1
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
2
|
Hou B, Li K, He H, Hu J, Xu Z, Xiang Q, Wang P, Chen X, Sun Z. Stable Crystalline Nanohoop Radical and Its Self-Association Promoted by van der Waals Interactions. Angew Chem Int Ed Engl 2023; 62:e202301046. [PMID: 36754831 DOI: 10.1002/anie.202301046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
A stable nanohoop radical (OR3) combining the structures of cycloparaphenylene and an olympicenyl radical is synthesized and isolated in the crystalline state. X-ray crystallographic analysis reveals that OR3 forms a unique head-to-tail dimer that further aggregates into a one-dimensional chain in the solid state. Variable-temperature NMR and concentration-dependent absorption measurements indicate that the π-dimer is not formed in solution. An energy decomposition analysis indicates that van der Waals interactions are the driving force for the self-association process, in contrast with other olympicenyl derivatives that favor π-dimerization. The physical properties in solution phase have been studied, and the stable cationic species obtained by one-electron chemical oxidation. This study offers a new molecular design to modulate the self-association of organic radicals for overcoming the spin-Peierls transition, and to prepare novel nanohoop compounds with spin-related properties.
Collapse
Affiliation(s)
- Bingxia Hou
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Huijie He
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Peng Wang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
3
|
Wang Z, Mei L, Guo C, Huang S, Shi WQ, Li X, Feng W, Li X, Yang C, Yuan L. Supramolecular Shish Kebabs: Higher Order Dimeric Structures from Ring-in-Rings Complexes with Conformational Adaptivity. Angew Chem Int Ed Engl 2023; 62:e202216690. [PMID: 36652350 DOI: 10.1002/anie.202216690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a hydrogen-bonded macrocycle and cyclobis(paraquat-o-phenylene) tetracation (o-Box) or cyclobis(paraquat-p-phenylene) tetracation (CBPQT4+ , p-Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single-crystal X-ray diffraction analysis, this ring-in-ring(s) system features the box-directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o-Box) and H5G (1 a/o-Box). Remarkably, a dimeric shish-kebab-like ring-in-rings superstructure H7G2 (1 a/o-Box) or H8G2 (1 a/p-Box) is formed from the coaxial stacking of two ring-in-rings units. The formation of such unique dimeric superstructures is attributed to the large π-surface of this 2D planar macrocycle and the conformational variation of both host and guest.
Collapse
Affiliation(s)
- Zhenwen Wang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Song Huang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China.,University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Cheng Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| |
Collapse
|
4
|
Freiberger M, Minameyer MB, Solymosi I, Frühwald S, Krug M, Xu Y, Hirsch A, Clark T, Guldi DM, von Delius M, Amsharov K, Görling A, Pérez-Ojeda ME, Drewello T. Two Rings Around One Ball: Stability and Charge Localization of [1 : 1] and [2 : 1] Complex Ions of [10]CPP and C 60/70 [ * ]. Chemistry 2023; 29:e202203734. [PMID: 36507855 DOI: 10.1002/chem.202203734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
We investigate the gas-phase chemistry of noncovalent complexes of [10]cycloparaphenylene ([10]CPP) with C60 and C70 by means of atmospheric pressure photoionization and electrospray ionization mass spectrometry. The literature-known [1 : 1] complexes, namely [10]CPP⊃C60 and [10]CPP⊃C70 , are observed as radical cations and anions. Their stability and charge distribution are studied using energy-resolved collision-induced dissociation (ER-CID). These measurements reveal that complexes with a C70 core exhibit a greater stability and, on the other hand, that the radical cations are more stable than the respective radical anions. Regarding the charge distribution, in anionic complexes charges are exclusively located on C60 or C70 , while the charges reside on [10]CPP in the case of cationic complexes. [2 : 1] complexes of the ([10]CPP2 ⊃C60/70 )+ ⋅/- ⋅ type are observed for the first time as isolated solitary gas-phase species. Here, C60 -based [2 : 1] complexes are less stable than the respective C70 analogues. By virtue of the high stability of cationic [1 : 1] complexes, [2 : 1] complexes show a strongly reduced stability of the radical cations. DFT analyses of the minimum geometries as well as molecular dynamics calculations support the experimental data. Furthermore, our novel gas-phase [2 : 1] complexes are also found in 1,2-dichlorobenzene. Insights into the thermodynamic parameters of the binding process as well as the species distribution are derived from isothermal titration calorimetry (ITC) measurements.
Collapse
Affiliation(s)
- Markus Freiberger
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Martin B Minameyer
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Iris Solymosi
- Organic Chemistry II Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Stefan Frühwald
- Theoretical Chemistry Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Marcel Krug
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Youzhi Xu
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Hirsch
- Organic Chemistry II Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Timothy Clark
- Computer-Chemistry-Center Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Dirk M Guldi
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Konstantin Amsharov
- Organic Chemistry Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Germany
| | - Andreas Görling
- Theoretical Chemistry Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - M Eugenia Pérez-Ojeda
- Organic Chemistry II Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Thomas Drewello
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Grabicki N, Fisher S, Dumele O. A Fourfold Gold(I)-Aryl Macrocycle with Hyperbolic Geometry and its Reductive Elimination to a Carbon Nanoring Host. Angew Chem Int Ed Engl 2023; 62:e202217917. [PMID: 36753601 DOI: 10.1002/anie.202217917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
An ethylene glycol-decorated [6]cyclo-meta-phenylene (CMP) macrocycle was synthesized and utilized as a subunit to construct a fourfold AuI 2 -aryl metallacycle with an overall square arrangement. The corners consist of rigid dinuclear gold(I) complexes previously known to form only triangular metallacycles. The interplay between the conformational flexibility of the [6]CMP macrocycle and the rigid dinuclear gold(I) moieties enable the square geometry, as revealed by single-crystal X-ray diffraction. The formation of the gold complex shows size-selectivity compared to an alternative route using platinum(II) corner motifs. Upon reductive elimination, an all-organic ether-decorated carbon nanoring was obtained. Investigation as a host for the complexation of large guest molecules with a suitable convex π-surfaces was accomplished using isothermal NMR binding titrations. Association constants for [6]cycloparaphenylene ([6]CPP), [7]CPP, C60 , and C70 were determined.
