1
|
Zhen Y, Zhou X, Xiong A, Yan Y, Zhang X. A dual-drive strategy for enhanced protein crystallization with sodium alginate/hyaluronic acid film: Protein adsorption and supersaturation regulation. Int J Biol Macromol 2025; 293:139377. [PMID: 39743111 DOI: 10.1016/j.ijbiomac.2024.139377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Protein crystallization is essential for determining the three-dimensional structures of biomacromolecules and advancing biopharmaceutical development, yet it remains a major challenge in structural biology due to common issues like slow nucleation rates and inconsistent crystal quality. Herein, a dual-drive crystallization (DDC) strategy, relying on a composite film of sodium alginate (SA) and hyaluronic acid (HA), is reported to synergistically regulate both protein adsorption and solution supersaturation. Driven by the electrostatic interactions of SA and the water absorption properties of HA, the SA/HA film achieves enhanced crystallization efficiency and controlled crystal quality mainly. It significantly reduces lysozyme nucleation time by over 66.0 % and better controls crystal size distribution. Molecular simulations further reveal a strong electrostatic interaction energy of -17.0 kcal·mol-1 between protein and SA, which enhances protein adsorption and then promotes cluster formation, nucleation, and crystal growth. Additionally, the DDC strategy efficiently promotes the crystallization of both thaumatin and proteinase K, enhancing the crystallization success rate for proteins with opposite charges. These results highlight the advantages and promising potential of SA/HA film-assisted protein crystallization for effectively producing protein crystals suitable for diverse applications.
Collapse
Affiliation(s)
- Yuxi Zhen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojie Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aoran Xiong
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yizhen Yan
- Department of Engineering and Design, School of Engineering and Information, University of Sussex, Brighton BN1 9RH, United Kingdom.
| | - Xiangyang Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Levenstein MA, Chevallard C, Malloggi F, Testard F, Taché O. Micro- and milli-fluidic sample environments for in situ X-ray analysis in the chemical and materials sciences. LAB ON A CHIP 2025; 25:1169-1227. [PMID: 39775751 DOI: 10.1039/d4lc00637b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
X-ray-based methods are powerful tools for structural and chemical studies of materials and processes, particularly for performing time-resolved measurements. In this critical review, we highlight progress in the development of X-ray compatible microfluidic and millifluidic platforms that enable high temporal and spatial resolution X-ray analysis across the chemical and materials sciences. With a focus on liquid samples and suspensions, we first present the origins of microfluidic sample environments for X-ray analysis by discussing some alternative liquid sample holder and manipulator technologies. The bulk of the review is then dedicated to micro- and milli-fluidic devices designed for use in the three main areas of X-ray analysis: (1) scattering/diffraction, (2) spectroscopy, and (3) imaging. While most research to date has been performed at synchrotron radiation facilities, the recent progress made using commercial and laboratory-based X-ray instruments is then reviewed here for the first time. This final section presents the exciting possibility of performing in situ and operando X-ray analysis in the 'home' laboratory and transforming microfluidic and millifluidic X-ray analysis into a routine method in physical chemistry and materials research.
Collapse
Affiliation(s)
- Mark A Levenstein
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Corinne Chevallard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Sun K, Zeng J, Liu Y, Zhou Z, Chen J, Chen J, Huang X, Gao F, Wang X, Zhang X, Wang X, Eeltink S, Zhang B. Microfluidic Precision Manufacture of High Performance Liquid Chromatographic Microspheres. Angew Chem Int Ed Engl 2025; 64:e202418642. [PMID: 39422286 DOI: 10.1002/anie.202418642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
A key bottleneck in developing chromatographic material is the chemically entangled control of morphology, pore structure, and material chemistry, which holds back precision material manufacture in order to pursue advanced separation performance. In this work, a precision manufacture strategy based on droplet microfluidics was developed, for production of highly efficient chromatographic microspheres with independent control over particle morphology, pore structure and material chemistry. The droplet-synthesized microspheres display extremely narrow particle size distribution (CV<3 %), enabling a 100 % production yield due to complete elimination of sieving steps. More importantly, the size of the droplet-synthesized microspheres is freely adjustable without the need for re-optimizing chemical recipes or reaction conditions. The resulting materials exhibit excellent separation efficiencies, achieving a reduced plate height of hmin=1.67. This precision manufacture strategy also allows for flexible pore design and continuous pore size adjustment across three orders of magnitudes, providing a novel vehicle for resolution fine-tuning targeting protein separation. Besides traditional silica, organic-inorganic hybrid silica, zirconia, and titania microspheres can also be precisely synthesized on the same platform, supporting various separation applications and operating conditions. Powered by precision manufacture, super-throughput production, and versatile chemistry, the high-performance droplet-synthesized separation material will pave the way towards green and precision chromatographic industry.
