1
|
Arndt T, Raina A, Breugst M. Iodine-Catalyzed Claisen-Rearrangements of Allyl Aryl Ethers and Subsequent Iodocyclizations. Chem Asian J 2023; 18:e202201279. [PMID: 36626351 DOI: 10.1002/asia.202201279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Iodine can be considered as the simplest halogen-bond donor. Previous investigations have revealed its remarkable catalytic effect in various reactions. The catalytic activity of iodine can often even compete with that of traditional Lewis acids. So far, iodine was typically used to activate carbonyl derivatives like Michael acceptors. We now demonstrate that iodine can also be used to activate allyl aryl ethers in Claisen rearrangements. The formed ortho-allylic phenols rapidly undergo iodocyclizations to afford dihydrobenzofurans, which are important building blocks for medicinal applications. A comparison with different catalysts further highlights the potential of iodine catalysis for this reaction. Computational and mechanistic investigations provide deeper insights into the underlying non-covalent interactions and their role for the catalysis.
Collapse
Affiliation(s)
- Thiemo Arndt
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.,Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| | - Abhinav Raina
- Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.,Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| |
Collapse
|
2
|
García Mancheño O, Waser M. Recent Developments and Trends in Asymmetric Organocatalysis. European J Org Chem 2023; 26:e202200950. [PMID: 37065706 PMCID: PMC10091998 DOI: 10.1002/ejoc.202200950] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Indexed: 11/11/2022]
Abstract
Asymmetric organocatalysis has experienced a long and spectacular way since the early reports over a century ago by von Liebig, Knoevenagel and Bredig, showing that small (chiral) organic molecules can catalyze (asymmetric) reactions. This was followed by impressive first highly enantioselective reports in the second half of the last century, until the hype initiated in 2000 by the milestone publications of MacMillan and List, which finally culminated in the 2021 Nobel Prize in Chemistry. This short Perspective aims at providing a brief introduction to the field by first looking on the historical development and the more classical methods and concepts, followed by discussing selected advanced recent examples that opened new directions and diversity within this still growing field.
Collapse
Affiliation(s)
- Olga García Mancheño
- Organic Chemistry InstituteUniversity of MünsterCorrensstrasse 3648149MünsterGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| |
Collapse
|
3
|
Kemper M, Drost DA, Engelage E, Merten C. Stereochemistry Controls Dihydrogen Bonding Strengths in Chiral Amine Boranes Adducts. Angew Chem Int Ed Engl 2022; 61:e202213859. [PMID: 36245340 PMCID: PMC10099978 DOI: 10.1002/anie.202213859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/07/2022]
Abstract
The growing interest in exploiting novel concepts of non-covalent interactions in catalysts and supramolecular chemistry made us revisit a special kind of hydrogen bonding: the dihydrogen bond (DHB), formed between a classical hydrogen bond donor and a hydridic hydrogen as acceptor. Herein, we investigate how the strength of the N-Hδ+ ⋅⋅⋅δ- H-B interaction and hence the DHB-driven self-aggregation of amine-borane adducts is governed by steric effects by comparing the structures and binding enthalpies of various chiral derivatives. For a diastereomeric pair of amine-boranes prepared from a chiral secondary amine, we show that the stereochemistry at the nitrogen has significant influence on the interaction enthalpy. Based on this finding, N-chiral amine boranes can be envisioned to become interesting building blocks in supramolecular chemistry to fine-tune the formation dynamics of assemblies.
Collapse
Affiliation(s)
- Michael Kemper
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Deborah A Drost
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Elric Engelage
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
4
|
Chiral Ferrocenyl–Iodotriazoles and –Iodotriazoliums as Halogen Bond Donors. Synthesis, Solid State Analysis and Catalytic Properties. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Docker A, Guthrie CH, Kuhn H, Beer PD. Modulating Chalcogen Bonding and Halogen Bonding Sigma-Hole Donor Atom Potency and Selectivity for Halide Anion Recognition. Angew Chem Int Ed Engl 2021; 60:21973-21978. [PMID: 34297867 PMCID: PMC8518858 DOI: 10.1002/anie.202108591] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/20/2022]
Abstract
A series of acyclic anion receptors containing chalcogen bond (ChB) and halogen bond (XB) donors integrated into a neutral 3,5‐bis‐triazole pyridine scaffold are described, in which systematic variation of the electronic‐withdrawing nature of the aryl substituents reveal a dramatic modulation in sigma‐hole donor atom potency for anion recognition. Incorporation of strongly electron‐withdrawing perfluorophenyl units appended to the triazole heterocycle telluro‐ or iodo‐ donor atoms, or directly linked to the tellurium donor atom dramatically enhances the anion binding potency of the sigma‐hole receptors, most notably for the ChB and XB receptors displaying over thirty‐fold and eight‐fold increase in chloride anion affinity, respectively, relative to unfluorinated analogues. Linear free energy relationships for a series of ChB based receptors reveal the halide anion recognition behaviour of the tellurium donor is highly sensitive to local electronic environments. This is especially the case for those directly appended to the Te centre (3⋅ChB), where a remarkable enhancement of strength of binding and selectivity for the lighter halides is observed as the electron‐withdrawing ability of the Te‐bonded aryl group increases, highlighting the exciting opportunity to fine‐tune anion affinity and selectivity in ChB‐based receptor systems.
