation
| | - Lukas Brieger
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieAnorganische ChemieOtto-Hahn-Straße 644227DortmundGermany
| | - Carsten Strohmann
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieAnorganische ChemieOtto-Hahn-Straße 644227DortmundGermany
| | - Andrey P. Antonchick
- Max-Planck-Institut für Molekulare PhysiologieAbteilung Chemische BiologieOtto-Hahn-Straße 1144227DortmundGermany
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieChemische BiologieOtto-Hahn-Straße 4a44221DortmundGermany
- Nottingham Trent UniversityCollege of Science and TechnologyDepartment of Chemistry and ForensicsClifton LaneNG11 8NSNottinghamUK
| |
Collapse
|
11
|
Chen N, Xu HC. Electrochemically Driven Radical Reactions: From Direct Electrolysis to Molecular Catalysis. CHEM REC 2021; 21:2306-2319. [PMID: 33734572 DOI: 10.1002/tcr.202100048] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Organic radicals are versatile synthetic intermediates that provide reactivities and selectivities complementary to ionic species. Despite its long history, electrochemically driven radical reactions remain limited in scope. In the past few years, there have been dramatic increase in research activity in organic electrochemistry. We have been developing electrochemical and electrophotocatalytic methods for the generation and synthetic utilization of organic radicals. In our studies, various radical species such as alkene and arene radical cations and carbon- and heteroatom-centered radicals are generated from readily available precursors through direct electrolysis, molecular electrocatalysis or molecular electrophotocatalysis. These radical species undergo various inter- and intramolecular oxidative transformations to rapidly increase molecular complexity. The simultaneous occurrence of anodic oxidation and cathodic proton reduction allows the oxidative reactions to proceed through H2 evolution without external chemical oxidants.
Collapse
Affiliation(s)
- Na Chen
- School of Medicine, Huaqiao University, Xiamen, 361021, China
| | - Hai-Chao Xu
- Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
12
|
Luo J, Hu B, Wu W, Hu M, Liu TL. Nickel‐Catalyzed Electrochemical C(sp
3
)−C(sp
2
) Cross‐Coupling Reactions of Benzyl Trifluoroborate and Organic Halides**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| | - Bo Hu
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| | - Wenda Wu
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| | - Maowei Hu
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| | - T. Leo Liu
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| |
Collapse
|
13
|
Luo J, Hu B, Wu W, Hu M, Liu TL. Nickel‐Catalyzed Electrochemical C(sp
3
)−C(sp
2
) Cross‐Coupling Reactions of Benzyl Trifluoroborate and Organic Halides**. Angew Chem Int Ed Engl 2021; 60:6107-6116. [DOI: 10.1002/anie.202014244] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/22/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| | - Bo Hu
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| | - Wenda Wu
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| | - Maowei Hu
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| | - T. Leo Liu
- Department of Chemistry and Biochemistry Utah State University 0300 Old Main Hill Logan UT 84322 USA
| |
Collapse
|
14
|
Sun K, Lei J, Liu Y, Liu B, Chen N. Electrochemically Enabled Intramolecular and Intermolecular Annulations of Alkynes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000876] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kai Sun
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Jia Lei
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Yingjie Liu
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Bing Liu
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Ning Chen
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| |
Collapse
|
15
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
16
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:10859-10863. [DOI: 10.1002/anie.202001571] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
17
|
Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes. Chemistry 2020; 26:3241-3246. [PMID: 31875327 PMCID: PMC7155051 DOI: 10.1002/chem.201905774] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/31/2022]
Abstract
Electrophotochemistry has enabled arene C-H trifluoromethylation with the Langlois reagent CF3 SO2 Na under mild reaction conditions. The merger of electrosynthesis and photoredox catalysis provided a chemical oxidant-free approach for the generation of the CF3 radical. The electrophotochemistry was carried out in an operationally simple manner, setting the stage for challenging C-H trifluoromethylations of unactivated arenes and heteroarenes. The robust nature of the electrophotochemical manifold was reflected by a wide scope, including electron-rich and electron-deficient benzenes, as well as naturally occurring heteroarenes. Electrophotochemical C-H trifluoromethylation was further achieved in flow with a modular electro-flow-cell equipped with an in-operando monitoring unit for on-line flow-NMR spectroscopy, providing support for the single electron transfer processes.