Collapse
Affiliation(s)
- Niklas Grabicki
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Sergey Fisher
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Oliver Dumele
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
6
|
Li N, Sun M. Optical Physical Mechanisms of Helicene Carbon Nanohoop with Möbius Topology. Chemphyschem 2023; 24:e202200846. [PMID: 36594674 DOI: 10.1002/cphc.202200846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Optical and spectral properties of carbon nanohoop with Möbius topology is of great interest in nano-science and nano-technology. And it can be imagined that it has a lot of unexpected potential application prospects. However, theoretical calculations based on some figure-of-eight helicene carbon nanohoop with Möbius topology are still insufficient. Therefore, in this paper, we theoretically study the optical and spectral properties of figure-of-eight helicene carbon nanohoop with Möbius topology. Optical and spectral properties are analyzed with visualization method of transition density matrix and charge density difference, which reveal the unique characterization of carbon nanohoop with Möbius topology. Our results can not only deepen the understanding of the optical physical mechanisms of the nanorings with mobius carbons, but also provide deeper insight on optical properties and potential design on optical nanodevices.
Collapse
Affiliation(s)
- Ning Li
- School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
| |
Collapse
|
7
|
Zhu M, Zhou Q, Cheng H, Sha Y, Bregadze VI, Yan H, Sun Z, Li X. Boron-Cluster Embedded Necklace-Shaped Nanohoops. Angew Chem Int Ed Engl 2023; 62:e202213470. [PMID: 36203221 DOI: 10.1002/anie.202213470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 12/30/2022]
Abstract
The combination of carbon-based nanohoops with other functional organic molecular structures should lead to the design of new molecular configurations with interesting properties. Here, necklace-like nanohoops embedded with carborane were synthesized for the first time. The unique deboronization of o-carborane has led to the facile preparation of ionic nanohoop compounds. Nanohoops functionalized by nido-o-carborane show excellent fluorescence emission, with a solution quantum yield of up to 90.0 % in THF and a solid-state quantum efficiency of 87.3 %, which opens an avenue for the applications of the nanohoops in OLEDs and bioimaging.
Collapse
Affiliation(s)
- Miao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Zhou
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Cheng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Sha
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Vladimir I Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences, Moscow, 119991, Russia
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Pavlović RZ, Zhiquan L, Finnegan TJ, Waudby CA, Wang X, Gunawardana VWL, Zhu X, Wong CM, Hamby T, Moore CE, Hoefer N, McComb DW, Sevov CS, Badjić JD. Closed Aromatic Tubes-Capsularenes. Angew Chem Int Ed Engl 2022; 61:e202211304. [PMID: 35981224 PMCID: PMC9825917 DOI: 10.1002/anie.202211304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/11/2023]
Abstract
In this study, we describe a synthetic method for incorporating arenes into closed tubes that we name capsularenes. First, we prepared vase-shaped molecular baskets 4-7. The baskets comprise a benzene base fused to three bicycle[2.2.1]heptane rings that extend into phthalimide (4), naphthalimide (6), and anthraceneimide sides (7), each carrying a dimethoxyethane acetal group. In the presence of catalytic trifluoroacetic acid (TFA), the acetals at top of 4, 6 and 7 change into aliphatic aldehydes followed by their intramolecular cyclization into 1,3,5-trioxane (1 H NMR spectroscopy). Such ring closure is nearly a quantitative process that furnishes differently sized capsularenes 1 (0.7×0.9 nm), 8 (0.7×1.1 nm;) and 9 (0.7×1.4 nm;) characterized by X-Ray crystallography, microcrystal electron diffraction, UV/Vis, fluorescence, cyclic voltammetry, and thermogravimetry. With exceptional rigidity, unique topology, great thermal stability, and perhaps tuneable optoelectronic characteristics, capsularenes hold promise for the construction of novel organic electronic devices.
Collapse
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Lei Zhiquan
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Tyler J. Finnegan
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | | | - Xiuze Wang
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | | | - Xingrong Zhu
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Curt M. Wong
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Taylor Hamby
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Curtis E. Moore
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Nicole Hoefer
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOH 43210USA
| | - David W. McComb
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOH 43210USA,Department of Materials Science and EngineeringThe Ohio State UniversityColumbusOH 43210USA
| | - Christo S. Sevov
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| |
Collapse
|
9
|
Bu A, Zhao Y, Xiao H, Tung C, Wu L, Cong H. A Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209449. [DOI: 10.1002/anie.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Yongye Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
10
|
Sidler E, Zwick P, Kress C, Reznikova K, Fuhr O, Fenske D, Mayor M. Intense Molar Circular Dichroism in Fully Conjugated All-Carbon Macrocyclic 1,3-Butadiyne Linked pseudo-meta [2.2]Paracyclophanes. Chemistry 2022; 28:e202201764. [PMID: 35781897 PMCID: PMC9805063 DOI: 10.1002/chem.202201764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 01/09/2023]
Abstract
The synthetic access to macrocyclic molecular topologies with interesting photophysical properties has greatly improved thanks to the successful implementation of organic and inorganic corner units. Based on recent reports, we realized that pseudo-meta [2.2]paracyclophanes (PCPs) might serve as optimal corner units for constructing 3D functional materials, owing to their efficient electronic communication, angled substituents and planar chirality. Herein, we report the synthesis, characterization and optical properties of four novel all-carbon enantiopure macrocycles bearing three to six pseudo-meta PCPs linked by 1,3-butadiyne units. The macrocycles were obtained by a single step from enantiopure, literature-known dialkyne pseudo-meta PCP and were unambiguously identified and characterized by state of the art spectroscopic methods and in part even by x-ray crystallography. By comparing the optical properties to relevant reference compounds, it is shown that the pseudo-meta PCP subunit effectively elongates the conjugated system throughout the macrocyclic backbone, such that already the smallest macrocycle consisting of only three subunits reaches a polymer-like conjugation length. Additionally, it is shown that the chiral pseudo-meta PCPs induce a remarkable chiroptical response in the respective macrocycles, reaching unprecedented high molar circular dichroism values for all-carbon macrocycles of up to 1307 L mol-1 cm-1 .
