1
|
Hu S, Huang J, Gao ML, Lin Z, Qian Y, Yang W, Jiao L, Jiang HL. Location-Specific Microenvironment Modulation Around Single-Atom Metal Sites in Metal-Organic Frameworks for Boosting Catalysis. Angew Chem Int Ed Engl 2024:e202415155. [PMID: 39508156 DOI: 10.1002/anie.202415155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 11/08/2024]
Abstract
Despite coordination environment of catalytic metal sites has been recognized to be of great importance in single-atom catalysts (SACs), a significant challenge remains in the understanding how the location-specific microenvironment in the higher coordination sphere influences their catalysis. Herein, a series of Cu-based SACs, namely Cu1/UiO-66-X (X=-NO2, -H, and -NH2), are successfully constructed by anchoring single Cu atoms onto the Zr-oxo clusters of metal-organic frameworks (MOFs), i.e., UiO-66-X. The -X functional groups dangling on the MOF linkers could be regarded as location-specific remote microenvironment to regulate electronic properties of the single Cu atoms. Remarkably, they exhibit significant differences in the catalysis toward the hydroboration of alkynes. The activity follows the order of Cu1/UiO-66-NO2 > Cu1/UiO-66 > Cu1/UiO-66-NH2 under identical reaction conditions, where Cu1/UiO-66-NO2 showcases the phenylacetylene conversion of 92 %, ~3.5 times higher efficiency than that of Cu1/UiO-66-NH2. Experimental and calculation results jointly support that the Cu electronic structure is modulated by the location-specific microenvironment, thereby regulating the product desorption and promoting the catalysis.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiajia Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ming-Liang Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Xu L, Yang Z, Zhang C, Chen C. Recent progress in electrochemical C-N coupling: metal catalyst strategies and applications. Chem Commun (Camb) 2024; 60:10822-10837. [PMID: 39233628 DOI: 10.1039/d4cc03256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Electrochemical C-N coupling reactions hold significant importance in the fields of organic chemistry and green chemistry. Conventional methods for constructing C-N bonds typically rely on high temperatures, high pressures, and other conditions that are energy-intensive and prone to generating environmental pollutants. In contrast, the electrochemical approaches employ electrical energy as the driving force to achieve C-N bond formation under ambient conditions, representing a more environment-friendly and sustainable alternative. The notable advantages of electrochemical C-N coupling include high efficiency, good selectivity, and mild reaction conditions. Through rational design of corresponding electrocatalysts, it is possible to achieve efficient C-N bond coupling at low potentials. Moreover, the electrochemical methods allow for precise control over reaction conditions, thereby avoiding side reactions and by-products that are common for conventional methods, improving both selectivity and product purity. Despite the extensive research efforts devoted to exploring the potential of electrochemical C-N coupling, the design of efficient and stable metal catalysts remains a significant challenge. In this review, we summarize and evaluate the latest strategies developed for designing metal catalysts, and their application prospects for different nitrogen sources such as N2 and NOx. We delineate how the control over nanoscale structures, morphologies, and electronic properties of metal catalysts can optimize their performance in C-N coupling reactions, and discuss the performances and advantages of single-metal catalysts, bimetallic catalysts, and single-atom catalysts under various reaction conditions. By summarizing the latest research achievements, particularly in the development of high-efficiency catalysts, the application of novel catalyst materials, and the in-depth study of reaction mechanisms, this review aims to provide insights for future research in the field of electrochemical C-N coupling, and demonstrates that rationally designed metal catalysts could not only enhance the efficiency and selectivity of electrochemical C-N coupling reactions, but also offer conceptual frameworks for other electrochemical reactions.
Collapse
Affiliation(s)
- Lekai Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xin Jiang, 830017, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Zhang H, Wu F, Huang R, Liu X, Zhang Z, Yao T, Zhang Y, Wu Y. Symmetry Evolution Induced 2D Pt Single Atom Catalyst with High Density for Alkaline Hydrogen Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404672. [PMID: 38634272 DOI: 10.1002/adma.202404672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/11/2024] [Indexed: 04/19/2024]
Abstract
The performance of single-atom catalysts is greatly influenced by the chemical environment surrounding the central atom. Here, a salt-assisted method is employed to transform the tetrahedral coordination structure of zeolitic imidazolate frameworks - 8 (ZIF-8) into a planar square coordination structure without altering the ligands. During the subsequent carbonization process, concurrent with the evaporation of zinc atoms, the structure of the nitrogen and carbon carriers (NC carriers) undergoes a transition from five-membered rings to six-membered rings to preserve the 2D structure. This transition results in the generation of additional defect sites on the 2D-NC substrates. Hence, the Pt single-atom catalysts with planar square coordination symmetries can be precisely prepared via electrodeposition (denoted as 2D-Pt SAC). The Pt loading of 2D-Pt SAC is 0.49 ± 0.03 µg cm-2, higher than that of 3D-Pt SAC (0.37 ± 0.04 µg cm-2). In the context of the hydrogen oxidation reaction electrocatalysis, under an overpotential of 50 mV, these single-atom catalysts with 2D coordination exhibit mass activities of 2396 A gPt -1 (32 times higher than commercial Pt/C catalyst, 2 times higher than 3D-PtNC).
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei , 230001, China
| | - Feng Wu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei , 230001, China
| | - Rui Huang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei , 230001, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei , 230026, China
| | - Zhiwen Zhang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei , 230001, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei , 230026, China
| | - Yu Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei , 230001, China
| | - Yuen Wu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei , 230001, China
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei , 230026, China
| |
Collapse
|
4
|
Wang X, Li D, Dai J, Xue Q, Yang C, Xia L, Qi X, Bao B, Yang S, Xu Y, Yuan C, Luo W, Cabot A, Dai L. Blocking Metal Nanocluster Growth through Ligand Coordination and Subsequent Polymerization: The Case of Ruthenium Nanoclusters as Robust Hydrogen Evolution Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309176. [PMID: 38150625 DOI: 10.1002/smll.202309176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.
Collapse
Affiliation(s)
- Xiaohong Wang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - DongXu Li
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Juguo Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
| | - Qian Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunying Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Long Xia
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Xueqiang Qi
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Bingtao Bao
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Siyu Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Yiting Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Conghui Yuan
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Weiang Luo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Catalonia, 08010, Spain
| | - Lizong Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim DH, Liu Y, Lin Z. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308213. [PMID: 38183335 DOI: 10.1002/smll.202308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Indexed: 01/08/2024]
Abstract
Single-atom catalysts (SACs) hold immense promise in facilitating the rational use of metal resources and achieving atomic economy due to their exceptional atom-utilization efficiency and distinct characteristics. Despite the growing interest in SACs, only limited reviews have holistically summarized their advancements centering on performance metrics. In this review, first, a thorough overview on the research progress in SACs is presented from a performance perspective and the strategies, advancements, and intriguing approaches employed to enhance the critical attributes in SACs are discussed. Subsequently, a comprehensive summary and critical analysis of the electrochemical applications of SACs are provided, with a particular focus on their efficacy in the oxygen reduction reaction , oxygen evolution reaction, hydrogen evolution reaction , CO2 reduction reaction, and N2 reduction reaction . Finally, the outline future research directions on SACs by concentrating on performance-driven investigation, where potential areas for improvement are identified and promising avenues for further study are highlighted, addressing challenges to unlock the full potential of SACs as high-performance catalysts.
Collapse
Affiliation(s)
- Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuan Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dong Ha Kim
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
6
|
Ding J, Li F, Zhang J, Qi H, Wei Z, Su C, Yang HB, Zhai Y, Liu B. Room-Temperature Chemoselective Hydrogenation of Nitroarene Over Atomic Metal-Nonmetal Catalytic Pair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306480. [PMID: 37555527 DOI: 10.1002/adma.202306480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Constructing atomic catalytic pair emerges as an attractive strategy to achieve better catalytic performance. Herein, an atomic Ir1─P1/NPG catalyst with asymmetric Ir─N2P1 sites that delivers superb activity and selectivity for hydrogenation of various functionalized nitrostyrene is reported. In the hydrogenation reaction of 3-nitrostyrene, Ir1─P1/NPG (NPG refers to N, P-codoped graphene) shows a turnover frequency of 1197 h-1, while the reaction cannot occur over Ir1/NG (NG refers to N-doped graphene). Compared to Ir1/NG, the charge density of the Ir site in Ir1─P1/NPG is greatly elevated, which is conducive to H2 dissociation. Moreover, as revealed by density functional theory calculations and poisoning experiments, the P site in Ir1─P1/NPG is found able to bind nitrostyrene, while the neighboring Ir site provides H to reduce the nitro group in chemoselective hydrogenation of nitrostyrene. This work offers a successful example of establishing atomic catalytic pair for driving important chemical reactions, paving the way for the development of more advanced catalysts to further improve the catalytic performance.