Collapse
Affiliation(s)
- Kaiyue Sun
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Ya Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Zhuoheng Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jikai Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Jiawei Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Xiangyu Huang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Fan Gao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Xin Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd, Hefei, 230088, China
| | | | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Bakouei M, Kalantarifard A, Sundara Raju I, Avsievich T, Rannaste L, Kreivi M, Elbuken C. Facile and versatile PDMS-glass capillary double emulsion formation device coupled with rapid purification toward microfluidic giant liposome generation. MICROSYSTEMS & NANOENGINEERING 2024; 10:183. [PMID: 39632792 PMCID: PMC11618511 DOI: 10.1038/s41378-024-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 12/07/2024]
Abstract
The exceptional ability of liposomes to mimic a cellular lipid membrane makes them invaluable tools in biomembrane studies and bottom-up synthetic biology. Microfluidics provides a promising toolkit for creating giant liposomes in a controlled manner. Nevertheless, challenges associated with the microfluidic formation of double emulsions, as precursors to giant liposomes, limit the full exploration of this potential. In this study, we propose a PDMS-glass capillary hybrid device as a facile and versatile tool for the formation of double emulsions which not only eliminates the need for selective surface treatment, a well-known problem with PDMS formation chips, but also provides fabrication simplicity and reusability compared to the glass-capillary formation chips. These advantages make the presented device a versatile tool for forming double emulsions with varying sizes (spanning two orders of magnitude in diameter), shell thickness, number of compartments, and choice of solvents. We achieved robust thin shell double emulsion formation by operating the hybrid chip in double dripping mode without performing hydrophilic/phobic treatment a priori. In addition, as an alternative to the conventional, time-consuming density-based separation method, a tandem separation chip is developed to deliver double emulsions free of any oil droplet contamination in a continuous and rapid manner without any need for operator handling. The applicability of the device was demonstrated by forming giant liposomes using the solvent extraction method. This easy-to-replicate, flexible, and reliable microfluidic platform for the formation and separation of double emulsion templates paves the way for the high-throughput microfluidic generation of giant liposomes and synthetic cells, opening exciting avenues for biomimetic research. The presented giant liposome assembly line features a novel treatment-free hybrid chip for double emulsion formation coupled with a high throughput separation chip for sample purification.
Collapse
Affiliation(s)
- Mostafa Bakouei
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ali Kalantarifard
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Indraja Sundara Raju
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tatiana Avsievich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Lauri Rannaste
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- VTT Technical Research Centre of Finland, Oulu, Finland
| | - Marjut Kreivi
- VTT Technical Research Centre of Finland, Oulu, Finland
| | - Caglar Elbuken
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
- VTT Technical Research Centre of Finland, Oulu, Finland.
| |
Collapse
|
5
|
Yan Y, Wang J, Lu X, Yuan W, Zhang X. Nucleation-Supersaturation Dual-Drive Crystallization Strategy Enables Efficient Protein Crystallization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307924. [PMID: 38072771 DOI: 10.1002/smll.202307924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/30/2023] [Indexed: 12/21/2023]
Abstract
A rational crystallization strategy is essential to obtain high-quality protein crystals, yet the established methods suffer from different limitations arising from the single regulation on either nucleation or supersaturation. Herein, a nucleation-supersaturation dual-driven crystallization (DDC) strategy that realizes synergistic regulation of heterogeneous nucleation sites and solution supersaturation based on dual surface and confinement effects for efficient protein crystallization is reported. This strategy relies on a p(PEGDA-co-DMAA) hydrogel template with pre-filled NaCl under designed concentrations. Once dropping hen egg white lysozyme (HEWL) protein solution on the hydrogel, the wrinkled surface provides numerous nucleation sites, while the internal structure regulates the solution supersaturation in the crystallization region through diffusion. Finally, DDC strategy can create high-quality HEWL crystals with large sizes (100-300 µm), well-defined morphologies (hexagon and tetragon), and a significantly accelerated nucleation time (9-12 times faster than that achieved using the conventional hanging drop method). It also performs well at wider protein concentrations (10-50 mg mL-1) and categories (e.g., achieving fast crystallization and large-size crystals of trypsin), therefore demonstrating clear advantages and great potential for efficiently fabricating protein crystals desirable for diverse applications.