Collapse
Affiliation(s)
- Eric Sidler
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Patrick Zwick
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Charlotte Kress
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Ksenia Reznikova
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Olaf Fuhr
- Institute for Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021KarlsruheGermany
| | - Dieter Fenske
- Institute for Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021KarlsruheGermany
| | - Marcel Mayor
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- Institute for Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021KarlsruheGermany
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen University (SYSU)510275GuangzhouP. R. China
| |
Collapse
|
11
|
Pavlović RZ, Zhiquan L, Finnegan TJ, Waudby CA, Wang X, Gunawardana VWL, Zhu X, Wong CM, Hamby T, Moore CE, Hoefer N, McComb DW, Sevov CS, Badjic JD. Closed Aromatic Tubes ‐ Capsularenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Lei Zhiquan
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | | | | | - Xiuze Wang
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | | | - Xingrong Zhu
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Curt M. Wong
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Taylor Hamby
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Curtis E. Moore
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Nicole Hoefer
- The Ohio State University Center for Electron Microscopy and Analysis UNITED STATES
| | - David W McComb
- The Ohio State University Material Science and Engineering UNITED STATES
| | - Christo S. Sevov
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Jovica D Badjic
- Ohio State University Department of Chemistry 100 W. 18th Avenue 43210 Columbus UNITED STATES
| |
Collapse
|
12
|
Bhandari P, Mukherjee PS. Post‐Synthesis Conversion of an Unstable Imine Cage to a Stable Cage with Amide Moieties Towards Selective Receptor for Fluoride. Chemistry 2022; 28:e202201901. [DOI: 10.1002/chem.202201901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
13
|
Stasyuk OA, Stasyuk AJ, Solà M, Voityuk AA. The Hunter Falls Prey: Photoinduced Oxidation of C 60 in Inclusion Complex with Perfluorocycloparaphenylene. Chemphyschem 2022; 23:e202200226. [PMID: 35587716 PMCID: PMC9540460 DOI: 10.1002/cphc.202200226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Perfluorocycloparaphenylenes (PFCPPs) are cycloparaphenylenes (CPPs) in which all hydrogen atoms have been replaced by fluorine atoms. Like CPPs, PFCPPs are highly strained, hoop-shaped π-conjugated molecules. In this article, we report a computational modeling of photoinduced electron transfer processes in the inclusion complex of PF[10]CPP with C60 fullerene. Its unique feature is the favorable electron transfer from C60 to the host molecule. The photooxidation of C60 is predicted to occur on a sub-nanosecond timescale. The PF[10]CPP⊃C60 dyad is the first nanoring-fullerene complex in which C60 acts as an electron donor in the photoinduced charge separation.
Collapse
Affiliation(s)
- Olga A. Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | - Anton J. Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
| | - Alexander A. Voityuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
| |
Collapse
|
14
|
Bu A, Zhao Y, Xiao H, Tung CH, Wu LZ, Cong H. Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Yongye Zhao
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Hongyan Xiao
- Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Huan Cong
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials No.29 Zhongguancun East Road 100190 Beijing CHINA
| |
Collapse
|
15
|
Sun B, Oakley MS, Yoshida K, Yang Y, Tommasini M, Zanchi C, Lucotti A, Ferguson MJ, Hampel F, Klobukowski M, Tykwinski RR. The Effects of Ring Strain on Cyclic Tetraaryl[5]cumulenes. Chemistry 2022; 28:e202200616. [DOI: 10.1002/chem.202200616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bozheng Sun
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Meagan S. Oakley
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Kota Yoshida
- Department of Chemistry Graduate School of Science Kyoto University Kyoto 606-8502 Japan
| | - Yanwen Yang
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Matteo Tommasini
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Chiara Zanchi
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Andrea Lucotti
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | | | - Frank Hampel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) University of Erlangen-Nuremberg Nikolaus-Fiebiger Str. 10 91058 Erlangen Germany
| | | | - Rik R. Tykwinski
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| |
Collapse
|
16
|
Wang L, Nagashima Y, Abekura M, Uekusa H, Konishi G, Tanaka K. Rhodium‐Catalyzed Intermolecular Cycloaromatization Route to Cycloparaphenylenes that Exhibit Aggregation‐Induced Emission. Chemistry 2022; 28:e202200064. [DOI: 10.1002/chem.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masato Abekura
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
17
|
Nogami J, Nagashima Y, Sugiyama H, Miyamoto K, Tanaka Y, Uekusa H, Muranaka A, Uchiyama M, Tanaka K. Synthesis of Cyclophenacene‐ and Chiral‐Type Cyclophenylene‐Naphthylene Belts. Angew Chem Int Ed Engl 2022; 61:e202200800. [DOI: 10.1002/anie.202200800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | | | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama Meguro-ku Tokyo 152-8550 Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
18
|
Nogami J, Nagashima Y, Sugiyama H, Miyamoto K, Tanaka Y, Uekusa H, Muranaka A, Uchiyama M, Tanaka K. Synthesis of Cyclophenacene‐ and Chiral‐Type Cyclophenylene‐Naphthylene Belts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | | | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama Meguro-ku Tokyo 152-8550 Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
19
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung C, Wu L, Cong H. A Conjugated Figure‐of‐Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Engineering Research Center for Nanomaterials Henan University Kaifeng 475004 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
20
|
Volkmann J, Kohrs D, Bernt F, Wegner HA. Synthesis of a Substituted [10]Cycloparaphenylene through [2+2+2] Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jannis Volkmann
- Institute of Organic Chemistry Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Material Research (ZfM/LaMa) Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Daniel Kohrs
- Institute of Organic Chemistry Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Material Research (ZfM/LaMa) Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Felix Bernt
- Institute of Organic Chemistry Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Material Research (ZfM/LaMa) Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Material Research (ZfM/LaMa) Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| |
Collapse
|
21
|
Bold K, Stolte M, Shoyama K, Holzapfel M, Schmiedel A, Lambert C, Würthner F. Macrocyclic Donor–Acceptor Dyads Composed of a Perylene Bisimide Dye Surrounded by Oligothiophene Bridges. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Bold
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marco Holzapfel
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
22
|
Bold K, Stolte M, Shoyama K, Holzapfel M, Schmiedel A, Lambert C, Würthner F. Macrocyclic Donor-Acceptor Dyads Composed of a Perylene Bisimide Dye Surrounded by Oligothiophene Bridges. Angew Chem Int Ed Engl 2022; 61:e202113598. [PMID: 34669254 PMCID: PMC9299635 DOI: 10.1002/anie.202113598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 12/03/2022]
Abstract
Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum-mediated cross-coupling strategy. The crystal structure of the double bridged PBI reveals all syn-arranged thiophene units that completely enclose the planar PBI chromophore via a 12-membered macrocycle. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor-acceptor dyads show ultrafast Förster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent.