Collapse
Affiliation(s)
- Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Fuhua Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jincheng Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Haifeng Qi
- Department of Renewable Resources, Leibniz-Institute for Catalysis, Albert Einstein Street 29a, 18059, Rostock, Germany
| | - Zhiming Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
7
|
Tian Q, Jing L, Yin Y, Liang Z, Du H, Yang L, Cheng X, Zuo D, Tang C, Liu Z, Liu J, Wan J, Yang J. Nanoengineering of Porous 2D Structures with Tunable Fluid Transport Behavior for Exceptional H 2O 2 Electrosynthesis. NANO LETTERS 2024; 24:1650-1659. [PMID: 38265360 DOI: 10.1021/acs.nanolett.3c04396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Precision nanoengineering of porous two-dimensional structures has emerged as a promising avenue for finely tuning catalytic reactions. However, understanding the pore-structure-dependent catalytic performance remains challenging, given the lack of comprehensive guidelines, appropriate material models, and precise synthesis strategies. Here, we propose the optimization of two-dimensional carbon materials through the utilization of mesopores with 5-10 nm diameter to facilitate fluid acceleration, guided by finite element simulations. As proof of concept, the optimized mesoporous carbon nanosheet sample exhibited exceptional electrocatalytic performance, demonstrating high selectivity (>95%) and a notable diffusion-limiting disk current density of -3.1 mA cm-2 for H2O2 production. Impressively, the electrolysis process in the flow cell achieved a production rate of 14.39 mol gcatalyst-1 h-1 to yield a medical-grade disinfectant-worthy H2O2 solution. Our pore engineering research focuses on modulating oxygen reduction reaction activity and selectivity by affecting local fluid transport behavior, providing insights into the mesoscale catalytic mechanism.
Collapse
Affiliation(s)
- Qiang Tian
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lingyan Jing
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunchao Yin
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenye Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongnan Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lin Yang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaolei Cheng
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Daxian Zuo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuoxin Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayu Wan
- Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Tian Q, Jing L, Du H, Yin Y, Cheng X, Xu J, Chen J, Liu Z, Wan J, Liu J, Yang J. Mesoporous carbon spheres with programmable interiors as efficient nanoreactors for H 2O 2 electrosynthesis. Nat Commun 2024; 15:983. [PMID: 38302469 PMCID: PMC10834542 DOI: 10.1038/s41467-024-45243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
The nanoreactor holds great promise as it emulates the natural processes of living organisms to facilitate chemical reactions, offering immense potential in catalytic energy conversion owing to its unique structural functionality. Here, we propose the utilization of precisely engineered carbon spheres as building blocks, integrating micromechanics and controllable synthesis to explore their catalytic functionalities in two-electron oxygen reduction reactions. After conducting rigorous experiments and simulations, we present compelling evidence for the enhanced mass transfer and microenvironment modulation effects offered by these mesoporous hollow carbon spheres, particularly when possessing a suitably sized hollow architecture. Impressively, the pivotal achievement lies in the successful screening of a potent, selective, and durable two-electron oxygen reduction reaction catalyst for the direct synthesis of medical-grade hydrogen peroxide disinfectant. Serving as an exemplary demonstration of nanoreactor engineering in catalyst screening, this work highlights the immense potential of various well-designed carbon-based nanoreactors in extensive applications.
Collapse
Affiliation(s)
- Qiang Tian
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Lingyan Jing
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| | - Hongnan Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunchao Yin
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaolei Cheng
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiaxin Xu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Junyu Chen
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Zhuoxin Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiayu Wan
- Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
9
|
Wu Q, Zou H, Mao X, He J, Shi Y, Chen S, Yan X, Wu L, Lang C, Zhang B, Song L, Wang X, Du A, Li Q, Jia Y, Chen J, Yao X. Unveiling the dynamic active site of defective carbon-based electrocatalysts for hydrogen peroxide production. Nat Commun 2023; 14:6275. [PMID: 37805502 PMCID: PMC10560253 DOI: 10.1038/s41467-023-41947-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Active sites identification in metal-free carbon materials is crucial for developing practical electrocatalysts, but resolving precise configuration of active site remains a challenge because of the elusive dynamic structural evolution process during reactions. Here, we reveal the dynamic active site identification process of oxygen modified defective graphene. First, the defect density and types of oxygen groups were precisely manipulated on graphene, combined with electrocatalytic performance evaluation, revealing a previously overlooked positive correlation relationship between the defect density and the 2 e- oxygen reduction performance. An electrocatalytic-driven oxygen groups redistribution phenomenon was observed, which narrows the scope of potential configurations of the active site. The dynamic evolution processes are monitored via multiple in-situ technologies and theoretical spectra simulations, resolving the configuration of major active sites (carbonyl on pentagon defect) and key intermediates (*OOH), in-depth understanding the catalytic mechanism and providing a research paradigm for metal-free carbon materials.
Collapse
Affiliation(s)
- Qilong Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
- School of Environmental engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Haiyuan Zou
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Mao
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, 4001, Australia
| | - Jinghan He
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yanmei Shi
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Shuangming Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Xuecheng Yan
- School of Environmental engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chengguang Lang
- School of Environmental engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong, 518107, PR China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Li Song
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Xin Wang
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, and Zhejiang Moganshan Carbon Neutral Innovation Institute, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310032, PR China
- Zhejiang Carbon Neutral Innovation Institute, Moganshan Institute ZJUT, Kangqian District, Deqing, 313200, PR China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, 4001, Australia
| | - Qin Li
- School of Environmental engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Yi Jia
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, and Zhejiang Moganshan Carbon Neutral Innovation Institute, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310032, PR China.
- Zhejiang Carbon Neutral Innovation Institute, Moganshan Institute ZJUT, Kangqian District, Deqing, 313200, PR China.
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia.
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong, 518107, PR China.
| |
Collapse
|
10
|
Tian Y, Deng D, Xu L, Li M, Chen H, Wu Z, Zhang S. Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction: From Catalyst Design to Device Setup. NANO-MICRO LETTERS 2023; 15:122. [PMID: 37160560 PMCID: PMC10169199 DOI: 10.1007/s40820-023-01067-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 05/11/2023]
Abstract
An environmentally benign, sustainable, and cost-effective supply of H2O2 as a rapidly expanding consumption raw material is highly desired for chemical industries, medical treatment, and household disinfection. The electrocatalytic production route via electrochemical oxygen reduction reaction (ORR) offers a sustainable avenue for the on-site production of H2O2 from O2 and H2O. The most crucial and innovative part of such technology lies in the availability of suitable electrocatalysts that promote two-electron (2e-) ORR. In recent years, tremendous progress has been achieved in designing efficient, robust, and cost-effective catalyst materials, including noble metals and their alloys, metal-free carbon-based materials, single-atom catalysts, and molecular catalysts. Meanwhile, innovative cell designs have significantly advanced electrochemical applications at the industrial level. This review summarizes fundamental basics and recent advances in H2O2 production via 2e--ORR, including catalyst design, mechanistic explorations, theoretical computations, experimental evaluations, and electrochemical cell designs. Perspectives on addressing remaining challenges are also presented with an emphasis on the large-scale synthesis of H2O2 via the electrochemical route.