Collapse
Affiliation(s)
- Yizhen Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuechun Lu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangyang Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Stubbs J, Hornsey T, Hanrahan N, Esteban LB, Bolton R, Malý M, Basu S, Orlans J, de Sanctis D, Shim JU, Shaw Stewart PD, Orville AM, Tews I, West J. Droplet microfluidics for time-resolved serial crystallography. IUCRJ 2024; 11:237-248. [PMID: 38446456 PMCID: PMC10916287 DOI: 10.1107/s2052252524001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.
Collapse
Affiliation(s)
- Jack Stubbs
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Theo Hornsey
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Niall Hanrahan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Luis Blay Esteban
- Universitat Carlemany, Avenida Verge de Canolich, 47, Sant Julia de Loria, Principat d’Andorra AD600, Spain
| | - Rachel Bolton
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Martin Malý
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Shibom Basu
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, Grenoble 38042, Cedex 9, France
| | - Julien Orlans
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Daniele de Sanctis
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Jung-uk Shim
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Ivo Tews
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jonathan West
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
7
|
Long F, Guo Y, Zhang Z, Wang J, Ren Y, Cheng Y, Xu G. Recent Progress of Droplet Microfluidic Emulsification Based Synthesis of Functional Microparticles. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300063. [PMID: 37745820 PMCID: PMC10517312 DOI: 10.1002/gch2.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/28/2023] [Indexed: 09/26/2023]
Abstract
The remarkable control function over the functional material formation process enabled by droplet microfluidic emulsification approaches can lead to the efficient and one-step encapsulation of active substances in microparticles, with the microparticle characteristics well regulated. In comparison to the conventional fabrication methods, droplet microfluidic technology can not only construct microparticles with various shapes, but also provide excellent templates, which enrich and expand the application fields of microparticles. For instance, intersection with disciplines in pharmacy, life sciences, and others, modifying the structure of microspheres and appending functional materials can be completed in the preparation of microparticles. The as-prepared polymer particles have great potential in a wide range of applications for chemical analysis, heavy metal adsorption, and detection. This review systematically introduces the devices and basic principles of particle preparation using droplet microfluidic technology and discusses the research of functional microparticle formation with high monodispersity, involving a plethora of types including spherical, nonspherical, and Janus type, as well as core-shell, hole-shell, and controllable multicompartment particles. Moreover, this review paper also exhibits a critical analysis of the current status and existing challenges, and outlook of the future development in the emerging fields has been discussed.
Collapse
Affiliation(s)
- Fei Long
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
| | - Yanhong Guo
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Zhiyu Zhang
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
| | - Jing Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
- Department of Electrical and Electronic EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Yong Ren
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Gaojie Xu
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| |
Collapse
|
8
|
Korede V, Penha FM, de Munck V, Stam L, Dubbelman T, Nagalingam N, Gutta M, Cui P, Irimia D, van der Heijden AE, Kramer HJ, Eral HB. Design and Validation of a Droplet-based Microfluidic System To Study Non-Photochemical Laser-Induced Nucleation of Potassium Chloride Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:6067-6080. [PMID: 37547880 PMCID: PMC10401630 DOI: 10.1021/acs.cgd.3c00591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Non-photochemical laser-induced nucleation (NPLIN) has emerged as a promising primary nucleation control technique offering spatiotemporal control over crystallization with potential for polymorph control. So far, NPLIN was mostly investigated in milliliter vials, through laborious manual counting of the crystallized vials by visual inspection. Microfluidics represents an alternative to acquiring automated and statistically reliable data. Thus we designed a droplet-based microfluidic platform capable of identifying the droplets with crystals emerging upon Nd:YAG laser irradiation using the deep learning method. In our experiments, we used supersaturated solutions of KCl in water, and the effect of laser intensity, wavelength (1064, 532, and 355 nm), solution supersaturation (S), solution filtration, and intentional doping with nanoparticles on the nucleation probability is quantified and compared to control cooling crystallization experiments. Ability of dielectric polarization and the nanoparticle heating mechanisms proposed for NPLIN to explain the acquired results is tested. Solutions with lower supersaturation (S = 1.05) exhibit significantly higher NPLIN probabilities than those in the control experiments for all laser wavelengths above a threshold intensity (50 MW/cm2). At higher supersaturation studied (S = 1.10), irradiation was already effective at lower laser intensities (10 MW/cm2). No significant wavelength effect was observed besides irradiation with 355 nm light at higher laser intensities (≥50 MW/cm2). Solution filtration and intentional doping experiments showed that nanoimpurities might play a significant role in explaining NPLIN phenomena.