Collapse
Affiliation(s)
- Kevin Bold
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Matthias Stolte
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Kazutaka Shoyama
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Marco Holzapfel
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Alexander Schmiedel
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Christoph Lambert
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
23
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung CH, Wu LZ, Cong H. A Conjugated Figure-of-Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2021; 61:e202113334. [PMID: 34817926 DOI: 10.1002/anie.202113334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Indexed: 11/06/2022]
Abstract
A fully conjugated figure-of-eight nanohoop is presented with facile synthesis. The molecule's lemniscular skeleton features the combination of two strained oligoparaphenylene loops and a flexible cyclooctatetrathiophene core. Its rigid yet guest-adaptive cavities enable the formation of the peanut-like 1:2 host-guest complexes with C60 or C70 , which have been confirmed by X-ray crystallography and characterized in solution. Further computational studies suggest notable geometric variations and non-covalent interactions of the cavities upon binding with different fullerenes, as well as overall conjugation comparable to cycloparaphenylenes.
Collapse
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
24
|
Yang Y, Juríček M. Fullerene Wires Assembled Inside Carbon Nanohoops. Chempluschem 2021; 87:e202100468. [PMID: 34825520 PMCID: PMC9298906 DOI: 10.1002/cplu.202100468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Indexed: 01/09/2023]
Abstract
Carbon-nanohoop structures featuring one or more round-shaped cavities represent ideal supramolecular hosts for spherical fullerenes, with potential to form host-guest complexes that perform as organic semiconductors in the solid state. Due to the tight complexation between the shape-complementary hosts and guests, carbon nanohoops have the potential to shield fullerenes from water and oxygen, known to perturb the electron-transport process. Many nanohoop receptors have been found to form host-guest complexes with fullerenes. However, there is only a little or no control over the long-range order of encapsulated fullerenes in the solid state. Consequently, the potential of these complexes to perform as organic semiconductors is rarely evaluated. Herein, we present a survey of all known nanohoop-fullerene complexes, for which the solid-state structures were obtained. We discuss and propose instances where the inclusion fullerene guests form discrete supramolecular wires, which might open up possibilities for their use in electronic devices.
Collapse
Affiliation(s)
- Yong Yang
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Michal Juríček
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
25
|
Zhang L, Zhang G, Qu H, Todarwal Y, Wang Y, Norman P, Linares M, Surin M, Zhang H, Lin J, Jiang Y. Naphthodithiophene Diimide Based Chiral π‐Conjugated Nanopillar Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Li Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Guilan Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Hang Qu
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Yogesh Todarwal
- Department of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Yun Wang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics and Scientific Visualization Group, ITN Campus Norrköping Swedish e-Science Research Centre (SeRC) Linköping University 58183 Linköping Sweden
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials Centre of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons—UMONS 20 Place du Parc 7000 Mons Belgium
| | - Hui‐Jun Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Jianbin Lin
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Yun‐Bao Jiang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| |
Collapse
|
26
|
Zhang L, Zhang G, Qu H, Todarwal Y, Wang Y, Norman P, Linares M, Surin M, Zhang HJ, Lin J, Jiang YB. Naphthodithiophene Diimide Based Chiral π-Conjugated Nanopillar Molecules. Angew Chem Int Ed Engl 2021; 60:24543-24548. [PMID: 34291529 DOI: 10.1002/anie.202107893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/07/2022]
Abstract
The synthesis, structures, and properties of [4]cyclonaphthodithiophene diimides ([4]C-NDTIs) are described. NDTIs as important n-type building blocks were catenated in the α-positions of thiophene rings via an unusual electrochemical-oxidation-promoted macrocyclization route. The thiophene-thiophene junction in [4]C-NDTIs results in an ideal pillar shape. This interesting topology, along with appealing electronic and optical properties inherited from the NDTI units, endows the [4]C-NDTIs with both near-infrared (NIR) light absorptions, strong excitonic coupling, and tight encapsulation of C60 . Stable orientations of the NDTI units in the nanopillars lead to stable inherent chirality, which enables detailed circular dichroism studies on the impact of isomeric structures on π-conjugation. Remarkably, the [4]C-NDTIs maintain the strong π-π stacking abilities of NDTI units and thus adopt two-dimensional (2D) lattice arrays at the molecular level. These nanopillar molecules have great potential to mimic natural photosynthetic systems for the development of multifunctional organic materials.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Guilan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Hang Qu
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Yogesh Todarwal
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Yun Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics and Scientific Visualization Group, ITN, Campus Norrköping, Swedish e-Science Research Centre (SeRC), Linköping University, 58183, Linköping, Sweden
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, 20 Place du Parc, 7000, Mons, Belgium
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
27
|
Zeng C, Liu Y, Xue N, Jiang W, Yan S, Wang Z. Monocyclic and Dicyclic Dehydro[20]annulenes Integrated with Perylene Diimide. Angew Chem Int Ed Engl 2021; 60:19018-19023. [PMID: 34105225 DOI: 10.1002/anie.202105044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Indexed: 11/06/2022]
Abstract
A novel kind of monocyclic and dicyclic dehydro[20]annulenes exhibiting specific sizes and topologies from regioselective unilateral ortho-diethynyl PDI, is developed by Cu-catalyzed Glaser-Hay homo-coupling and cross-coupling. Through the integration of electron-deficient PDI chromophores into the dehydroannulene scaffolding, these macrocycles exhibit intense and characteristic absorption properties and the degenerated LUMO levels. The single-crystal X-ray diffraction analysis unambiguously revealed unique porous supramolecular structures, which display micropore characteristics with surface area of 120.74 m2 g-1 . A moderate electron mobility of 0.05 cm2 V-1 s-1 for chlorine-free dehydro[20]annulene based on micrometer-sized single-crystalline transistors was witnessed. The porous and yet semiconducting features signify the prospects of PDI-integrated dehydroannulenes in organic optoelectronics.
