1
|
Somprasong S, Reis MC, Harutyunyan SR. Catalytic Access to Chiral δ-Lactams via Nucleophilic Dearomatization of Pyridine Derivatives. Angew Chem Int Ed Engl 2023; 62:e202217328. [PMID: 36522289 DOI: 10.1002/anie.202217328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Nitrogen-bearing rings are common features in the molecular structures of modern drugs, with chiral δ-lactams being an important subclass due to their known pharmacological properties. Catalytic dearomatization of preactivated pyridinium ion derivatives emerged as a powerful method for the rapid construction of chiral N-heterocycles. However, direct catalytic dearomatization of simple pyridine derivatives are scarce and methodologies yielding chiral δ-lactams are yet to be developed. Herein, we describe an enantioselective C4-dearomatization of methoxypyridine derivatives for the preparation of functionalised enantioenriched δ-lactams using chiral copper catalysis. Experimental 13 C kinetic isotope effects and density functional theory calculations shed light on the reaction mechanism and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Siriphong Somprasong
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
4
|
Kischkewitz M, Marinic B, Kratena N, Lai Y, Hepburn HB, Dow M, Christensen KE, Donohoe TJ. Evolution of the Dearomative Functionalization of Activated Quinolines and Isoquinolines: Expansion of the Electrophile Scope. Angew Chem Int Ed Engl 2022; 61:e202204682. [PMID: 35560761 PMCID: PMC9321684 DOI: 10.1002/anie.202204682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Herein we disclose a mild protocol for the reductive functionalisation of quinolinium and isoquinolinium salts. The reaction proceeds under transition-metal-free conditions as well as under rhodium catalysis with very low catalyst loadings (0.01 mol %) and uses inexpensive formic acid as the terminal reductant. A wide range of electrophiles, including enones, imides, unsaturated esters and sulfones, β-nitro styrenes and aldehydes are intercepted by the in situ formed enamine species forming a large variety of substituted tetrahydro(iso)quinolines. Electrophiles are incorporated at the C-3 and C-4 position for quinolines and isoquinolines respectively, providing access to substitution patterns which are not favoured in electrophilic or nucleophilic aromatic substitution. Finally, this reactivity was exploited to facilitate three types of annulation reactions, giving rise to complex polycyclic products of a formal [3+3] or [4+2] cycloaddition.
Collapse
Affiliation(s)
- Marvin Kischkewitz
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Bruno Marinic
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Nicolas Kratena
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yonglin Lai
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Hamish B. Hepburn
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Mark Dow
- Chemical Development, Pharmaceutical Technology & DevelopmentOperations, AstraZenecaMacclesfieldSK10 2NAUK
| | - Kirsten E. Christensen
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
5
|
Kischkewitz M, Marinic B, Kratena N, Lai Y, Hepburn HB, Dow M, Christensen KE, Donohoe TJ. Evolution of the Dearomative Functionalization of Activated Quinolines and Isoquinolines: Expansion of the Electrophile Scope. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202204682. [PMID: 38505668 PMCID: PMC10946825 DOI: 10.1002/ange.202204682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/07/2022]
Abstract
Herein we disclose a mild protocol for the reductive functionalisation of quinolinium and isoquinolinium salts. The reaction proceeds under transition-metal-free conditions as well as under rhodium catalysis with very low catalyst loadings (0.01 mol %) and uses inexpensive formic acid as the terminal reductant. A wide range of electrophiles, including enones, imides, unsaturated esters and sulfones, β-nitro styrenes and aldehydes are intercepted by the in situ formed enamine species forming a large variety of substituted tetrahydro(iso)quinolines. Electrophiles are incorporated at the C-3 and C-4 position for quinolines and isoquinolines respectively, providing access to substitution patterns which are not favoured in electrophilic or nucleophilic aromatic substitution. Finally, this reactivity was exploited to facilitate three types of annulation reactions, giving rise to complex polycyclic products of a formal [3+3] or [4+2] cycloaddition.
Collapse
Affiliation(s)
- Marvin Kischkewitz
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Bruno Marinic
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Nicolas Kratena
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yonglin Lai
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Hamish B. Hepburn
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Mark Dow
- Chemical Development, Pharmaceutical Technology & DevelopmentOperations, AstraZenecaMacclesfieldSK10 2NAUK
| | - Kirsten E. Christensen
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
6
|
Watanabe Y, Isaka K, Sato K, Kokado S, Mizutani A, Hachiya I. Domino 1,4‐ and 1,4‐Addition Reactions of Ketene Silyl Thioacetals to Dialkynyl Imines Promoted by Scandium Triflate: Synthesis of Multifunctionalized δ‐Lactams. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuya Watanabe
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Keisuke Isaka
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Koki Sato
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Shinya Kokado
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Amane Mizutani
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Iwao Hachiya
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| |
Collapse
|
7
|
Chen B, Xie Z, Peng F, Li S, Yang J, Wu T, Fan H, Zhang Z, Hou M, Li S, Liu H, Han B. Production of Piperidine and δ-Lactam Chemicals from Biomass-Derived Triacetic Acid Lactone. Angew Chem Int Ed Engl 2021; 60:14405-14409. [PMID: 33825278 DOI: 10.1002/anie.202102353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Piperidine and δ-Lactam chemicals have wide application, which are currently produced from fossil resource in industry. Production of this kind of chemicals from lignocellulosic biomass is of great importance, but is challenging and the reported routes give low yield. Herein, we demonstrate the strategy to synthesize 2-methyl piperidine (MP) and 6-methylpiperidin-2-one (MPO) from biomass-derived triacetic acid lactone (TAL) that is produced microbially from glucose. In this route, TAL was firstly converted into 4-hydroxy-6-methylpyridin-2(1H)-one (HMPO) through facile aminolysis, subsequently HMPO was selectively transformed into MP or MPO over Ru catalysts supported on beta zeolite (Ru/BEA-X, X is the molar ratio of Si to Al) via the tandem reaction. It was found that the yield of MP could reach 76.5 % over Ru/BEA-60 in t-BuOH, and the yield of MPO could be 78.5 % in dioxane. Systematic studies reveal that the excellent catalytic performance of Ru/BEA-60 was closely correlated with the cooperative effects between active metal and acidic zeolite with large pore geometries. The related reaction pathway was studied on the basis of control experiments.
Collapse
Affiliation(s)
- Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhenbing Xie
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fangfang Peng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaopeng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Junjuan Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Chen B, Xie Z, Peng F, Li S, Yang J, Wu T, Fan H, Zhang Z, Hou M, Li S, Liu H, Han B. Production of Piperidine and δ‐Lactam Chemicals from Biomass‐Derived Triacetic Acid Lactone. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhenbing Xie
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fangfang Peng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shaopeng Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Junjuan Yang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|