Collapse
Affiliation(s)
- Youai Qiu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lars H. Finger
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
18
|
Wang Y, Tian B, Ding M, Shi Z. Electrochemical Cross-Dehydrogenative Coupling between Phenols and β-Dicarbonyl Compounds: Facile Construction of Benzofurans. Chemistry 2020; 26:4297-4303. [PMID: 31900957 DOI: 10.1002/chem.201904750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 11/10/2022]
Abstract
Preparative electrochemical synthesis is an ideal method for establishing green, sustainable processes. The major benefits of an electro-organic strategy over that of conventional chemical synthesis are the avoidance of reagent waste and mild reaction conditions. Here, an intermolecular cross-dehydrogenative coupling between phenols and β-dicarbonyl compounds has been developed to build various benzofurans under undivided electrolytic conditions. Neither transition metals nor external chemical oxidants are required to facilitate the dehydrogenation and dehydration processes. The key factor in success was the use of nBu4 NBF4 as the electrolyte and hexafluoroisopropanol as the solvent, which play key roles in the cyclocondensation step. This electrolysis is scalable and can be used as a key step in drug synthesis. On the basis of several experimental results, the mechanism, particularly of the remarkable anodic oxidation and cyclization process, was illustrated.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Bailin Tian
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Mengning Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
19
|
Yu Y, Zhong J, Xu K, Yuan Y, Ye K. Recent Advances in the Electrochemical Synthesis and Functionalization of Indole Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901520] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Yu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| | - Jun‐Song Zhong
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| | - Kai Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| | - Yaofeng Yuan
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| | - Ke‐Yin Ye
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| |
Collapse
|
20
|
Wang P, Yang Z, Wu T, Xu C, Wang Z, Lei A. Electrochemical Oxidative C(sp 3 )-H/N-H Cross-Coupling for N-Mannich Bases with Hydrogen Evolution. CHEMSUSCHEM 2019; 12:3073-3077. [PMID: 30548917 DOI: 10.1002/cssc.201802676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/11/2018] [Indexed: 06/09/2023]
Abstract
N-Mannich bases are an important structure in various functional molecules. A new protocol to synthesize N-Mannich bases was established through electrochemical external-oxidant-free C(sp3 )-H/N-H cross-coupling with hydrogen evolution. Various N-methylanilines were explored in this transformation. Moreover, simple amides, heteroatom-containing amides, and succinimides were well tolerated in moderate-to-good yields. In addition, the electrochemical dehydrogenative C(sp3 )-H/N-H cross-coupling could be scaled up to 5 mmol. By using triethyl phosphite as trapping agent, the phosphorylation product was detected. At the same time, kinetic isotope effect experiments showed that the cleavage of the C-H bond is the rate-limiting step.
Collapse
Affiliation(s)
- Pan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Zhenlin Yang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Ting Wu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Chenyang Xu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Ziwei Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P.R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P.R. China
| |
Collapse
|
21
|
Shatskiy A, Lundberg H, Kärkäs MD. Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201900435] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrey Shatskiy
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Helena Lundberg
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Markus D. Kärkäs
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| |
Collapse
|
22
|
Shao X, Tian L, Wang Y. C-N Coupling of Azoles or Imides with Carbocations Generated by Electrochemical Oxidation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaoqing Shao
- Institute of Advanced Synthesis (IAS); School of Chemistry and Molecular Engineering (SCME); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing China
| | - Lifang Tian
- Institute of Advanced Synthesis (IAS); School of Chemistry and Molecular Engineering (SCME); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing China
| | - Yahui Wang
- Institute of Advanced Synthesis (IAS); School of Chemistry and Molecular Engineering (SCME); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing China
| |
Collapse
|
23
|
Nikolaienko P, Jentsch M, Kale AP, Cai Y, Rueping M. Electrochemical and Scalable Dehydrogenative C(sp
3
)−H Amination via Remote Hydrogen Atom Transfer in Batch and Continuous Flow. Chemistry 2019; 25:7177-7184. [DOI: 10.1002/chem.201806092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 03/09/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Pavlo Nikolaienko
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Marc Jentsch
- Institute of Organic ChemistryRWTH-Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ajit P. Kale
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yunfei Cai
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Institute of Organic ChemistryRWTH-Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
24
|
Electrochemical Fluoroalkynylation of Aryl Alkenes with Fluoride Ions and Alkynyltrifluoroborate Salts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Lin D, Lai Y, Huang J. Mn‐Catalyzed Electrochemical Synthesis of Quinazolinones from Primary Alcohols/Benzyl Ethers and
o
‐Aminobenzamides. ChemElectroChem 2019. [DOI: 10.1002/celc.201801502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dian‐Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P.R. CHINA
| | - Yin‐Long Lai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P.R. CHINA
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P.R. CHINA
| |
Collapse
|
26
|
Chen J, Lv S, Tian S. Electrochemical Transition-Metal-Catalyzed C-H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. CHEMSUSCHEM 2019; 12:115-132. [PMID: 30280508 DOI: 10.1002/cssc.201801946] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Transition-metal-catalyzed C-H activation has attracted much attention from the organic synthetic community because it obviates the need to prefunctionalize substrates. However, superstoichiometric chemical oxidants, such as copper- or silver-based metal oxidants, benzoquinones, organic peroxides, K2 S2 O8 , hypervalent iodine, and O2 , are required for most of the reactions. Thus, the development of environmentally benign and user-friendly C-H bond activation protocols, in the absence of chemical oxidants, are urgently desired. The inherent advantages and unique characteristics of organic electrosynthesis make fill this gap. Herein, recent progress in this area (until the end of September 2018) is summarized for different transition metals to highlight the potential sustainability of electro-organic chemistry.
