1
|
Lin Z, Feng J, Fang L, Zhang Y, Ran Q, Zhu Q, Yu D. Transforming Commercial Polymers into Tough yet Switchable Adhesives by Trident Photoswitch Molecule Doping: Break Adhesion-Switchability Paradox. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406459. [PMID: 39118581 DOI: 10.1002/adma.202406459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Here, a trident molecule doping strategy is introduced to overcome both cohesion-adhesion trade-off and adhesion-switchability conflict, transforming commercial polymers into tough yet photo-switchable adhesives. The strategy involves initial rational design of new trident photoswitch molecules namely TAzo-3 featuring azobenzene and hydroxy-terminated alkyl chains involved rigid-soft tri-branch structure, and subsequent doping into commercial polycaprolactone (PCL) via simple blending. Unique design enables TAzo-3 as a versatile dopant, not only regulating the internal and external supramolecular interaction to balance cohesion and interface adhesion for tough bonding, but also affording marked photothermal effect to facilitate rapid adhesive melting for great photo-switchability. Thus, the optimal TAzo-3-doped PCL (TAzo-3@P) displays markedly-improved bonding performance on diverse substrates compared to linear azobenzene-doped PCL and pure PCL. Impressively, TAzo-3@P on polymethyl methacrylate (PMMA) attains large room-temperature adhesion strength of 6.7 MPa - surpassing most reported adhesives and many commercial adhesives on PMMA, along with easy photo-induced detachment with remarkable switch ratio of 2.09 × 105. Besides, TAzo-3@P can also act as "permanent" adhesives for only adhesion, demonstrating excellent multi-reusability, anti-freezing and waterproof ability. Mechanism studies unveil that the switchable adhesion is closely linked with the dopant molecule structure while rigid-soft coupled trident structures and hydroxy-terminated alkyl chains are key factors.
Collapse
Affiliation(s)
- Ziwei Lin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University Guangzhou, Guangzhou, 510006, China
| | - Jie Feng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University Guangzhou, Guangzhou, 510006, China
| | - Long Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University Guangzhou, Guangzhou, 510006, China
| | - Yang Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University Guangzhou, Guangzhou, 510006, China
| | - Qishan Ran
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University Guangzhou, Guangzhou, 510006, China
| | - Qikai Zhu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University Guangzhou, Guangzhou, 510006, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University Guangzhou, Guangzhou, 510006, China
| |
Collapse
|
2
|
Sun W, Shangguan Z, Zhang X, Dang T, Zhang ZY, Li T. Solar Efficiency of Azo-Photoswitches for Energy Conversion: A Comprehensive Assessment. CHEMSUSCHEM 2023; 16:e202300582. [PMID: 37278140 DOI: 10.1002/cssc.202300582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Photoswitches can absorb solar photons and store them as chemical energy by photoisomerization, which is regarded as a promising strategy for photochemical solar energy storage. Although many efforts have been devoted to photoswitch discovery, the solar efficiency, a critical fundamental parameter assessing the solar energy conversion ability, has attracted little attention and remains to be studied comprehensively. Here we provide a systematic evaluation of the solar efficiency of typical azo-switches including azobenzenes and azopyrazoles, and gain a comprehensive understanding on its decisive factors. All the efficiencies are found below 1.0 %, far from the proposed limits for molecular solar thermal energy storage systems. Azopyrazoles exhibit remarkably higher solar efficiencies (0.59-0.94 %) than azobenzenes (0.11-0.43 %), benefiting from largely improved quantum yield and photoisomerization yield. Light filters can be used to improve the isomerization yield but inevitably narrow the usable range of solar spectrum, and these two contradictory effects ultimately reduce solar efficiencies. We envision this conflict could be resolved through developing azo-switches that afford high isomerization yields by absorbing wide-spectrum solar energy. We hope this work could promote more efforts to improve the solar efficiency of photoswitches, which is highly relevant to the prospect for future applications.
Collapse
Affiliation(s)
- Wenjin Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
3
|
Duan HY, Han ST, Zhan TG, Liu LJ, Zhang KD. Visible-Light-Switchable Tellurium-Based Chalcogen Bonding: Photocontrolled Anion Binding and Anion Abstraction Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212707. [PMID: 36383643 DOI: 10.1002/anie.202212707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.