Collapse
Affiliation(s)
- Andrew Docker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Charles H Guthrie
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Heike Kuhn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
6
|
Docker A, Guthrie CH, Kuhn H, Beer PD. Modulating Chalcogen Bonding and Halogen Bonding Sigma‐Hole Donor Atom Potency and Selectivity for Halide Anion Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrew Docker
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Charles H. Guthrie
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Heike Kuhn
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Paul D. Beer
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
7
|
Ueyama K, Hayakawa S, Nishio K, Sawaguchi D, Niitsuma K, Michii S, Tsuruoka R, Ozawa M, Torita K, Morita Y, Komatsu T, Haraguchi R, Fukuzawa S. Halogen‐Bonding‐Donor Catalyzed Cyanosilylation of Aldehydes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyohei Ueyama
- Department of Applied Chemistry, Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Shunsuke Hayakawa
- Department of Applied Chemistry, Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Kazuhiro Nishio
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Daiki Sawaguchi
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Kenta Niitsuma
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Shota Michii
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Ryoto Tsuruoka
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Miyuki Ozawa
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Koki Torita
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Yoshitsugu Morita
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Ryosuke Haraguchi
- Department of Applied Chemistry, Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Shin‐ichi Fukuzawa
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| |
Collapse
|
8
|
Gong G, Lv S, Han J, Xie F, Li Q, Xia N, Zeng W, Chen Y, Wang L, Wang J, Chen S. Halogen‐Bonded Organic Framework (XOF) Based on Iodonium‐Bridged N⋅⋅⋅I
+
⋅⋅⋅N Interactions: A Type of Diphase Periodic Organic Network. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Guanfei Gong
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Siheng Lv
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Jixin Han
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Fei Xie
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China
| | - Qian Li
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Ning Xia
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Wei Zeng
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Yi Chen
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Lu Wang
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Jike Wang
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Shigui Chen
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| |
Collapse
|
9
|
Robidas R, Reinhard DL, Legault CY, Huber SM. Iodine(III)-Based Halogen Bond Donors: Properties and Applications. CHEM REC 2021; 21:1912-1927. [PMID: 34145711 DOI: 10.1002/tcr.202100119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Halogen bonding, the non-covalent interaction of Lewis bases with an electron-deficient region of halogen substituents, received increased attention recently. Consequently, the design and evaluation of numerous halogen-containing species as halogen bond donors have been subject to intense research. More recently, organoiodine compounds at the iodine(III) state have been receiving growing attention in the field. Due to their electronic and structural properties, they provide access to unique binding modes. For this reason, our groups have been involved in the development of such compounds, in the quantification of their halogen bonding strength (through the evaluation of their Lewis acidities), as well as in the evaluation of their activities as catalysts in several model reactions. This account will describe these contributions.
Collapse
Affiliation(s)
- Raphaël Robidas
- Department of Chemistry, Université de Sherbrooke, J1K 2R1, Sherbrooke, Québec, Canada
| | - Dominik L Reinhard
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Claude Y Legault
- Department of Chemistry, Université de Sherbrooke, J1K 2R1, Sherbrooke, Québec, Canada
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
10
|
Gong G, Lv S, Han J, Xie F, Li Q, Xia N, Zeng W, Chen Y, Wang L, Wang J, Chen S. Halogen‐Bonded Organic Framework (XOF) Based on Iodonium‐Bridged N⋅⋅⋅I
+
⋅⋅⋅N Interactions: A Type of Diphase Periodic Organic Network. Angew Chem Int Ed Engl 2021; 60:14831-14835. [DOI: 10.1002/anie.202102448] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Guanfei Gong
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Siheng Lv
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Jixin Han
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Fei Xie
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China
| | - Qian Li
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Ning Xia
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Wei Zeng
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Yi Chen
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Lu Wang
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Jike Wang
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Shigui Chen
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| |
Collapse
|
11
|
Affiliation(s)
- Thiemo Arndt
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| | - Philip K. Wagner
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| | - Jonas J. Koenig
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| | - Martin Breugst
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| |
Collapse
|
12
|
Ostler F, Piekarski DG, Danelzik T, Taylor MS, García Mancheño O. Neutral Chiral Tetrakis-Iodo-Triazole Halogen-Bond Donor for Chiral Recognition and Enantioselective Catalysis. Chemistry 2021; 27:2315-2320. [PMID: 33210767 PMCID: PMC7898328 DOI: 10.1002/chem.202005016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 12/18/2022]
Abstract
Halogen bonding represents a powerful tool in the field of noncovalent interactions. However, applications in enantioselective recognition and catalysis remain almost nonexistent, due in part to the distinct features of halogen bonds, including long covalent and noncovalent bond distances and high directionality. Herein, this work presents a novel chiral tetrakis-iodo-triazole structure as a neutral halogen bond donor for both chiral anion-recognition and enantioinduction in ion-pair organocatalysis. NMR-titration studies revealed significant differences in anion affinity between the halogen bonding receptor and its hydrogen bonding parent. Selective recognition of chiral dicarboxylates and asymmetric induction in a benchmark organocatalytic reaction were demonstrated using the halogen bond donor. Inversions in the absolute sense of chiral recognition, enantioselectivity, and chiroptical properties relative to the related hydrogen donor were observed. Computational modeling suggested that these effects were the result of distinct anion-binding modes for the halogen- versus hydrogen-bond donors.