Collapse
Affiliation(s)
- Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Siyu Tian
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| |
Collapse
|
27
|
Imada Y, Okada Y, Noguchi K, Chiba K. Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yasushi Imada
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Yohei Okada
- Department of Chemical Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center; Tokyo University of Agriculture and Technology; 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| |
Collapse
|
28
|
Imada Y, Okada Y, Noguchi K, Chiba K. Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives. Angew Chem Int Ed Engl 2018; 58:125-129. [PMID: 30375161 DOI: 10.1002/anie.201809454] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Indexed: 01/06/2023]
Abstract
Electrode materials can have a significant impact on the course of an electrolysis reaction. Of particular interest is that different electrodes can generate different products from the same substrate. The electrode-material-selective transformations of styrene derivatives with molecular oxygen are reported. Platinum electrodes afford carbonyl products via cleavage of olefins, whereas tetrahydrofuran formation is achieved with carbon electrodes. A variety of different styrenes are available for both reactions. Electrolysis allows straightforward and mild chemical conversions that are metal- and oxidant-free. Electrochemical measurements illuminate the different effects of platinum and carbon electrodes on styrenes. The key to the differing reactions is probably that the oxidation potentials of the substrates are lower (higher HOMO energy) on carbon electrodes than on platinum electrodes. The adsorption of the substrates on carbon electrodes can also promote tetrahydrofuran formation.
Collapse
Affiliation(s)
- Yasushi Imada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yohei Okada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
29
|
Yu H, Jiao M, Huang R, Fang X. Electrochemical Intramolecular Dehydrogenative Coupling of N
-Benzyl(thio)amides: A Direct and Facile Synthesis of 4H
-1,3-Benzoxazines and 4H
-1,3-Benzothiazines. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Yu
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| | - Mingdong Jiao
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| | - Ruohe Huang
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| | - Xiaowei Fang
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| |
Collapse
|
30
|
Zhao H, Xu P, Song J, Xu H. Cathode Material Determines Product Selectivity for Electrochemical C−H Functionalization of Biaryl Ketoximes. Angew Chem Int Ed Engl 2018; 57:15153-15156. [DOI: 10.1002/anie.201809679] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Huai‐Bo Zhao
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Pin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of MatterChinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
31
|
Gao Y, Mei H, Han J, Pan Y. Electrochemical Alkynyl/Alkenyl Migration for the Radical Difunctionalization of Alkenes. Chemistry 2018; 24:17205-17209. [DOI: 10.1002/chem.201804157] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Yongyuan Gao
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Haibo Mei
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
- Jiangsu Key Laboratory of Advanced Organic Materials; Nanjing University; Nanjing 210093 P. R. China
| | - Yi Pan
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
- Jiangsu Key Laboratory of Advanced Organic Materials; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
32
|
Zhao H, Xu P, Song J, Xu H. Cathode Material Determines Product Selectivity for Electrochemical C−H Functionalization of Biaryl Ketoximes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809679] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huai‐Bo Zhao
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Pin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of MatterChinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
33
|
Qiu Y, Stangier M, Meyer TH, Oliveira JCA, Ackermann L. Iridium-Catalyzed Electrooxidative C−H Activation by Chemoselective Redox-Catalyst Cooperation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809611] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Youai Qiu
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstrasse 2 37077 Göttingen Germany
| | - Maximilian Stangier
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstrasse 2 37077 Göttingen Germany
| | - Tjark H. Meyer
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstrasse 2 37077 Göttingen Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstrasse 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
34
|
Qiu Y, Stangier M, Meyer TH, Oliveira JCA, Ackermann L. Iridium-Catalyzed Electrooxidative C-H Activation by Chemoselective Redox-Catalyst Cooperation. Angew Chem Int Ed Engl 2018; 57:14179-14183. [PMID: 30199130 DOI: 10.1002/anie.201809611] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 01/17/2023]
Abstract
Iridium-catalyzed electrochemical C-H activation was accomplished within a cooperative catalysis manifold, setting the stage for electrooxidative C-H alkenylations through weak O-coordination. The iridium-electrocatalyzed C-H activation featured high functional-group tolerance through assistance of a metal-free redox mediator through indirect electrolysis. Detailed mechanistic insights provided strong support for an organometallic C-H cleavage and a synergistic iridium(III/I)/redox catalyst regime, enabling the use of sustainable electricity as the terminal oxidant with improved selectivity features.