Collapse
Affiliation(s)
- Cheng Zeng
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, P. R. China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
28
|
Zeng C, Liu Y, Xue N, Jiang W, Yan S, Wang Z. Monocyclic and Dicyclic Dehydro[20]annulenes Integrated with Perylene Diimide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng Zeng
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
29
|
Yoshigoe Y, Suzaki Y, Osakada K. Cyclic Diplatinum Complex with a Tröger's Base Ligand and Reductive Elimination of a Highly Strained Ring Molecule. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Yoshigoe
- Research Laboratory of Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Yuji Suzaki
- Research Laboratory of Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Kohtaro Osakada
- Research Laboratory of Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| |
Collapse
|
30
|
Hermann M, Wassy D, Esser B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero- or Polycyclic Aromatics. Angew Chem Int Ed Engl 2021; 60:15743-15766. [PMID: 32902109 PMCID: PMC9542246 DOI: 10.1002/anie.202007024] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Indexed: 12/20/2022]
Abstract
In the last 13 years several synthetic strategies were developed that provide access to [n]cycloparaphenylenes ([n]CPPs) and related conjugated nanohoops. A number of potential applications emerged, including optoelectronic devices, and their use as templates for carbon nanomaterials and in supramolecular chemistry. To tune the structural or optoelectronic properties of carbon nanohoops beyond the size-dependent effect known for [n]CPPs, a variety of aromatic rings other than benzene were introduced. In this Review, we provide an overview of the syntheses, properties, and applications of conjugated nanohoops beyond [n]CPPs with intrinsic donor/acceptor structure or such that contain acceptor, donor, heteroaromatic or polycyclic aromatic units within the hoop as well as conjugated nanobelts.
Collapse
Affiliation(s)
- Mathias Hermann
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Daniel Wassy
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Birgit Esser
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
- Freiburg Materials Research CenterUniversity of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
31
|
Zhang X, Shi H, Zhuang G, Wang S, Wang J, Yang S, Shao X, Du P. A Highly Strained All‐Phenylene Conjoined Bismacrocycle. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyu Zhang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Hong Shi
- Department of Chemical Physics CAS Key Laboratory of Urban Pollutant Conversion Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Guilin Zhuang
- College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang Province 310032 China
| | - Shengda Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Jinyi Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Xiang Shao
- Department of Chemical Physics CAS Key Laboratory of Urban Pollutant Conversion Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| |
Collapse
|
32
|
Zhang X, Shi H, Zhuang G, Wang S, Wang J, Yang S, Shao X, Du P. A Highly Strained All-Phenylene Conjoined Bismacrocycle. Angew Chem Int Ed Engl 2021; 60:17368-17372. [PMID: 33945657 DOI: 10.1002/anie.202104669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Herein, we report the precise synthesis of a 3D highly strained all-phenylene bismacrocycle, termed conjoined (1,4)[10]cycloparaphenylenophane (SCPP[10]). This structure consists of a twisted benzene ring which is bridged twice by phenylene units anchored in two para-positions. The conjoined structure of SCPP[10] was confirmed in real space at the atomic scale by scanning tunneling microscopy. Theoretical calculations indicate that this bismacrocycle has a very high strain energy of 110.59 kcal mol-1 and the largest interphenylene torsion angle of 46.07° caused by multiple repulsive interactions. Furthermore, a 1:2 host-guest complex of SCPP[10] and [6,6]-phenyl-C61 -butyric acid methyl ester was investigated, which represents the first peanut-shaped 1:2 host-guest complex based on bismacrocycles.
Collapse
Affiliation(s)
- Xinyu Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Hong Shi
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang Province, 310032, China
| | - Shengda Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jinyi Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Xiang Shao
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
33
|
Grabicki N, Nguyen KTD, Weidner S, Dumele O. Supramolekulare Bindungstaschen in [
n
]Cyclo‐2,7‐pyrenylenen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Niklas Grabicki
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Khoa T. D. Nguyen
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Steffen Weidner
- Bundesanstalt für Materialprüfung Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Oliver Dumele
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
34
|
Grabicki N, Nguyen KTD, Weidner S, Dumele O. Confined Spaces in [n]Cyclo-2,7-pyrenylenes. Angew Chem Int Ed Engl 2021; 60:14909-14914. [PMID: 33887087 PMCID: PMC8251724 DOI: 10.1002/anie.202102809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Indexed: 12/14/2022]
Abstract
A set of strained aromatic macrocycles based on [n]cyclo-2,7-(4,5,9,10-tetrahydro)pyrenylenes is presented with size-dependent photophysical properties. The K-region of pyrene was functionalized with ethylene glycol groups to decorate the outer rim and thereby confine the space inside the macrocycle. This confined space is especially pronounced for n=5, which leads to an internal binding of up to 8.0×104 m-1 between the ether-decorated [5]cyclo-2,7-pyrenylene and shape-complementary crown ether-cation complexes. Both the ether-decorated [n]cyclo-pyrenylenes as well as one of their host-guest complexes have been structurally characterized by single-crystal X-ray analysis. In combination with computational methods the structural and thermodynamic reasons for the exceptionally strong binding have been elucidated. The presented rim confinement strategy makes cycloparaphenylenes an attractive supramolecular host family with a favorable, size-independent read-out signature and binding capabilities extending beyond fullerene guests.