Collapse
Affiliation(s)
- Yuhui Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
| | - Daijie Deng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Meng Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Hao Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhenzhen Wu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
11
|
Jourshabani M, Asrami MR, Lee BK. Advanced Functional Carbon Nitride by Implanting Semi-Isolated VO 2 Active Sites for Photocatalytic H 2 Production and Organic Pollutant Degradation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300147. [PMID: 37026686 DOI: 10.1002/smll.202300147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
It is critical to facilitate surface interaction for liquid-solid two-phase photocatalytic reactions. This study demonstrates more advanced, efficient, and rich molecular-level active sites to extend the performance of carbon nitride (CN). To achieve this, semi-isolated vanadium dioxide is obtained by controlling the growth of non-crystalline VO2 anchored into sixfold cavities of the CN lattice. As a proof-of-concept, the experimental and computational results solidly corroborate that this atomic-level design has potentially taken full advantage of two worlds. The photocatalyst comprises the highest dispersion of catalytic sites with the lowest aggregation, like single-atom catalysts. It also demonstrates accelerated charge transfer with the boosted electron-hole pairs, mimicking heterojunction photocatalysts. Density functional theory calculations show that single-site VO2 anchored into the sixfold cavities significantly elevates the Fermi level, compared with the typical heterojunction. The unique features of semi-isolated sites result in a high visible-light photocatalytic H2 production of 645 µmol h-1 g-1 with only 1 wt% Pt. They also represent an excellent photocatalytic degradation for rhodamine B as well as tetracycline, surpassing the activities obtained from many conventional heterojunctions. This study presents exciting opportunities for the design of new heterogeneous metal oxide for a variety of reactions.
Collapse
Affiliation(s)
- Milad Jourshabani
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 680749, Republic of Korea
| | - Mahdieh Razi Asrami
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 680749, Republic of Korea
| | - Byeong-Kyu Lee
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 680749, Republic of Korea
| |
Collapse
|
12
|
Han Z, Wang Y, Zheng J, Li R, Jia B, Li D, Bai L, Guo X, Zheng L, Bai J, Leng K, Qu Y. Direct Observation of Transition Metal Ions Evolving into Single Atoms: Formation and Transformation of Nanoparticle Intermediates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206166. [PMID: 36861951 PMCID: PMC10131801 DOI: 10.1002/advs.202206166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Understanding the dynamical evolution from metal ions to single atoms is of great importance to the rational development of synthesis strategies for single atom catalysts (SACs) against metal sintering during pyrolysis. Herein, an in situ observation is disclosed that the formation of SACs is ascertained as a two-step process. There is initially metal sintering into nanoparticles (NPs) (500-600 °C), followed by the conversion of NPs into metal single atoms (Fe, Co, Ni, Cu SAs) at higher temperature (700-800 °C). Theoretical calculations together with control experiments based on Cu unveil that the ion-to-NP conversion can arise from the carbon reduction, and NP-to-SA conversion being steered by generating more thermodynamically stable Cu-N4 configuration instead of Cu NPs. Based on the evidenced mechanism, a two-step pyrolysis strategy to access Cu SACs is developed, which exhibits excellent ORR performance.
Collapse
Affiliation(s)
- Zheng Han
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| | - Yi Wang
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| | - Jiming Zheng
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| | - Ren Li
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| | - Boqian Jia
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| | - Dingding Li
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| | - Lei Bai
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| | - Xuting Guo
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| | - Lirong Zheng
- Institute of High Energy PhysicsBeijing100049P. R. China
| | - Jinbo Bai
- CentraleSupélecENS Paris‐SaclayCNRSLMPS‐Laboratoire de Mécanique Paris‐SaclayUniversité Paris‐Saclay8‐10 rue Joliot‐CurieGif‐sur‐Yvette91190France
| | - Kunyue Leng
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| | - Yunteng Qu
- State Key Laboratory of Photoelectric Technology and Functional MaterialsInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologyNorthwest UniversityXi'an710069P. R. China
| |
Collapse
|
13
|
Sun G, Liu D, Li M, Tao S, Guan Z, Chen Y, Liu S, Du Q, Guo H, Yuan X, Zhang X, Zhu H, Liu B, Pan Y. Atomic coordination structural dynamic evolution of single-atom Mo catalyst for promoting H 2 activation in slurry phase hydrocracking. Sci Bull (Beijing) 2023; 68:503-515. [PMID: 36858839 DOI: 10.1016/j.scib.2023.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Development of efficient catalysts with high atomic utilization and turnover frequency (TOF) for H2 activation in slurry phase hydrocracking (SPHC) is crucial for the conversion of vacuum residue (VR). Herein, for the first time, we reported a robust and stable single atoms (SAs) Mo catalyst through a polymerization-pyrolysis-in situ sulfurization strategy for activating H2 in SPHC of VR. An interesting atomic coordination structural dynamic evolution of Mo active sites was discovered. During hydrocracking of VR, the O atoms that coordinated with Mo were gradually replaced by S atoms, which led to the O/S exchange process. The coordination structure of the Mo SAs changed from pre-reaction Mo-O3S1 to post-reaction Mo-O1S3 coordination configurations, promoting the efficient homolytic cleavage activation of H2 into H radical species effectively. The evolved Mo SAs catalyst exhibited robust catalytic hydrogenation activity with the per pass conversion of VR of 65 wt%, product yield of liquid oils of 93 wt%, coke content of only 0.63 wt%, TOF calculated for total metals up to 0.35 s-1, and good cyclic stability. Theoretical calculation reveals that the significant variation of occupied Mo 4d states before and after H2 interaction has a direct bearing on the dynamic evolution of Mo SAs catalyst structure. The lower d-band center of Mo-O1S3 site indicates that atomic H diffusion is easy, which is conducive to catalytic hydrogenation. The finding of this study is of great significance to the development of high atom economy catalysts for the industrial application of heavy oil upgrading technology.
Collapse
Affiliation(s)
- Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Zekun Guan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanfei Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Shihuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingzhou Du
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinyue Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinying Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
14
|
Wang Y, Huang H, Wu J, Yang H, Kang Z, Liu Y, Wang Z, Menezes PW, Chen Z. Charge-Polarized Selenium Vacancy in Nickel Diselenide Enabling Efficient and Stable Electrocatalytic Conversion of Oxygen to Hydrogen Peroxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205347. [PMID: 36479607 PMCID: PMC9896043 DOI: 10.1002/advs.202205347] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Indexed: 05/03/2023]
Abstract
Vacancy engineering is deemed as one of the powerful protocols to tune the catalytic activity of electrocatalysts. Herein, Se-vacancy with charge polarization is created in the NiSe2 structure (NiSe2 -VSe ) via a sequential phase conversion strategy. By a combined analysis of the Rietveld method, transient photovoltage spectra (TPV), in situ Raman and density functional theory (DFT) calculation, it is unequivocally discovered that the presence of charge-polarized Se-vacancy is beneficial for stabilizing the structure, decreasing the electron transfer kinetics, as well as optimizing the free adsorption energy of reaction intermediate during two-electron oxygen reduction reaction (2e- ORR). Benefiting from these merits, the as-prepared NiSe2 -VSe delivered the highest selectivity of 96% toward H2 O2 in alkaline media, together with a selectivity higher than 90% over the wide potential range from 0.25 to 0.55 V, ranking it in the top level among the previously reported transition metal-based electrocatalysts. Most notably, it also displayed admirable stability with only a slight selectivity decay after 5000 cycles of accelerated degradation test (ADT).
Collapse
Affiliation(s)
- Yingming Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Zhaowu Wang
- School of Physics and EngineeringHenan University of Science and TechnologyLuoyang471023P. R. China
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
- Material Chemistry Group for Thin Film Catalysis ‐ CatLabHelmholtz‐Zentrum Berlin für Materialien und EnergieAlbert‐Einstein‐Str. 1512489BerlinGermany
| | - Ziliang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| |
Collapse
|
15
|
Zhang C, Bai L, Chen M, Sun X, Zhu M, Wu Q, Gao X, Zhang Q, Zheng X, Yu ZQ, Wu Y. Modulating the Site Density of Mo Single Atoms to Catch Adventitious O Atoms for Efficient H 2 O 2 Oxidation with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208704. [PMID: 36411951 DOI: 10.1002/adma.202208704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Coordination environment and site density have great impacts on the catalytic performance for single atoms (SAs). Herein, the site density of Mo-SAs on red polymeric carbon nitrides (RPCN) is modulated via a local carbonization strategy to controllably catch adventitious O atoms from open environment. The addition of melamine derivants with hydrocarbyl chains induces local carbonization during RPCN pyrolysis. These local carbonization regions bring abundant graphitic N3C to anchor Mo-SAs, and most of Mo-SAs catch the O atoms in air, forming the O2 -covered Mo-N3 coordination. The dopants of carbon source with different structures and amounts can modulate the site density of Mo-SAs, therefore controlling the amounts of coordinated O atoms. Furthermore, coordinated O atoms around Mo-SAs construct the catalytic environment with Lewis base and gather photo-generated electrons under light. Such O-covered Mo-SAs endow RPCN materials (Mo-RPCN) with a strong ability for hydrogen abstraction, leading to the 99.51% ratio (28.8 mmol min-1 g-1 ) rate for thioanisole conversion with H2 O2 assisted advance oxidation technology. This work brings a new sight on the coordinated atoms dominant oxidation process.