Collapse
Affiliation(s)
- Vikram Korede
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen 42, 114-28 Stockholm, Sweden
| | - Vincent de Munck
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Lotte Stam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Thomas Dubbelman
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Maheswari Gutta
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - PingPing Cui
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Tianjin University, 300072 Tianjin, People’s Republic of China
| | - Daniel Irimia
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | | | - Herman J.M. Kramer
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Hüseyin Burak Eral
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
9
|
Baek S, Kim H, Hwang H, Kaba AM, Kim H, Chung M, Kim J, Kim D. A Laser-Micromachined PCB Electrolytic Micropump Using an Oil-Based Electrolyte Separation Barrier. BIOCHIP JOURNAL 2023. [DOI: 10.1007/s13206-023-00100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
10
|
Advances in unusual interfacial polymerization techniques. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
11
|
Xuan X, Lan W, Yuan J, Xu J, Li S. Study of the Pressure Drop of Liquid–Liquid Slug Flow in a Circular Microchannel. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xuemei Xuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing102249, China
| | - Wenjie Lan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing102249, China
| | - Juntao Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing102249, China
| | - Jianhong Xu
- State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Shaowei Li
- State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing100084, China
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing100084, China
| |
Collapse
|
12
|
Li H, Chen R, Zhu X, Ye D, Yang Y, Li W, Li D, Liao Q. Light Controlled 3D Crystal Morphology for Droplet Evaporative Crystallization on Photosensitive Hydrophobic Substrate. J Phys Chem Lett 2022; 13:5910-5917. [PMID: 35730790 DOI: 10.1021/acs.jpclett.2c01698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling crystal morphology is crucial in analytical chemistry and smart materials synthesis, etc. However, flexible manipulation of 3D crystal morphology still remains challenging. Herein, we present a novel and facile light strategy for droplet evaporative crystallization to manipulate macroscopic crystal morphology on photosensitive hydrophobic substrate possessing photothermal conversion property. We demonstrate that the spherical coronal shell and alms bowl-like crystal skeletons can be achieved on smooth photosensitive hydrophobic substrate, depending on the salt concentration. Rough photosensitive hydrophobic substrate further creates a bubble-assisted light strategy, by which a cylindrical shell-like crystal skeleton with a directionally controllable cavity is achieved. Amazingly, the proper additive endows droplet evaporative crystallization to form a closed crystal skeleton with the solution wrapped inside. The present study provides new ideas for designing a novel optical droplet microfluidic platform for controlling crystal morphology.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Wei Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dongliang Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
13
|
Hong MS, Lu AE, Bae J, Lee JM, Braatz RD. Droplet-Based Evaporative System for the Estimation of Protein Crystallization Kinetics. CRYSTAL GROWTH & DESIGN 2021; 21:6064-6075. [PMID: 34759784 PMCID: PMC8569678 DOI: 10.1021/acs.cgd.1c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Crystallization is a potential cost-effective alternative to chromatography for the purification of biotherapeutic proteins. Crystallization kinetics are required for the design and control of such processes, but only a limited quantity of proteins is available during the initial stage of process development. This article describes the design of a droplet-based evaporative system for the evaluation of candidate crystallization conditions and the estimation of kinetics using only a droplet (on the order of μL) of protein solution. The temperature and humidity of air fed to a flow cell containing the droplet are controlled for evaporation and rehydration of the droplet, which are used for manipulating supersaturation. Dual-angle images of the droplet are taken and analyzed on-line to obtain the droplet volume and crystal sizes. Crystallization kinetics are estimated based on a first-principles process model and experimental data. Tight control of temperature and humidity of the air, fast and accurate image analysis, and accurate estimation of crystallization kinetics are experimentally demonstrated for a model protein lysozyme. The estimated kinetics are suitable for the model-based design and control of protein crystallization processes.