Collapse
Affiliation(s)
- Niklas Grabicki
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Khoa T. D. Nguyen
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Steffen Weidner
- Bundesanstalt für MaterialprüfungFederal Institute for Material Research and TestingRichard-Willstätter-Strasse 1112489BerlinGermany
| | - Oliver Dumele
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
35
|
Stasyuk OA, Stasyuk AJ, Solà M, Voityuk AA. [10]CPP-Based Inclusion Complexes of Charged Fulleropyrrolidines. Effect of the Charge Location on the Photoinduced Electron Transfer. Chemistry 2021; 27:8737-8744. [PMID: 33780063 PMCID: PMC8251704 DOI: 10.1002/chem.202005516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 11/12/2022]
Abstract
A number of non-covalently bound donor-acceptor dyads, consisting of C60 as the electron acceptor and cycloparaphenylene (CPP) as the electron donor, have been reported. A hypsochromic shift of the charge transfer (CT) band in polar medium has been found in [10]CPP⊃Li+ @C60 . To explore this anomalous effect, we study inclusion complexes [10]CPP⊃Li+ @C60 -MP, [10]CPP⊃C60 -MPH+ , and [10]CPP⊃C60 -PPyMe+ formed by fulleropyrrolidine derivatives and [10]CPP using the DFT/TDDFT approach. We show that the introduction of a positively charged fragment into fullerene stabilizes CT states that become the lowest-lying excited states. These charge-separated states can be generated by the decay of locally excited states on a nanosecond to picosecond time scale. The distance of the charged fragment to the center of the fullerenic cage and its accessibility to the solvent determine the strength of the hypsochromic shift.
Collapse
Affiliation(s)
- Olga A. Stasyuk
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
| | - Anton J. Stasyuk
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | - Miquel Solà
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
| | - Alexander A. Voityuk
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
- Institució Catalana de Recerca i Estudis Avancats (ICREA)08010BarcelonaSpain
| |
Collapse
|
36
|
Yang Y, Blacque O, Sato S, Juríček M. Cycloparaphenylene-Phenalenyl Radical and Its Dimeric Double Nanohoop*. Angew Chem Int Ed Engl 2021; 60:13529-13535. [PMID: 33635576 PMCID: PMC8252656 DOI: 10.1002/anie.202101792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/17/2022]
Abstract
The first example of a neutral spin-delocalized carbon-nanoring radical was achieved by integration of the open-shell phenalenyl unit into cycloparaphenylene (CPP). Spin distribution in this hydrocarbon is localized primarily on the phenalenyl segment and partially on the CPP segment as a consequence of steric and electronic effects. The resulting geometry is reminiscent of a diamond ring, with pseudo-perpendicular arrangement of the radial and the planar π-surface. The phenylene rings attached directly to the phenalenyl unit give rise to a steric effect that governs a highly selective dimerization pathway, yielding a giant double nanohoop. Its π-framework made of 158 sp2 -carbon atoms was elucidated by single-crystal X-ray diffraction, which revealed a three-segment CPP-peropyrene-CPP structure. This nanocarbon shows a fluorescence profile characteristic of peropyrene, regardless of which segment gets excited. These results in conjunction with DFT suggest that adjusting the size of the CPP segments in this double nanohoop could deliver donor-acceptor systems.
Collapse
Affiliation(s)
- Yong Yang
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Olivier Blacque
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Sota Sato
- Department of Applied ChemistryThe University of TokyoHongo, Bunkyo-kuTokyo113-8656Japan
| | - Michal Juríček
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
37
|
Wang J, Ju YY, Low KH, Tan YZ, Liu J. A Molecular Transformer: A π-Conjugated Macrocycle as an Adaptable Host. Angew Chem Int Ed Engl 2021; 60:11814-11818. [PMID: 33751785 DOI: 10.1002/anie.202102637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 11/06/2022]
Abstract
Here, we report a facile method to synthesize a series of macrocycles with different conformations. The planar macrocycle dimer (1), twisted macrocycle trimer (2) and "figure-eight" tetramer (3) are clearly elucidated by X-ray single-crystal analysis, in which the electron-rich phenanthrene units offer the possibility of supramolecular assembly. As expected, in the solid state, 1 and 3 assemble into a columnar stack and an interlocking dimer, respectively, via π-π interactions between the phenanthrene units. Compared to the rigid conformation of dimer 1, the structure of tetramer 3 is more flexible due to its enlarged ring size. 3 can deform from a figure-eight into a boat-shaped geometry to host a planar electron-deficient guest using its electron-rich phenanthrene units. When assembled with spherical electron-deficient C60 , interestingly, 3 further undergoes a conformational transformation from a figure-eight to a belt shape in order to host C60 . These supramolecular assembly behaviors of 3 demonstrate that it is an adaptable macrocyclic host for both planar molecules and fullerenes.