Collapse
Affiliation(s)
- Congmin Zhang
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lichen Bai
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Min Chen
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuejiao Sun
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengzhao Zhu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qinglong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoping Gao
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Yuen Wu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
16
|
Tian Y, Li M, Wu Z, Sun Q, Yuan D, Johannessen B, Xu L, Wang Y, Dou Y, Zhao H, Zhang S. Edge-hosted Atomic Co-N 4 Sites on Hierarchical Porous Carbon for Highly Selective Two-electron Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2022; 61:e202213296. [PMID: 36280592 PMCID: PMC10098864 DOI: 10.1002/anie.202213296] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Not only high efficiency but also high selectivity of the electrocatalysts is crucial for high-performance, low-cost, and sustainable energy storage applications. Herein, we systematically investigate the edge effect of carbon-supported single-atom catalysts (SACs) on oxygen reduction reaction (ORR) pathways (two-electron (2 e- ) or four-electron (4 e- )) and conclude that the 2 e- -ORR proceeding over the edge-hosted atomic Co-N4 sites is more favorable than the basal-plane-hosted ones. As such, we have successfully synthesized and tuned Co-SACs with different edge-to-bulk ratios. The as-prepared edge-rich Co-N/HPC catalyst exhibits excellent 2 e- -ORR performance with a remarkable selectivity of ≈95 % in a wide potential range. Furthermore, we also find that oxygen functional groups could saturate the graphitic carbon edges under the ORR operation and further promote electrocatalytic performance. These findings on the structure-property relationship in SACs offer a promising direction for large-scale and low-cost electrochemical H2 O2 production via the 2 e- -ORR.
Collapse
Affiliation(s)
- Yuhui Tian
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Meng Li
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Zhenzhen Wu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ding Yuan
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.,Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bernt Johannessen
- Australia Synchrotron, Australia's Nuclear Science and Technology Organization, Victoria, 3168, Australia
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, China
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Shandong Institute of Advanced Technology, Jinan, 250103, China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
17
|
Zhao Y, Zhang Z, Liu L, Wang Y, Wu T, Qin W, Liu S, Jia B, Wu H, Zhang D, Qu X, Qi G, Giannelis EP, Qin M, Guo S. S and O Co-Coordinated Mo Single Sites in Hierarchically Porous Tubes from Sulfur–Enamine Copolymerization for Oxygen Reduction and Evolution. J Am Chem Soc 2022; 144:20571-20581. [DOI: 10.1021/jacs.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongzhi Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zili Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Department of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Luan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yong Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanjun Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Sijia Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Baorui Jia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Haoyang Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Deyin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuanhui Qu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genggeng Qi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P. Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mingli Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
18
|
Tong Y, Wang L, Hou F, Dou SX, Liang J. Electrocatalytic Oxygen Reduction to Produce Hydrogen Peroxide: Rational Design from Single-Atom Catalysts to Devices. ELECTROCHEM ENERGY R 2022; 5:7. [PMID: 37522152 PMCID: PMC9437407 DOI: 10.1007/s41918-022-00163-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Accepted: 09/25/2021] [Indexed: 10/26/2022]
Abstract
Electrocatalytic production of hydrogen peroxide (H2O2) via the 2e- transfer route of the oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone process, which dominates current industrial-scale production of H2O2. The availability of cost-effective electrocatalysts exhibiting high activity, selectivity, and stability is imperative for the practical deployment of this process. Single-atom catalysts (SACs) featuring the characteristics of both homogeneous and heterogeneous catalysts are particularly well suited for H2O2 synthesis and thus, have been intensively investigated in the last few years. Herein, we present an in-depth review of the current trends for designing SACs for H2O2 production via the 2e- ORR route. We start from the electronic and geometric structures of SACs. Then, strategies for regulating these isolated metal sites and their coordination environments are presented in detail, since these fundamentally determine electrocatalytic performance. Subsequently, correlations between electronic structures and electrocatalytic performance of the materials are discussed. Furthermore, the factors that potentially impact the performance of SACs in H2O2 production are summarized. Finally, the challenges and opportunities for rational design of more targeted H2O2-producing SACs are highlighted. We hope this review will present the latest developments in this area and shed light on the design of advanced materials for electrochemical energy conversion. Graphical abstract
Collapse
Affiliation(s)
- Yueyu Tong
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500 Australia
| | - Liqun Wang
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin, China
| | - Feng Hou
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500 Australia
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Matthews T, Mashola TA, Adegoke KA, Mugadza K, Fakude CT, Adegoke OR, Adekunle AS, Ndungu P, Maxakato NW. Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Fan M, Xu J, Wang Y, Yuan Q, Zhao Y, Wang Z, Jiang J. CO
2
Laser‐Induced Graphene with an Appropriate Oxygen Species as an Efficient Electrocatalyst for Hydrogen Peroxide Synthesis. Chemistry 2022; 28:e202201996. [DOI: 10.1002/chem.202201996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
- Key Lab of Biomass Energy and Material of Jiangsu Province Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institute of Chemical Industry of Forest Products Chinese Academy of Forestry 16 Suojin Wucun Road 210042 Nanjing China
| | - Jing Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Qixin Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Yuying Zhao
- Key Lab of Biomass Energy and Material of Jiangsu Province Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institute of Chemical Industry of Forest Products Chinese Academy of Forestry 16 Suojin Wucun Road 210042 Nanjing China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road 200444 Shanghai China
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institute of Chemical Industry of Forest Products Chinese Academy of Forestry 16 Suojin Wucun Road 210042 Nanjing China
| |
Collapse
|
21
|
Wang B, Cheng C, Jin M, He J, Zhang H, Ren W, Li J, Wang D, Li Y. A Site Distance Effect Induced by Reactant Molecule Matchup in Single-Atom Catalysts for Fenton-Like Reactions. Angew Chem Int Ed Engl 2022; 61:e202207268. [PMID: 35719008 DOI: 10.1002/anie.202207268] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/13/2022]
Abstract
Understanding the site interaction nature of single-atom catalysts (SACs), especially densely populated SACs, is vital for their application to various catalytic reactions. Herein, we report a site distance effect, which emphasizes how well the distance of the adjacent copper atoms (denoted as dCu1-Cu1 ) matches with the reactant peroxydisulfate (PDS) molecular size to determine the Fenton-like reaction reactivity on the carbon-supported SACs. The optimized dCu1-Cu1 in the range of 5-6 Å, which matches the molecular size of PDS, endows the catalyst with a nearly two times higher turnover frequency than that of dCu1-Cu1 beyond this range, accordingly achieving record-breaking kinetics for the oxidation of emerging organic contaminants. Further studies suggest that this site distance effect originates from the alteration of PDS adsorption to a dual-site structure on Cu1 -Cu1 sites when dCu1-Cu1 falls within 5-6 Å, significantly enhancing the interfacial charge transfer and consequently resulting in the most efficient catalyst for PDS activation so far.