Collapse
Affiliation(s)
- Youai Qiu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Maximilian Stangier
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
35
|
Wu ZJ, Li SR, Xu HC. Synthesis of N-Heterocycles by Dehydrogenative Annulation of N-Allyl Amides with 1,3-Dicarbonyl Compounds. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807683] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zheng-Jian Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory for Chemical Biology of Fujian Province; i ChEM and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Shi-Rui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory for Chemical Biology of Fujian Province; i ChEM and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory for Chemical Biology of Fujian Province; i ChEM and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
36
|
Wu ZJ, Li SR, Xu HC. Synthesis of N-Heterocycles by Dehydrogenative Annulation of N-Allyl Amides with 1,3-Dicarbonyl Compounds. Angew Chem Int Ed Engl 2018; 57:14070-14074. [DOI: 10.1002/anie.201807683] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Zheng-Jian Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory for Chemical Biology of Fujian Province; i ChEM and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Shi-Rui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory for Chemical Biology of Fujian Province; i ChEM and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory for Chemical Biology of Fujian Province; i ChEM and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
37
|
Huang MH, Hao WJ, Jiang B. Recent Advances in Radical-Enabled Bicyclization and Annulation/1,n
-Bifunctionalization Reactions. Chem Asian J 2018; 13:2958-2977. [DOI: 10.1002/asia.201801119] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Min-Hua Huang
- School of Chemistry & Materials Science; Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; Jiangsu Normal University; Xuzhou 221116 P. R. China
- Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 210009, Jiangsu P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science; Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science; Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; Jiangsu Normal University; Xuzhou 221116 P. R. China
| |
Collapse
|
38
|
Ahmed N, Khatoon S. Facile Electrochemical Intramolecular Amination of Urea-Tethered Terminal Alkenes for the Synthesis of Cyclic Ureas. ChemistryOpen 2018; 7:576-582. [PMID: 30083492 PMCID: PMC6070678 DOI: 10.1002/open.201800064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/05/2018] [Indexed: 01/11/2023] Open
Abstract
Facile intramolecular amination of unactivated alkenes has been achieved by using electricity as a catalyst that helps to generate an intermediate and accelerates formation of cyclic ureas in high yields. Using this method, no metal catalysts were used. During electrolysis, a nitrogen radical was formed at the urea substrate that cyclised with the alkene and generated a terminal carbon radical which further formed a bond with the 2,2,6,6-tetramethylpiperidine-N-oxyl radical (TEMPO). This method of electrolysis not only gives cyclic ureas but also functionalises terminal unactivated alkenes. This method can be considered to be environmentally friendly given that it avoids the issues of toxicity or complicated metal ligands and could therefore be potentially employed in green chemistry.
Collapse
Affiliation(s)
- Nisar Ahmed
- School of ChemistryCardiff UniversityCardiffCF10 3ATUK
| | - Saira Khatoon
- School of ChemistryCardiff UniversityCardiffCF10 3ATUK
- Department of ChemistryQuaid-i-Azam UniversityIslamabad45320Pakistan
| |
Collapse
|
39
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Electrifying Organic Synthesis. Angew Chem Int Ed Engl 2018; 57:5594-5619. [PMID: 29292849 PMCID: PMC5969240 DOI: 10.1002/anie.201711060] [Citation(s) in RCA: 845] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/29/2017] [Indexed: 11/21/2022]
Abstract
The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra-sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.