Collapse
Affiliation(s)
- Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yang-Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kam-Hung Low
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
38
|
Wang J, Ju Y, Low K, Tan Y, Liu J. A Molecular Transformer: A π‐Conjugated Macrocycle as an Adaptable Host. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yang‐Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Kam‐Hung Low
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| |
Collapse
|
39
|
Yang Y, Blacque O, Sato S, Juríček M. Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong Yang
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Olivier Blacque
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Sota Sato
- Department of Applied Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Michal Juríček
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
40
|
Hermann M, Wassy D, Kohn J, Seitz P, Betschart MU, Grimme S, Esser B. Chiral Dibenzopentalene‐Based Conjugated Nanohoops through Stereoselective Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Daniel Wassy
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Philipp Seitz
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Martin U. Betschart
- Institut für Pharmazeutische Wissenschaften University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Birgit Esser
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
- Freiburg Materials Research Center University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
41
|
Hermann M, Wassy D, Kohn J, Seitz P, Betschart MU, Grimme S, Esser B. Chiral Dibenzopentalene-Based Conjugated Nanohoops through Stereoselective Synthesis. Angew Chem Int Ed Engl 2021; 60:10680-10689. [PMID: 33596338 PMCID: PMC8252646 DOI: 10.1002/anie.202016968] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/16/2021] [Indexed: 11/06/2022]
Abstract
Conjugated nanohoops allow to investigate the effect of radial conjugation and bending on the involved π-systems. They can possess unexpected optoelectronic properties and their radially oriented π-system makes them attractive for host-guest chemistry. Bending the π-subsystems can lead to chiral hoops. Herein, we report the stereoselective synthesis of two enantiomers of chiral conjugated nanohoops by incorporating dibenzo[a,e]pentalenes (DBPs), which are generated in the last synthetic step from enantiomerically pure diketone precursors. Owing to its bent shape, this diketone unit was used as the only bent precursor and novel "corner unit" in the synthesis of the hoops. The [6]DBP[4]Ph-hoops contain six antiaromatic DBP units and four bridging phenylene groups. The small HOMO-LUMO gap and ambipolar electrochemical character of the DBP units is reflected in the optoelectronic properties of the hoop. Electronic circular dichroism spectra and MD simulations showed that the chiral hoop did not racemize even when heated to 110 °C. Due to its large diameter, it was able to accommodate two C60 molecules, as binding studies indicate.
Collapse
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Daniel Wassy
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Philipp Seitz
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Martin U Betschart
- Institut für Pharmazeutische Wissenschaften, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| |
Collapse
|
42
|
Hermann M, Wassy D, Esser B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero‐ or Polycyclic Aromatics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Daniel Wassy
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Birgit Esser
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
- Freiburg Materials Research Center University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
43
|
Li K, Xu Z, Deng H, Zhou Z, Dang Y, Sun Z. Dimeric Cycloparaphenylenes with a Rigid Aromatic Linker. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ke Li
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Zhanqiang Xu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Han Deng
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Zhennan Zhou
- Beijing International Center for Mathematical Research Peking University Beijing 100871 China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Zhe Sun
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University 92 Weijin Road Tianjin 300072 China
| |
Collapse
|
44
|
Li K, Xu Z, Deng H, Zhou Z, Dang Y, Sun Z. Dimeric Cycloparaphenylenes with a Rigid Aromatic Linker. Angew Chem Int Ed Engl 2021; 60:7649-7653. [DOI: 10.1002/anie.202016995] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Ke Li
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Zhanqiang Xu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Han Deng
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Zhennan Zhou
- Beijing International Center for Mathematical Research Peking University Beijing 100871 China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Zhe Sun
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University 92 Weijin Road Tianjin 300072 China
| |
Collapse
|
45
|
Kajiyama K, Tsurumaki E, Wakamatsu K, Fukuhara G, Toyota S. Complexation of an Anthracene-Triptycene Nanocage Host with Fullerene Guests through CH⋅⋅⋅π Contacts. Chempluschem 2021; 86:716-722. [PMID: 33620779 DOI: 10.1002/cplu.202000816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/11/2021] [Indexed: 12/22/2022]
Abstract
A bicyclic anthracene macrocycle containing two triptycene units at the bridgehead positions was synthesized by Ni-mediated coupling of the corresponding precursor as a cage-shaped aromatic hydrocarbon host. This cage host formed an inclusion complex with C60 or C70 guest in 1 : 1 ratio in solution. The association constants (Ka ) determined by the fluorescence titration method were 1.3×104 and 3.3×105 L mol -1 for the C60 and C70 complexes, respectively, at 298 K in toluene. DFT calculations revealed that the guest molecules were included in the middle of the cavity with several CH⋅⋅⋅π contacts. The strong affinity of the cage host for the fullerene guests and the high selectivity toward C70 are discussed on the basis of spectroscopic and structural data.
Collapse
Affiliation(s)
- Kazuki Kajiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Gaku Fukuhara
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
46
|
Matsuki H, Okubo K, Takaki Y, Niihori Y, Mitsui M, Kayahara E, Yamago S, Kobayashi K. Synthesis and Properties of a Cyclohexa‐2,7‐anthrylene Ethynylene Derivative. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hironori Matsuki
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Keisuke Okubo
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Yuta Takaki
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Yoshiki Niihori
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Masaaki Mitsui
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Eiichi Kayahara
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Shigeru Yamago
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Kenji Kobayashi
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
- Research Institute of Green Science and Technology Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| |
Collapse
|
47
|
Matsuki H, Okubo K, Takaki Y, Niihori Y, Mitsui M, Kayahara E, Yamago S, Kobayashi K. Synthesis and Properties of a Cyclohexa-2,7-anthrylene Ethynylene Derivative. Angew Chem Int Ed Engl 2021; 60:998-1003. [PMID: 32981223 DOI: 10.1002/anie.202012120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Indexed: 01/05/2023]
Abstract
The synthesis of a cyclohexa-2,7-(4,5-diaryl)anthrylene ethynylene (1) was achieved for the first time by using 1,8-diaryl-3,6-diborylanthracene and 1,8-diaryl-3,6-diiodoanthracene as key synthetic intermediates. Macrocycle 1 possesses a planar conformation of approximately D6h symmetry, because of the triple-bond linker between the anthracene units at the 2,7-positions. It was confirmed that macrocycle 1, bearing bulky substituents at the outer peripheral positions, behaves as a monomeric form in solution without π-stacking self-association. Macrocycle 1 has an inner-cavity size that allows specific inclusion of [9]cycloparaphenylene ([9]CPP), but not [8]CPP or [10]CPP, through an aromatic edge-to-face CH-π interaction.