Collapse
Affiliation(s)
- Bingqing Wang
- Department of Chemistry, Tsinghua University, Beijing, 100029, China
| | - Cheng Cheng
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Mengmeng Jin
- School of Materials Science and Engineering, Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Jia He
- School of Materials Science and Engineering, Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resource Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100029, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100029, China
| |
Collapse
|
22
|
Ma FX, Zhang G, Wang M, Liang X, Lyu F, Xiao X, Wang P, Zhen L, Lu J, Zheng L, Yang Li Y, Xu CY. Encapsulating atomic molybdenum into hierarchical nitrogen-doped carbon nanoboxes for efficient oxygen reduction. J Colloid Interface Sci 2022; 620:67-76. [DOI: 10.1016/j.jcis.2022.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/04/2023]
|
23
|
Wang Z, Almatrafi E, Wang H, Qin H, Wang W, Du L, Chen S, Zeng G, Xu P. Cobalt Single Atoms Anchored on Oxygen-Doped Tubular Carbon Nitride for Efficient Peroxymonosulfate Activation: Simultaneous Coordination Structure and Morphology Modulation. Angew Chem Int Ed Engl 2022; 61:e202202338. [PMID: 35514041 DOI: 10.1002/anie.202202338] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 12/20/2022]
Abstract
Simultaneous regulation of the coordination environment of single-atom catalysts (SACs) and engineering architectures with efficient exposed active sites are efficient strategies for boosting peroxymonosulfate (PMS) activation. We isolated cobalt atoms with dual nitrogen and oxygen coordination (Co-N3 O1 ) on oxygen-doped tubular carbon nitride (TCN) by pyrolyzing a hydrogen-bonded cyanuric acid melamine-cobalt acetate precursor. The theoretically constructed Co-N3 O1 moiety on TCN exhibited an impressive mass activity of 7.61×105 min-1 mol-1 with high 1 O2 selectivity. Theoretical calculations revealed that the cobalt single atoms occupied a dual nitrogen and oxygen coordination environment, and that PMS adsorption was promoted and energy barriers reduced for the key *O intermediate that produced 1 O2 . The catalysts were attached to a widely used poly(vinylidene fluoride) microfiltration membrane to deliver an antibiotic wastewater treatment system with 97.5 % ciprofloxacin rejection over 10 hours, thereby revealing the suitability of the membrane for industrial applications.
Collapse
Affiliation(s)
- Ziwei Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Eydhah Almatrafi
- Centre of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Han Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Hong Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China.,Centre of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China.,Centre of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
24
|
Wang B, Cheng C, Jin M, He J, Zhang H, Ren W, Li J, Wang D, Li Y. A Site Distance Effect Induced by Reactant Molecule Matchup in Single‐Atom Catalysts for Fenton‐like Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bingqing Wang
- Tsinghua University Department of Chemistry Tsinghua University CHINA
| | - Cheng Cheng
- Wuhan University Department of Environmental Science and Engineering CHINA
| | - Mengmeng Jin
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Jia He
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Hui Zhang
- Wuhan University Department of materials science and engineering CHINA
| | - Wei Ren
- Nanchang Hangkong University School of Materials Science and Engineering CHINA
| | - Jiong Li
- SINAP: Shanghai Institute of Applied Physics Chinese Academy of Sciences Physics CHINA
| | - Dingsheng Wang
- Tsinghua University Department of Chemistry Haidian 100084 Beijing CHINA
| | - Yadong Li
- Tsinghua University Department of Chemistry CHINA
| |
Collapse
|
25
|
Zhang T, Wang Y, Li X, Zhuang Q, Zhang Z, Zhou H, Ding Q, Wang Y, Dang Y, Duan L, Liu J. Charge state modulation on boron site by carbon and nitrogen localized bonding microenvironment for two-electron electrocatalytic H2O2 production. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Wang Z, Almatrafi E, Wang H, Qin H, Wang W, Du L, Chen S, Zeng G, Xu P. Cobalt Single Atoms Anchored on Oxygen‐Doped Tubular Carbon Nitride for Efficient Peroxymonosulfate Activation: Simultaneous Coordination Structure and Morphology Modulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ziwei Wang
- Hunan University College of Environmental Science and Engineering CHINA
| | - Eydhah Almatrafi
- King Abdulaziz University Centre of Research Excellence in Renewable Energy and Power Systems SAUDI ARABIA
| | - Han Wang
- Hunan University College of Environmental Science and Engineering CHINA
| | - Hong Qin
- Hunan University College of Environmental Science and Engineering CHINA
| | - Wenjun Wang
- Hunan University College of Environmental Science and Engineering CHINA
| | - Li Du
- Hunan University College of Environmental Science and Engineering CHINA
| | - Sha Chen
- Hunan University College of Environmental Science and Engineering CHINA
| | - Guangming Zeng
- Hunan University College of Environmental Science and Engineering Lushan Road (S), Yuelu District 410082 Changsha CHINA
| | - Piao Xu
- Hunan University College of Environmental Science and Engineering CHINA
| |
Collapse
|
27
|
Naya SI, Suzuki H, Kobayashi H, Tada H. Highly Active and Renewable Catalytic Electrodes for Two-Electron Oxygen Reduction Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4785-4792. [PMID: 35385665 DOI: 10.1021/acs.langmuir.2c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study has shown that antimony-doped tin oxide (ATO) works as a robust "renewable catalyst" for the electrochemical synthesis of hydrogen peroxide (H2O2) from water and oxygen. Antimony doping into SnO2 gives rise to remarkable electrocatalytic activity for two-electron oxygen reduction reaction (2e--ORR) by water with a volcano-type relation between the activity and doping levels (xSb). Density functional theory simulations highlight the importance of an isolated Sb atom of ATO inducing the high activity and selectivity for 2e--ORR due to the effects of O2 adsorption enhancement, decrease in the activation energy, and lowering the adsorptivity of H2O2. Electrolysis by a normal three-electrode cell using ATO (xSb = 10.2 mol %) at -0.22 V (vs reversible hydrogen electrode) stably and continuously produces H2O2 with a turnover frequency of 6.6 s-1. This remarkable activity can be maintained even after removing the surface layer of ATO by argon-ion sputtering.
Collapse
Affiliation(s)
- Shin-Ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Haruya Suzuki
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hisayoshi Kobayashi
- Emeritus Prof. Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Tada
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
28
|
Zhang E, Tao L, An J, Zhang J, Meng L, Zheng X, Wang Y, Li N, Du S, Zhang J, Wang D, Li Y. Engineering the Local Atomic Environments of Indium Single-Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angew Chem Int Ed Engl 2022; 61:e202117347. [PMID: 35043532 DOI: 10.1002/anie.202117347] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/14/2023]
Abstract
The in-depth understanding of local atomic environment-property relationships of p-block metal single-atom catalysts toward the 2 e- oxygen reduction reaction (ORR) has rarely been reported. Here, guided by first-principles calculations, we develop a heteroatom-modified In-based metal-organic framework-assisted approach to accurately synthesize an optimal catalyst, in which single In atoms are anchored by combined N,S-dual first coordination and B second coordination supported by the hollow carbon rods (In SAs/NSBC). The In SAs/NSBC catalyst exhibits a high H2 O2 selectivity of above 95 % in a wide range of pH. Furthermore, the In SAs/NSBC-modified natural air diffusion electrode exhibits an unprecedented production rate of 6.49 mol peroxide gcatalyst -1 h-1 in 0.1 M KOH electrolyte and 6.71 mol peroxide gcatalyst -1 h-1 in 0.1 M PBS electrolyte. This strategy enables the design of next-generation high-performance single-atom materials, and provides practical guidance for H2 O2 electrosynthesis.