Collapse
Affiliation(s)
- Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Shi-Tao Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
4
|
Tang Y, Zhang Y, Chen X, Xie X, Zhou N, Dai Z, Xiong Y. Up/Down Tuning of Poly(ionic liquid)s in Aqueous Two-Phase Systems. Angew Chem Int Ed Engl 2023; 62:e202215722. [PMID: 36456527 DOI: 10.1002/anie.202215722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Thermally induced reversible up/down migration of poly(ionic liquid)s (PILs) in aqueous two-phase systems (ATPSs) was achieved for the first time in this study. Novel ATPSs were fabricated using azobenzene (Azo)- and benzyl (Bn)-modified PILs, and their upper and lower phases could be easily tuned using the grafting degree (GD) of the Azo and Bn groups. Bn-PIL with higher GDBn could go up into the upper phase and Azo-PIL come down to the lower phase when the temperature increased (>65 °C); this behavior was reversed at lower temperatures. Moreover, a reversible two-phase/single-phase transition was realized under UV irradiation. Experimental and simulation results revealed that the difference in the hydration capacity between Bn-PIL and Azo-PIL accounted for their unique phase-separation behavior. A versatile platform for fabricating ATPSs with tunable stimuli-responsive behavior can be realized based on our findings, which can broaden their applications in the fields of smart separation systems and functional material development.
Collapse
Affiliation(s)
- Yuntao Tang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yige Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xi Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xiaowen Xie
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Ning Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
5
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible-Light-Responsive Self-Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination. Angew Chem Int Ed Engl 2022; 61:e202205701. [PMID: 35972841 PMCID: PMC9541570 DOI: 10.1002/anie.202205701] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/10/2022]
Abstract
A photoswitchable ligand based on azobenzene is self-assembled with palladium(II) ions to form a [Pd2 (E-L)4 ]4+ cage. Irradiation with 470 nm light results in the near-quantitative switching to a monomeric species [Pd(Z-L)2 ]2+ , which can be reversed by irradiation with 405 nm light, or heat. The photoswitching selectivity towards the metastable isomer is significantly improved upon self-assembly, and the thermal half-life is extended from 40 days to 850 days, a promising approach for tuning photoswitching properties.
Collapse
Affiliation(s)
| | | | - Ruoming Tian
- Crystallography laboratoryMark Wainwright Analytical CentreUNSW SydneySydneyNSW 2052Australia
| | - Jason R. Price
- School of ChemistryUNSW SydneySydneyNSW 2052Australia
- ANSTOThe Australian Synchrotron800 Blackburn RdClaytonVic 3168Australia
| | | | | | | |
Collapse
|
6
|
Doronina EP, Jouikov V, Sidorkin VF. Molecular Design of Silicon‐Containing Diazenes: Absorbance of
E
and
Z
Isomers in the Near‐Infrared Region. Chemistry 2022; 28:e202201508. [DOI: 10.1002/chem.202201508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Evgeniya P. Doronina
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky st. 664033 Irkutsk Russian Federation
| | | | - Valery F. Sidorkin
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky st. 664033 Irkutsk Russian Federation
| |
Collapse
|
7
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible‐Light‐Responsive Self‐Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ray G. DiNardi
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | - Ruoming Tian
- Crystallography laboratory Mark Wainwright Analytical Centre UNSW Sydney Sydney NSW 2052 Australia
| | - Jason R. Price
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
- ANSTO The Australian Synchrotron 800 Blackburn Rd Clayton Vic 3168 Australia
| | - Mohammad Tajik
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | | |
Collapse
|
8
|
Zhang Z, Wang W, O'Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202205758. [PMID: 35524420 DOI: 10.1002/anie.202205758] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael O'Hagan
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near‐IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiwei Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - Wenhui Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | | | - Jinghong Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | - Junji Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Institute of Fine Chemicals Meilong Road 130 200237 Shanghai! CHINA
| |
Collapse
|
10
|
Belyaev A, Su B, Cheng Y, Liu Z, Khan NM, Karttunen AJ, Chou P, Koshevoy IO. Multiple Emission of Phosphonium Fluorophores Harnessed by the Pathways of Photoinduced Counterion Migration. Angew Chem Int Ed Engl 2022; 61:e202115690. [PMID: 35146862 PMCID: PMC9306779 DOI: 10.1002/anie.202115690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 01/06/2023]
Abstract
In the emerging field of intramolecular charge transfer induced counterion migration, we report the new insights into photophysical features of luminescent donor-acceptor phosphonium dyes (D-π-)n A+ [X- ] (π=-(C6 H4 )x -). The unique connectivity of the phosphorus atom affords multipolar molecules with a variable number of arms and the electronic properties of the acceptor group. In the ion-paired form, the transition from dipolar to quadrupolar configuration enhances the low energy migration-induced band by providing the additional pathways for anion motion. The multipolar architecture, adjustable lengths of the π-spacers and the nature of counterions allow for efficient tuning of the emission and achieving nearly pure white light with quantum yields around 30 %. The methyl substituent at the phosphorus atom reduces the rate of ion migration and suppresses the red shifted bands, simultaneously improving total emission intensity. The results unveil the harnessing of the multiple emission of phosphonium fluorophores by anion migration via structure and branching of donor-acceptor arms.