Collapse
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
40
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Elektrifizierung der organischen Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711060] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Sabine Möhle
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
41
|
Hou ZW, Mao ZY, Melcamu YY, Lu X, Xu HC. Electrochemical Synthesis of Imidazo-Fused N-Heteroaromatic Compounds through a C−N Bond-Forming Radical Cascade. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711876] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong-Wei Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Zhong-Yi Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Yared Yohannes Melcamu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
42
|
Hou ZW, Mao ZY, Melcamu YY, Lu X, Xu HC. Electrochemical Synthesis of Imidazo-Fused N-Heteroaromatic Compounds through a C−N Bond-Forming Radical Cascade. Angew Chem Int Ed Engl 2018; 57:1636-1639. [DOI: 10.1002/anie.201711876] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Zhong-Wei Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Zhong-Yi Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Yared Yohannes Melcamu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
43
|
Folgueiras-Amador AA, Qian XY, Xu HC, Wirth T. Catalyst- and Supporting-Electrolyte-Free Electrosynthesis of Benzothiazoles and Thiazolopyridines in Continuous Flow. Chemistry 2017; 24:487-491. [DOI: 10.1002/chem.201705016] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Indexed: 01/09/2023]
Affiliation(s)
| | - Xiang-Yang Qian
- College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Thomas Wirth
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT UK
| |
Collapse
|
44
|
Folgueiras‐Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. An Easy-to-Machine Electrochemical Flow Microreactor: Efficient Synthesis of Isoindolinone and Flow Functionalization. Angew Chem Int Ed Engl 2017; 56:15446-15450. [PMID: 29045019 PMCID: PMC5708274 DOI: 10.1002/anie.201709717] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 01/23/2023]
Abstract
Flow electrochemistry is an efficient methodology to generate radical intermediates. An electrochemical flow microreactor has been designed and manufactured to improve the efficiency of electrochemical flow reactions. With this device only little or no supporting electrolytes are needed, making processes less costly and enabling easier purification. This is demonstrated by the facile synthesis of amidyl radicals used in intramolecular hydroaminations to produce isoindolinones. The combination with inline mass spectrometry facilitates a much easier combination of chemical steps in a single flow process.
Collapse
Affiliation(s)
| | - Kai Philipps
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| | - Sébastien Guilbaud
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| | - Jarno Poelakker
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| | - Thomas Wirth
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| |
Collapse
|
45
|
Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. Ein einfach herzustellender elektrochemischer Flussmikroreaktor: effiziente Isoindolinon-Synthese und Funktionalisierung im Fluss. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709717] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ana A. Folgueiras-Amador
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| | - Kai Philipps
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| | - Sébastien Guilbaud
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| | - Jarno Poelakker
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| | - Thomas Wirth
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| |
Collapse
|
46
|
Zhao H, Liu Z, Song J, Xu H. Reagent‐Free C−H/N−H Cross‐Coupling: Regioselective Synthesis of N‐Heteroaromatics from Biaryl Aldehydes and NH
3. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Huai‐Bo Zhao
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhan‐Jiang Liu
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Hai‐Chao Xu
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
47
|
Zhao H, Liu Z, Song J, Xu H. Reagent‐Free C−H/N−H Cross‐Coupling: Regioselective Synthesis of N‐Heteroaromatics from Biaryl Aldehydes and NH
3. Angew Chem Int Ed Engl 2017; 56:12732-12735. [DOI: 10.1002/anie.201707192] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Huai‐Bo Zhao
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhan‐Jiang Liu
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Hai‐Chao Xu
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
48
|
Feng ML, Xi LY, Chen SY, Yu XQ. Electrooxidative Metal-Free Dehydrogenative α-Sulfonylation of 1H-Indole with Sodium Sulfinates. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700269] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mei-Lin Feng
- Key Laboratory of Green Chemistry and Technology; Ministry of Education; Department College of Chemistry; Sichuan University; 610064 Chengdu P. R. China
| | - Long-Yi Xi
- Key Laboratory of Green Chemistry and Technology; Ministry of Education; Department College of Chemistry; Sichuan University; 610064 Chengdu P. R. China
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology; Ministry of Education; Department College of Chemistry; Sichuan University; 610064 Chengdu P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology; Ministry of Education; Department College of Chemistry; Sichuan University; 610064 Chengdu P. R. China
| |
Collapse
|
49
|
Wu ZJ, Xu HC. Synthesis of C3-Fluorinated Oxindoles through Reagent-Free Cross-Dehydrogenative Coupling. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701329] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zheng-Jian Wu
- i ChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Hai-Chao Xu
- i ChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|
50
|
Wu ZJ, Xu HC. Synthesis of C3-Fluorinated Oxindoles through Reagent-Free Cross-Dehydrogenative Coupling. Angew Chem Int Ed Engl 2017; 56:4734-4738. [DOI: 10.1002/anie.201701329] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Zheng-Jian Wu
- i ChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Hai-Chao Xu
- i ChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|