Collapse
Affiliation(s)
- Erhuan Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lingzhe Meng
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, P. R. China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
29
|
Zhang E, Tao L, An J, Zhang J, Meng L, Zheng X, Wang Y, Li N, Du S, Zhang J, Wang D, Li Y. Engineering the Local Atomic Environments of Indium Single‐Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Erhuan Zhang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Lei Tao
- Institute of Physics & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology Tianjin University Tianjin 300072 P. R. China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Lingzhe Meng
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications Experimental Center of Advanced Materials, School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaobo Zheng
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201204 P. R. China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology Tianjin University Tianjin 300072 P. R. China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Condensed Matter Physics Beijing 100190 P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications Experimental Center of Advanced Materials, School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
30
|
Jia Y, Xue Z, Yang J, Liu Q, Xian J, Zhong Y, Sun Y, Zhang X, Liu Q, Yao D, Li G. Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaling Jia
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ziqian Xue
- Institute for Integrated Cell-Material Sciences (iCeMS) Kyoto University Kyoto 606–8501 Japan
| | - Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yamei Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Daoxin Yao
- State Key Laboratory of Optoelectronic Materials and Technologies School of Physics Sun Yat-Sen University Guangzhou 510275 China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
31
|
Hu L, Dai C, Chen L, Zhu Y, Hao Y, Zhang Q, Gu L, Feng X, Yuan S, Wang L, Wang B. Metal‐Triazolate‐Framework‐Derived FeN
4
Cl
1
Single‐Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Linyu Hu
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Chunlong Dai
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Liwei Chen
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Yuhao Zhu
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Yuchen Hao
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science Beijing 100081 P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science Beijing 100081 P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Shuai Yuan
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Lu Wang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
32
|
|
33
|
Jia Y, Xue Z, Yang J, Liu Q, Xian J, Zhong Y, Sun Y, Zhang X, Liu Q, Yao D, Li G. Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angew Chem Int Ed Engl 2021; 61:e202110838. [PMID: 34716639 DOI: 10.1002/anie.202110838] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/28/2021] [Indexed: 12/29/2022]
Abstract
Accurately regulating the selectivity of the oxygen reduction reaction (ORR) is crucial to renewable energy storage and utilization, but challenging. A flexible alteration of ORR pathways on atomically dispersed Zn sites towards high selectivity ORR can be achieved by tailoring the coordination environment of the catalytic centers. The atomically dispersed Zn catalysts with unique O- and C-coordination structure (ZnO3 C) or N-coordination structure (ZnN4 ) can be prepared by varying the functional groups of corresponding MOF precursors. The coordination environment of as-prepared atomically dispersed Zn catalysts was confirmed by X-ray absorption fine structure (XAFs). Notably, the ZnN4 catalyst processes a 4 e- ORR pathway to generate H2 O. However, controllably tailoring the coordination environment of atomically dispersed Zn sites, ZnO3 C catalyst processes a 2 e- ORR pathway to generate H2 O2 with a near zero overpotential and high selectivity in 0.1 M KOH. Calculations reveal that decreased electron density around Zn in ZnO3 C lowers the d-band center of Zn, thus changing the intermediate adsorption and contributing to the high selectivity towards 2 e- ORR.
Collapse
Affiliation(s)
- Yaling Jia
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ziqian Xue
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yamei Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Daoxin Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
34
|
Hu L, Dai C, Chen L, Zhu Y, Hao Y, Zhang Q, Gu L, Feng X, Yuan S, Wang L, Wang B. Metal-Triazolate-Framework-Derived FeN 4 Cl 1 Single-Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021; 60:27324-27329. [PMID: 34704324 DOI: 10.1002/anie.202113895] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Indexed: 02/02/2023]
Abstract
The construction of single-atom catalysts (SACs) with high single atom densities, favorable electronic structures and fast mass transfer is highly desired. We have utilized metal-triazolate (MET) frameworks, a subclass of metal-organic frameworks (MOFs) with high N content, as precursors since they can enhance the density and regulate the electronic structure of single-atom sites, as well as generate abundant mesopores simultaneously. Fe single atoms dispersed in a hierarchically porous N-doped carbon matrix with high metal content (2.78 wt %) and a FeN4 Cl1 configuration (FeN4 Cl1 /NC), as well as mesopores with a pore:volume ratio of 0.92, were obtained via the pyrolysis of a Zn/Fe-bimetallic MET modified with 4,5-dichloroimidazole. FeN4 Cl1 /NC exhibits excellent oxygen reduction reaction (ORR) activity in both alkaline and acidic electrolytes. Density functional theory calculations confirm that Cl can optimize the adsorption free energy of Fe sites to *OH, thereby promoting the ORR process. The catalyst demonstrates great potential in zinc-air batteries. This strategy selects, designs, and adjusts MOFs as precursors for high-performance SACs.
Collapse
Affiliation(s)
- Linyu Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chunlong Dai
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liwei Chen
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuhao Zhu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuchen Hao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100081, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100081, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuai Yuan
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lu Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
35
|
Xu X, Yin X, Fu J, Ke D. Structural Modulation on NiCo 2 S 4 Nanoarray by N Doping to Enhance 2e-ORR Selectivity for Photothermal AOPs and Zn-O 2 Batteries*. Chemistry 2021; 27:14451-14460. [PMID: 34346117 DOI: 10.1002/chem.202101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/13/2022]
Abstract
As a H2 O2 generator, a 2e- oxygen reduction reaction active electrocatalyst plays an important role in the advanced oxidation process to degrade organic pollutants in sewage. To enhance the tendency of NiCo2 S4 towards the 2e- reduction reaction, N atoms are doped in its structure and replace S2- . The result implies that this weakens the interaction between NiCo2 S4 and OOH*, suppresses O-O bond breaking and enhances H2 O2 selectivity. This electrocatalyst also shows photothermal effect. Under photothermal heating, H2 O2 produced by the oxidation reduction reaction can decompose and releaseOH, which degrades organic pollutants through the advanced oxidation process. Photothermal effect induced by the advance oxidation process shows obvious advantages over the traditional Fenton reaction, such as wide pH adaptation scope and low secondary pollutant due to its Fe2+ free character. With Zn as anode and the electrocatalyst as cathode material, a Zn-O2 battery is assembled. It achieves electricity generation and photothermal effect induced by the advance oxidation process simultaneously.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China.,Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang, Liaoning, 110819, China)
| | - Xunkai Yin
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Jingnuo Fu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Di Ke
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| |
Collapse
|
36
|
Yang J, Wang Z, Huang CX, Zhang Y, Zhang Q, Chen C, Du J, Zhou X, Zhang Y, Zhou H, Wang L, Zheng X, Gu L, Yang LM, Wu Y. Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2021; 60:22722-22728. [PMID: 34402159 DOI: 10.1002/anie.202109058] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/06/2021] [Indexed: 11/08/2022]
Abstract
Designing and modulating the local structure of metal sites is the key to gain the unique selectivity and high activity of single metal site catalysts. Herein, we report strain engineering of curved single atomic iron-nitrogen sites to boost electrocatalytic activity. First, a helical carbon structure with abundant high-curvature surface is realized by carbonization of helical polypyrrole that is templated from self-assembled chiral surfactants. The high-curvature surface introduces compressive strain on the supported Fe-N4 sites. Consequently, the curved Fe-N4 sites with 1.5 % compressed Fe-N bonds exhibit downshifted d-band center than the planar sites. Such a change can weaken the bonding strength between the oxygenated intermediates and metal sites, resulting a much smaller energy barrier for oxygen reduction. Catalytic tests further demonstrate that a kinetic current density of 7.922 mA cm-2 at 0.9 V vs. RHE is obtained in alkaline media for curved Fe-N4 sites, which is 31 times higher than that for planar ones. Our findings shed light on modulating the local three-dimensional structure of single metal sites and boosting the catalytic activity via strain engineering.