Collapse
Affiliation(s)
- Andrey Belyaev
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| | - Bo‐Kang Su
- Department of ChemistryNational Taiwan UniversityTaipei106Taiwan
| | - Yu‐Hsuan Cheng
- Department of ChemistryNational Taiwan UniversityTaipei106Taiwan
| | - Zong‐Ying Liu
- Department of ChemistryNational Taiwan UniversityTaipei106Taiwan
| | - Nasrulla Majid Khan
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| | - Antti J. Karttunen
- Department of Chemistry and Materials ScienceAalto-University00076AaltoFinland
| | - Pi‐Tai Chou
- Department of ChemistryNational Taiwan UniversityTaipei106Taiwan
| | - Igor O. Koshevoy
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| |
Collapse
|
11
|
Koshevoy IO, Belyaev A, Su BK, Cheng YH, Liu ZY, Khan NM, Karttunen AJ, Chou PT. Multiple emission of phosphonium fluorophores harnessed by the pathways of photoinduced counterion migration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Igor O. Koshevoy
- University of Eastern Finland Deaprtment of Chemistry Yliopistokatu 7 80101 Joensuu FINLAND
| | - Andrey Belyaev
- University of Eastern Finland: Ita-Suomen yliopisto Chemistry Joensuu FINLAND
| | - Bo-Kang Su
- National Taiwan University Chemistry TAIWAN
| | | | | | | | | | | |
Collapse
|
12
|
He Y, Shangguan Z, Zhang Z, Xie M, Yu C, Li T. Azobispyrazole Family as Photoswitches Combining (Near‐) Quantitative Bidirectional Isomerization and Widely Tunable Thermal Half‐Lives from Hours to Years**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yixin He
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhao‐Yang Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Mingchen Xie
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Tao Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
13
|
He Y, Shangguan Z, Zhang ZY, Xie M, Yu C, Li T. Azobispyrazole Family as Photoswitches Combining (Near-) Quantitative Bidirectional Isomerization and Widely Tunable Thermal Half-Lives from Hours to Years*. Angew Chem Int Ed Engl 2021; 60:16539-16546. [PMID: 33852166 DOI: 10.1002/anie.202103705] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Indexed: 11/08/2022]
Abstract
Azobenzenes are classical molecular photoswitches that have been widely used. In recent endeavors of molecular design, replacing one or both phenyl rings with heteroaromatic rings has emerged as a strategy to expand molecular diversity and access improved photoswitching properties. Many mono-heteroaryl azo molecules with unique structures and/or properties have been developed, but the potential of bis-heteroaryl architectures is far from fully exploited. We report a family of azobispyrazoles, which combine (near-)quantitative bidirectional photoconversion and widely tunable Z-isomer thermal half-lives from hours to years. The two five-membered rings remarkably weaken the intramolecular steric hindrance, providing new possibilities for engineering the geometric and electronic structure of azo photoswitches. Azobispyrazoles generally exhibit twisted Z-isomers that facilitate complete Z→E photoisomerization, and their thermal stability can be broadly adjusted regardless of the twisted shape, overcoming the conflict between photoconversion (favored by the twisted shape) and Z-isomer stability (favored by the orthogonal shape) encountered by mono-heteroaryl azo switches.