Collapse
Affiliation(s)
- Hironori Matsuki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Keisuke Okubo
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuta Takaki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yoshiki Niihori
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kenji Kobayashi
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
48
|
Mondal B, Bhandari P, Mukherjee PS. Nucleation of Tiny Silver Nanoparticles by Using a Tetrafacial Organic Molecular Barrel: Potential Use in Visible-Light-Triggered Photocatalysis. Chemistry 2020; 26:15007-15015. [PMID: 32770587 DOI: 10.1002/chem.202003390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Coordination-driven self-assembly of discrete molecular architectures of diverse shapes and sizes has been well studied in the last three decades. Use of dynamic imine bonds for designing analogous metal-free architectures has become a growing challenge recently. This article reports an organic molecular barrel (OB4R ) as a potential template for nucleation and stabilization of very tiny (<1.5 nm) Ag nanoparticles (AgNPs). Imine bond condensation of a rigid tetra-aldehyde with a flexible diamine followed by imine-bond reduction yielded the discrete tetragonal organic barrel (OB4R ). The presence of a molecular pocket ornamented with eight diamine moieties gives the potential for encapsulation of silver(I). The organic barrel was finally used as a molecular vessel for the controlled nucleation of silver nanoparticles (AgNPs) with fine size tuning through binding of AgI ions in the confined space of the barrel followed by reduction. Transmission electron microscopy (TEM) analysis of the Ag0 @OB4R composite revealed that the mean particle size is 1.44±0.16 nm. The composite material has approximately 52 wt % silver loading. The barrel-supported ultrafine AgNPs [Ag0 @OB4R ] are found to be an efficient photocatalyst for facile Ullmann-type aryl-amination coupling of haloarenes at ambient temperature without using any additives. The catalyst was stable for several cycles of reuse without any agglomeration. The new composite Ag0 @OB4R represents the first example of discrete organic barrel-supported AgNPs employed as a photocatalyst in Ullmann-type coupling reactions at room temperature.
Collapse
Affiliation(s)
- Bijnaneswar Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
49
|
Qu J, Ren F, Shi J, Tong B, Cai Z, Dong Y. The Aggregation Regularity Effect of Multiarylpyrroles on Their Near-Infrared Aggregation-Enhanced Emission Property. Chemistry 2020; 26:14947-14953. [PMID: 32602178 DOI: 10.1002/chem.202002525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Increasing the quantum yield of near-infrared (NIR) emissive dyes is critical for biological applications because these fluorescent dyes generally show decreased emission efficiency under aqueous conditions. In this work, we designed and synthesized several multiarylpyrrole (MAP) derivatives, in which a furanylidene (FE) group at the 3-position of the pyrrole forms donor-π-acceptor molecules, MAP-FE, with a NIR emissive wavelength and aggregation-enhanced emission (AEE) features. Different alkyl chains of MAP-FEs linked to phenyl groups at the 2,5-position of the pyrrole ring resulted in different emissive wavelengths and quantum yields in aggregated states, such as powders or single crystals. Powder XRD data and single crystal analysis elucidated that the different lengths of alkyl chains had a significant impact on the regularity of MAP-FEs when they were forced to aggregate or precipitate, which affected the intermolecular interaction and the restriction degree of the rotating parts, which are essential components. Therefore, an increasing number of NIR dyes could be developed by this design strategy to produce efficient NIR dyes with AEE. Moreover, this method can provide general guidance for other related fields, such as organic solar cells and organic light-emitting materials, because they are all applied in the aggregated state.
Collapse
Affiliation(s)
- Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Fei Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| |
Collapse
|
50
|
Balakrishna B, Menon A, Cao K, Gsänger S, Beil SB, Villalva J, Shyshov O, Martin O, Hirsch A, Meyer B, Kaiser U, Guldi DM, von Delius M. Dynamic Covalent Formation of Concave Disulfide Macrocycles Mechanically Interlocked with Single-Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2020; 59:18774-18785. [PMID: 32544289 PMCID: PMC7590186 DOI: 10.1002/anie.202005081] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 02/02/2023]
Abstract
The formation of discrete macrocycles wrapped around single-walled carbon nanotubes (SWCNTs) has recently emerged as an appealing strategy to functionalize these carbon nanomaterials and modify their properties. Here, we demonstrate that the reversible disulfide exchange reaction, which proceeds under mild conditions, can install relatively large amounts of mechanically interlocked disulfide macrocycles on the one-dimensional nanotubes. Size-selective functionalization of a mixture of SWCNTs of different diameters were observed, presumably arising from error correction and the presence of relatively rigid, curved π-systems in the key building blocks. A combination of UV/Vis/NIR, Raman, photoluminescence excitation, and transient absorption spectroscopy indicated that the small (6,4)-SWCNTs were predominantly functionalized by the small macrocycles 12 , whereas the larger (6,5)-SWCNTs were an ideal match for the larger macrocycles 22 . This size selectivity, which was rationalized computationally, could prove useful for the purification of nanotube mixtures, since the disulfide macrocycles can be removed quantitatively under mild reductive conditions.
Collapse
Affiliation(s)
- Bugga Balakrishna
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Arjun Menon
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Kecheng Cao
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sebastian Gsänger
- Interdisciplinary Center for Molecular Materials (ICMM) & Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Sebastian B Beil
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Julia Villalva
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oleksandr Shyshov
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oliver Martin
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) & Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Ute Kaiser
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|