Collapse
Affiliation(s)
- Jia Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhiyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chun-Xiang Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yida Zhang
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cai Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junyi Du
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lingxiao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yuen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
37
|
Yang J, Wang Z, Huang C, Zhang Y, Zhang Q, Chen C, Du J, Zhou X, Zhang Y, Zhou H, Wang L, Zheng X, Gu L, Yang L, Wu Y. Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia Yang
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui Graphene Engineering Laboratory Anhui University Hefei Anhui 230601 China
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhiyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Chun‐Xiang Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Yida Zhang
- National Synchrotron Radiation Laboratory (NSRL) University of Science and Technology of China Hefei Anhui 230029 China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Cai Chen
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Junyi Du
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Huang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Lingxiao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL) University of Science and Technology of China Hefei Anhui 230029 China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Yuen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
38
|
Kim Y, Collinge G, Lee M, Khivantsev K, Cho SJ, Glezakou V, Rousseau R, Szanyi J, Kwak JH. Surface Density Dependent Catalytic Activity of Single Palladium Atoms Supported on Ceria**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yongseon Kim
- Department of Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Greg Collinge
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Mal‐Soon Lee
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Konstantin Khivantsev
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Sung June Cho
- Department of Chemical Engineering Chonnam National University 77 Yongbong-ro, Buk-gu Gwangju 61186 Republic of Korea
| | - Vassiliki‐Alexandra Glezakou
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Roger Rousseau
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Janos Szanyi
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Ja Hun Kwak
- Department of Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
39
|
Liu Y, Wang B, Fu Q, Liu W, Wang Y, Gu L, Wang D, Li Y. Polyoxometalate‐Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semi‐Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yiwei Liu
- Department of Chemistry Tsinghua University Beijing 100084 China
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Bingxue Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Lin Gu
- Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
40
|
Kim JH, Shin D, Kim J, Lim JS, Paidi VK, Shin TJ, Jeong HY, Lee K, Kim H, Joo SH. Reversible Ligand Exchange in Atomically Dispersed Catalysts for Modulating the Activity and Selectivity of the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jae Hyung Kim
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Dongyup Shin
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-Ro Daejeon 34141 Republic of Korea
| | - Jinjong Kim
- Department of Chemistry UNIST 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - June Sung Lim
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Vinod K. Paidi
- Pohang Accelerator Laboratory 80 Jigok-ro Pohang 37673 Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities, UNIST 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities, UNIST 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Kug‐Seung Lee
- Pohang Accelerator Laboratory 80 Jigok-ro Pohang 37673 Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-Ro Daejeon 34141 Republic of Korea
| | - Sang Hoon Joo
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
- Department of Chemistry UNIST 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
41
|
Zhang Y, Melchionna M, Medved M, Błoński P, Steklý T, Bakandritsos A, Kment Š, Zbořil R, Otyepka M, Fornaserio P, Naldoni A. Enhanced On‐Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated N‐Doped Graphene Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202100805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Zhang
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, INSTM University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Miroslav Medved
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Piotr Błoński
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Tomáš Steklý
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Aristides Bakandritsos
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Nanotechnology Centre CEET VŠB – Technical University Ostrava 17 listopadu 2172/15 Ostrava-Poruba 70800 Czech Republic
| | - Štěpán Kment
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Nanotechnology Centre CEET VŠB – Technical University Ostrava 17 listopadu 2172/15 Ostrava-Poruba 70800 Czech Republic
| | - Radek Zbořil
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Nanotechnology Centre CEET VŠB – Technical University Ostrava 17 listopadu 2172/15 Ostrava-Poruba 70800 Czech Republic
| | - Michal Otyepka
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- IT4Innovations, VSB – Technical University of Ostrava 17. listopadu 2172/15 70800 Ostrava-Poruba Czech Republic
| | - Paolo Fornaserio
- Department of Chemical and Pharmaceutical Sciences, INSTM University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Alberto Naldoni
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| |
Collapse
|
42
|
Jing L, Tang C, Tian Q, Liu T, Ye S, Su P, Zheng Y, Liu J. Mesoscale Diffusion Enhancement of Carbon-Bowl-Shaped Nanoreactor toward High-Performance Electrochemical H 2O 2 Production. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39763-39771. [PMID: 34433252 DOI: 10.1021/acsami.1c11765] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gas-involving electrocatalytic reactions are of critical importance in the development of carbon-neutral energy technologies. However, the catalytic performance is always limited by the unsatisfactory diffusion properties of reactants as well as products. In spite of significant advances in catalyst design, the development of mesoscale mass diffusion and process intensification is still challenging due to the lack of material platforms, synthesis methods, and mechanism understanding. In this work, as a proof of concept, we demonstrated achieving these two critical factors in one system by designing a mesoporous carbon bowl (MCB) nanoreactor with both abundant highly active sites and enhanced diffusion properties. The catalysts with controlled opening morphology and mesoporous channels were carefully synthesized via a hydrogen-bonding uneven self-assembling followed by pyrolysis. Taking the two-electron oxygen reduction reaction (ORR) for the H2O2 production as a model, which is a strong diffusion-limiting reaction, the optimal MCB samples achieved a high H2O2 selectivity (>90%) across a wide potential window of 0.6 V, and a large cathodic current density of -2.7 mA cm-2 (at 0.1 V vs RHE). The electrochemical evaluation and finite-element simulation study for a series of MCBs revealed that the similar active sites intrinsically determined the H2O2 selectivity, while the well-designed mesoporous bowl configuration with different window sizes boosted the ORR activity by significantly accelerating the local mass diffusion. This work sheds new insights into the engineering of intrinsic active sites and local mass diffusion properties for electrocatalysts, which bridges the research of electrocatalysis from fundamental atomic-scale and practical macroscale devices.
Collapse
Affiliation(s)
- Lingyan Jing
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Tang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Qiang Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Liu
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Sheng Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Panpan Su
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| |
Collapse
|
43
|
Liu Y, Wang B, Fu Q, Liu W, Wang Y, Gu L, Wang D, Li Y. Polyoxometalate-Based Metal-Organic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angew Chem Int Ed Engl 2021; 60:22522-22528. [PMID: 34374208 DOI: 10.1002/anie.202109538] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/06/2022]
Abstract
Achieving highly selective acetylene semi-hydrogenation in an ethylene-rich gas stream is of great industrial importance. Herein, we construct isolated single Pd atom in a polyoxometalate-based metal-organic framework (POMOF). The unique internal environment allows this POMOF to separate acetylene from acetylene/ethylene gas mixtures and confine it close to the single Pd atom. After semi-hydrogenation, the resulting ethylene is preferentially discharged from the pores, achieving a selectivity of 92.6 %. First-principles simulations reveal that the adsorbed acetylene/ethylene molecules form hydrogen bond networks with oxygen atoms of SiW12 O40 4- and create dynamic confinement regions, which preferentially release the produced ethylene. Besides, at the Pd site, the over-hydrogenation of ethylene exhibits a higher reaction energy barrier than the semi-hydrogenation of acetylene. The combined advantages of POMOF and single Pd atom provides an effective approach for the regulation of semi-hydrogenation selectivity.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.,Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Bingxue Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
44
|
Kim JH, Shin D, Kim J, Lim JS, Paidi VK, Shin TJ, Jeong HY, Lee KS, Kim H, Joo SH. Reversible Ligand Exchange in Atomically Dispersed Catalysts for Modulating the Activity and Selectivity of the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021; 60:20528-20534. [PMID: 34263519 DOI: 10.1002/anie.202108439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/10/2022]
Abstract
Rational control of the coordination environment of atomically dispersed catalysts is pivotal to achieve desirable catalytic reactivity. We report the reversible control of coordination structure in atomically dispersed electrocatalysts via ligand exchange reactions to reversibly modulate their reactivity for oxygen reduction reaction (ORR). The CO-ligated atomically dispersed Rh catalyst exhibited ca. 30-fold higher ORR activity than the NHx -ligated catalyst, whereas the latter showed three times higher H2 O2 selectivity than the former. Post-treatments of the catalysts with CO or NH3 allowed the reversible exchange of CO and NHx ligands, which reversibly tuned oxidation state of metal centers and their ORR activity and selectivity. DFT calculations revealed that more reduced oxidation state of CO-ligated Rh site could further stabilize the *OOH intermediate, facilitating the two- and four-electron pathway ORR. The reversible ligand exchange reactions were generalized to Ir- and Pt-based catalysts.
Collapse
Affiliation(s)
- Jae Hyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Dongyup Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Daejeon, 34141, Republic of Korea
| | - Jinjong Kim
- Department of Chemistry, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - June Sung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Vinod K Paidi
- Pohang Accelerator Laboratory, 80 Jigok-ro, Pohang, 37673, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, 80 Jigok-ro, Pohang, 37673, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Daejeon, 34141, Republic of Korea
| | - Sang Hoon Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.,Department of Chemistry, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
45
|
Zhu T, Han Y, Liu S, Yuan B, Liu Y, Ma H. Porous Materials Confining Single Atoms for Catalysis. Front Chem 2021; 9:717201. [PMID: 34368087 PMCID: PMC8333616 DOI: 10.3389/fchem.2021.717201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, single-atom catalysts (SACs) have received extensive attention due to their unique structure and excellent performance. Currently, a variety of porous materials are used as confined single-atom catalysts, such as zeolites, metal-organic frameworks (MOFs), or carbon nitride (CN). The support plays a key role in determining the coordination structure of the catalytic metal center and its catalytic performance. For example, the strong interaction between the metal and the carrier induces the charge transfer between the metal and the carrier, and ultimately affects the catalytic behavior of the single-atom catalyst. Porous materials have unique chemical and physical properties including high specific surface area, adjustable acidity and shape selectivity (such as zeolites), and are rational support materials for confined single atoms, which arouse research interest in this field. This review surveys the latest research progress of confined single-atom catalysts for porous materials, which mainly include zeolites, CN and MOFs. The preparation methods, characterizations, application fields, and the interaction between metal atoms and porous support materials of porous material confined single-atom catalysts are discussed. And we prospect for the application prospects and challenges of porous material confined single-atom catalysts.