Collapse
Affiliation(s)
- Florian Ostler
- Organic Chemistry InstituteUniversity of MünsterCorrensstraße 3648149MünsterGermany
| | - Dariusz G. Piekarski
- Organic Chemistry InstituteUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Current affiliation: Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Tobias Danelzik
- Organic Chemistry InstituteUniversity of MünsterCorrensstraße 3648149MünsterGermany
| | - Mark S. Taylor
- University of TorontoDepartment of Chemistry80 St. George StreetONM5S 3H6TorontoCanada
| | - Olga García Mancheño
- Organic Chemistry InstituteUniversity of MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
13
|
Sutar RL, Erochok N, Huber SM. Mukaiyama aldol reaction catalyzed by (benz)imidazolium-based halogen bond donors. Org Biomol Chem 2021; 19:770-774. [PMID: 33432958 DOI: 10.1039/d0ob02503h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of cationic monodentate and bidentate iodo(benz)imidazolium-based halogen bond (XB) donors were employed as catalysts in a Mukaiyama aldol reaction. While 5 mol% of a monodentate variant showed noticeable activity, a syn-preorganized bidentate XB donor provided a strong performance even with 0.5 mol% loading. In contrast to the very active BArF4 salts, PF6 or OTf salts were either inactive or showed background reaction through Lewis base catalysis. Repetition experiments clearly ruled out a potential hidden catalysis by elemental iodine and demonstrated the stability of our catalyst over three consecutive cycles.
Collapse
Affiliation(s)
- Revannath L Sutar
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Nikita Erochok
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
14
|
Kampes R, Tepper R, Görls H, Bellstedt P, Jäger M, Schubert US. Facile and Reliable Emission-Based Nanomolar Anion Sensing by Luminescent Iridium Receptors Featuring Chelating Halogen-Bonding Sites. Chemistry 2020; 26:14679-14687. [PMID: 32686111 PMCID: PMC7756348 DOI: 10.1002/chem.202002738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/21/2022]
Abstract
An anion sensor is presented that combines a bidentate hydrogen‐ (HB) or halogen‐bonding (XB) site with a luminescent monocationic Ir fragment for strong binding of common anions (Ka up to 6×104
m−1) with diagnostic emission changes. A new emission‐based protocol for fast and reliable detection was derived on the basis of correction for systematic but unspecific background effects. Such a simple correction routine circumvents the hitherto practical limitations of systematic emission‐based analysis of anion binding with validated open‐source software (BindFit). The anticipated order of Ka values was obeyed according to size and basicity of the anions (Cl>Br=OAc) as well as the donor atom of the receptor (XB: 6×104
m−1 > HB: 5×103
m−1), and led to submicromolar limits of detection within minutes. The results were further validated by advanced NMR techniques, and corroborated by X‐ray crystallographic data and DFT analysis, which reproduced the structural and electronic features in excellent agreement. The results suggest that corrected emission‐based sensing may become a complementary, reliable, and fast tool to promote the use of XB in various application fields, due to the simple and fast optical determination at high dilution.
Collapse
Affiliation(s)
- Robin Kampes
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ronny Tepper
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.,Current address: Intelligent fluids GmbH, Karl-Heine-Strasse 99, 04229, Leipzig, Germany
| | - Helmar Görls
- Laboratory of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743, Jena, Germany
| | - Peter Bellstedt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Laboratory of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743, Jena, Germany
| | - Michael Jäger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
15
|
Affiliation(s)
- Martin Breugst
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Jonas J. Koenig
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| |
Collapse
|