Collapse
Affiliation(s)
- Yixin He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingchen Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Kaur S, Begum N, Mohiuddin G, Kumar Pal S. Photo-Responsive Behavior of Azobenzene Based Polar Hockey-Stick-Shaped Liquid Crystals. Chemphyschem 2021; 22:1361-1370. [PMID: 33956388 DOI: 10.1002/cphc.202100215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/05/2021] [Indexed: 11/08/2022]
Abstract
A study on the photoswitching behavior of azobenzene-based polar hockey-stick-shaped liquid crystals (HSLCs) has been presented. Two new series of five phenyl rings based polar HSLCs have been designed and synthesized. Solution state photoisomerization of the synthesized materials was investigated thoroughly via UV-visible and 1 H NMR spectroscopic techniques, whereas solid-state photochromic behavior was elucidated via physical color change of the materials, solid-state UV-visible study, powder XRD, and FE-SEM techniques. The materials exhibited decent photochromic behavior for different potential applications. The thermal phase behavior of the superstructural assembly has been characterized via polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and temperature-dependent small and wide-angle X-ray scattering (SAXS/WAXS) studies. Depending upon the length of the terminal alkyl chain, nematic (N) and partially bilayer smectic A (SmAd ) phases were observed. DFT calculations revealed the favorable anti-parallel arrangement of the polar molecules that substantiate the formation of SmAd phase.
Collapse
Affiliation(s)
- Supreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli, 140306, India
| | - Nazma Begum
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli, 140306, India
| | - Golam Mohiuddin
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli, 140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli, 140306, India
| |
Collapse
|
15
|
Sánchez-León AM, Cintas P, Light ME, Palacios JC. Thermal and Photochemical Switching of Chiral Sugar Azoalkenes: A Mechanistic Interrogation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ana María Sánchez-León
- Departamento de Química Orgánica e Inorgánica; Facultad de Ciencias, and; IACYS-Unidad de Química Verde y Desarrollo Sostenible; Universidad de Extremadura; 06006 Badajoz Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica; Facultad de Ciencias, and; IACYS-Unidad de Química Verde y Desarrollo Sostenible; Universidad de Extremadura; 06006 Badajoz Spain
| | - Mark E. Light
- Department of Chemistry; Faculty of Natural and Environmental Sciences; University of Southampton; SO 17 1BJ Southampton U.K
| | - Juan Carlos Palacios
- Departamento de Química Orgánica e Inorgánica; Facultad de Ciencias, and; IACYS-Unidad de Química Verde y Desarrollo Sostenible; Universidad de Extremadura; 06006 Badajoz Spain
| |
Collapse
|
16
|
Xu G, Li S, Liu C, Wu S. Photoswitchable Adhesives Using Azobenzene‐Containing Materials. Chem Asian J 2020; 15:547-554. [DOI: 10.1002/asia.201901655] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Guofeng Xu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Shuxiu Li
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Chengwei Liu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| |
Collapse
|
17
|
Yang B, Cai F, Huang S, Yu H. Athermal and Soft Multi‐Nanopatterning of Azopolymers: Phototunable Mechanical Properties. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bowen Yang
- Department of Material Science and Engineering College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 China
| | - Feng Cai
- Department of Material Science and Engineering College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 China
| | - Shuai Huang
- Department of Material Science and Engineering College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 China
| | - Haifeng Yu
- Department of Material Science and Engineering College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 China
| |
Collapse
|
18
|
Yang B, Cai F, Huang S, Yu H. Athermal and Soft Multi‐Nanopatterning of Azopolymers: Phototunable Mechanical Properties. Angew Chem Int Ed Engl 2020; 59:4035-4042. [DOI: 10.1002/anie.201914201] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/30/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Bowen Yang
- Department of Material Science and Engineering College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 China
| | - Feng Cai
- Department of Material Science and Engineering College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 China
| | - Shuai Huang
- Department of Material Science and Engineering College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 China
| | - Haifeng Yu
- Department of Material Science and Engineering College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 China
| |
Collapse
|
19
|
Kumar P, Srivastava A, Sah C, Devi S, Venkataramani S. Arylazo‐3,5‐dimethylisoxazoles: Azoheteroarene Photoswitches Exhibiting High
Z
‐Isomer Stability, Solid‐State Photochromism, and Reversible Light‐Induced Phase Transition. Chemistry 2019; 25:11924-11932. [DOI: 10.1002/chem.201902150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Pravesh Kumar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Anjali Srivastava
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Chitranjan Sah
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Sudha Devi
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Sugumar Venkataramani
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| |
Collapse
|