Collapse
Affiliation(s)
- Tao Zhu
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yiwei Han
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Shuai Liu
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Bo Yuan
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Yatao Liu
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Hongli Ma
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| |
Collapse
|
46
|
Han A, Wang X, Tang K, Zhang Z, Ye C, Kong K, Hu H, Zheng L, Jiang P, Zhao C, Zhang Q, Wang D, Li Y. An Adjacent Atomic Platinum Site Enables Single‐Atom Iron with High Oxygen Reduction Reaction Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105186] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ali Han
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Center for Excellence in Nanoscience School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Kun Tang
- School of Physics and Materials Science Anhui University Hefei 230601 China
| | - Zedong Zhang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chenliang Ye
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Kejian Kong
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haibo Hu
- School of Physics and Materials Science Anhui University Hefei 230601 China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences No. 19 Yuquan Road Beijing 100049 China
| | - Peng Jiang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Changxin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
47
|
Han A, Wang X, Tang K, Zhang Z, Ye C, Kong K, Hu H, Zheng L, Jiang P, Zhao C, Zhang Q, Wang D, Li Y. An Adjacent Atomic Platinum Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance. Angew Chem Int Ed Engl 2021; 60:19262-19271. [PMID: 34156746 DOI: 10.1002/anie.202105186] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Indexed: 12/18/2022]
Abstract
The modulation effect has been widely investigated to tune the electronic state of single-atomic M-N-C catalysts to enhance the activity of oxygen reduction reaction (ORR). However, the in-depth study of modulation effect is rarely reported for the isolated dual-atomic metal sites. Now, the catalytic activities of Fe-N4 moiety can be enhanced by the adjacent Pt-N4 moiety through the modulation effect, in which the Pt-N4 acts as the modulator to tune the 3d electronic orbitals of Fe-N4 active site and optimize ORR activity. Inspired by this principle, we design and synthesize the electrocatalyst that comprises isolated Fe-N4 /Pt-N4 moieties dispersed in the nitrogen-doped carbon matrix (Fe-N4 /Pt-N4 @NC) and exhibits a half-wave potential of 0.93 V vs. RHE and negligible activity degradation (ΔE1/2 =8 mV) after 10000 cycles in 0.1 M KOH. We also demonstrate that the modulation effect is not effective for optimizing the ORR performances of Co-N4 /Pt-N4 and Mn-N4 /Pt-N4 systems.
Collapse
Affiliation(s)
- Ali Han
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Kun Tang
- School of Physics and Materials Science, Anhui University, Hefei, 230601, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chenliang Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kejian Kong
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haibo Hu
- School of Physics and Materials Science, Anhui University, Hefei, 230601, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Peng Jiang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Changxin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
48
|
Wang P, Xi B, Zhang Z, Huang M, Feng J, Xiong S. Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2021; 60:15563-15571. [PMID: 33904241 DOI: 10.1002/anie.202104053] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Indexed: 11/09/2022]
Abstract
Use of catalytic materials is regarded as the most desirable strategy to cope with sluggish kinetics of lithium polysulfides (LiPSs) transformation and severe shuttle effect in lithium-sulfur batteries (LSBs). Single-atom catalysts (SACs) with 100 % atom-utilization are advantagous in serving as anchoring and electrocatalytic centers for LiPSs. Herein, a novel kind of tungsten (W) SAC immobilized on nitrogen-doped graphene (W/NG) with a unique W-O2 N2 -C coordination configuration and a high W loading of 8.6 wt % is proposed by a self-template and self-reduction strategy. The local coordination environment of W atom endows the W/NG with elevated LiPSs adsorption ability and catalytic activity. LSBs equipped with W/NG modified separator manifest greatly improved electrochemical performances with high cycling stability over 1000 cycles and ultrahigh rate capability. It indicates high areal capacity of 6.24 mAh cm-2 with robust cycling life at a high sulfur mass loading of 8.3 mg cm-2 .
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhengchunyu Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Man Huang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Shenglin Xiong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
49
|
Blackstone C, Ignaszak A. Van der Waals Heterostructures-Recent Progress in Electrode Materials for Clean Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3754. [PMID: 34279324 PMCID: PMC8269904 DOI: 10.3390/ma14133754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 01/09/2023]
Abstract
The unique layered morphology of van der Waals (vdW) heterostructures give rise to a blended set of electrochemical properties from the 2D sheet components. Herein an overview of their potential in energy storage systems in place of precious metals is conducted. The most recent progress on vdW electrocatalysis covering the last three years of research is evaluated, with an emphasis on their catalytic activity towards the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). This analysis is conducted in pair with the most active Pt-based commercial catalyst currently utilized in energy systems that rely on the above-listed electrochemistry (metal-air battery, fuel cells, and water electrolyzers). Based on current progress in HER catalysis that employs vdW materials, several recommendations can be stated. First, stacking of the two types vdW materials, with one being graphene or its doped derivatives, results in significantly improved HER activity. The second important recommendation is to take advantage of an electronic coupling when stacking 2D materials with the metallic surface. This significantly reduces the face-to-face contact resistance and thus improves the electron transfer from the metallic surface to the vdW catalytic plane. A dual advantage can be achieved from combining the vdW heterostructure with metals containing an excess of d electrons (e.g., gold). Despite these recent and promising discoveries, more studies are needed to solve the complexity of the mechanism of HER reaction, in particular with respect to the electron coupling effects (metal/vdW combinations). In addition, more affordable synthetic pathways allowing for a well-controlled confined HER catalysis are emerging areas.
Collapse
Affiliation(s)
- Chance Blackstone
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
50
|
Zou Z, Shi ZZ, Wu JG, Wu C, Zeng QX, Zhang YY, Zhou GD, Wu XS, Li J, Chen H, Yang HB, Li CM. Atomically Dispersed Co to an End-Adsorbing Molecule for Excellent Biomimetically and Prime Sensitively Detecting O 2•- Released from Living Cells. Anal Chem 2021; 93:10789-10797. [PMID: 34212722 DOI: 10.1021/acs.analchem.1c00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Single-atom catalysis efficiently exposes the catalytic sites to reactant molecules while rendering opportunity to investigate the catalysis mechanisms at atomic levels for scientific insights. Here, for the first time, atomically dispersed Co atoms are synthesized as biomimetic "enzymes" to monitor superoxide anions (O2•-), delivering ultraordinary high sensitivity (710.03 μA·μM-1·cm-2), low detection limit (1.5 nM), and rapid response time (1.2 s), ranking the best among all the reported either bioenzymatic or biomimetic O2•- biosensors. The sensor is further successfully employed to real-time monitor O2•- released from living cells. Moreover, theoretical calculation and analysis associated with experimental results discover that a mode of end adsorption of the negatively charged O2•- on the Co3+ atom rather than a bridge or/and side adsorption of the two atoms of O2•- on two Co3+ atoms, respectively, plays an important role in the single-atomic catalysis toward O2•- oxidation, which not only facilitates faster electron transfer but also offers better selectivity. This work holds great promise for an inexpensive and sensitive atomic biomimetic O2•- sensor for bioresearch and clinic diagnosis, while revealing that the adsorption mode plays a critical role in single-atom catalysis for a fundamental insight.
Collapse
Affiliation(s)
- Zhuo Zou
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.,Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.,Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Zhuan Zhuan Shi
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jing Gao Wu
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chao Wu
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qing Xin Zeng
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuan Yuan Zhang
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Guang Dong Zhou
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiao Shuai Wu
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Juan Li
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Bin Yang
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chang Ming Li
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.,Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.,Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao 200671, China
| |
Collapse
|