Collapse
Affiliation(s)
- Moo Sun Hong
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Amos E. Lu
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jaehan Bae
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic
of Korea
| | - Jong Min Lee
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic
of Korea
| | - Richard D. Braatz
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Aladese AD, Jeong HH. Recent Developments in 3D Printing of Droplet-Based Microfluidics. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00032-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Lv H, Yang Z, Zhang J, Qian G, Duan X, Shu Z, Zhou X. Liquid Flow and Mass Transfer Behaviors in a Butterfly-Shaped Microreactor. MICROMACHINES 2021; 12:883. [PMID: 34442505 PMCID: PMC8401375 DOI: 10.3390/mi12080883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022]
Abstract
Based on the split-and-recombine principle, a millimeter-scale butterfly-shaped microreactor was designed and fabricated through femtosecond laser micromachining. The velocity fields, streamlines and pressure fields of the single-phase flow in the microreactor were obtained by a computational fluid dynamics simulation, and the influence of flow rates on the homogeneous mixing efficiency was quantified by the mixing index. The flow behaviors in the microreactor were investigated using water and n-butanol, from which schematic diagrams of various flow patterns were given and a flow pattern map was established for regulating the flow behavior via controlling the flow rates of the two-phase flow. Furthermore, effects of the two-phase flow rates on the droplet flow behavior (droplet number, droplet size and standard deviation) in the microreactor were investigated. In addition, the interfacial mass transfer behaviors of liquid-liquid flow were evaluated using the standard low interfacial tension system of "n-butanol/succinic acid/water", where the dependence between the flow pattern and mass transfer was discussed. The empirical relationship between the volumetric mass transfer coefficient and Reynold number was established with prediction error less than 20%.
Collapse
Affiliation(s)
| | - Zhirong Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (H.L.); (G.Q.); (X.D.); (Z.S.); (X.Z.)
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (H.L.); (G.Q.); (X.D.); (Z.S.); (X.Z.)
| | | | | | | | | |
Collapse
|
16
|
Schroen K, Berton-Carabin C, Renard D, Marquis M, Boire A, Cochereau R, Amine C, Marze S. Droplet Microfluidics for Food and Nutrition Applications. MICROMACHINES 2021; 12:863. [PMID: 34442486 PMCID: PMC8400250 DOI: 10.3390/mi12080863] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still have many research questions unsolved, and conventional laboratory methods are not always suitable to answer them. In this review, we present how microfluidics have been used in these fields to produce and investigate various droplet-based systems, namely simple and double emulsions, microgels, microparticles, and microcapsules with food-grade compositions. We show that droplet microfluidic devices enable unprecedented control over their production and properties, and can be integrated in lab-on-chip platforms for in situ and time-resolved analyses. This approach is illustrated for on-chip measurements of droplet interfacial properties, droplet-droplet coalescence, phase behavior of biopolymer mixtures, and reaction kinetics related to food digestion and nutrient absorption. As a perspective, we present promising developments in the adjacent fields of biochemistry and microbiology, as well as advanced microfluidics-analytical instrument coupling, all of which could be applied to solve research questions at the interface of food and nutritional sciences.
Collapse
Affiliation(s)
- Karin Schroen
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
| | - Claire Berton-Carabin
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Denis Renard
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | | | - Adeline Boire
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Rémy Cochereau
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Chloé Amine
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Sébastien Marze
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| |
Collapse
|
17
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
18
|
Oscillatory Reversible Osmotic Growth of Sessile Saline Droplets on a Floating Polydimethylsiloxane Membrane. FLUIDS 2021. [DOI: 10.3390/fluids6070232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report a cyclic growth/retraction phenomena observed for saline droplets placed on a cured poly (dimethylsiloxane) (PDMS) membrane with a thickness of 7.8 ± 0.1 µm floating on a pure water surface. Osmotic mass transport across the micro-scaled floating PDMS membrane provided the growth of the sessile saline droplets followed by evaporation of the droplets. NaCl crystals were observed in the vicinity of the triple line at the evaporation stage. The observed growth/retraction cycle was reversible. A model of the osmotic mass transfer across the cured PDMS membrane is suggested and verified. The first stage of the osmotic growth of saline droplets is well-approximated by the universal linear relationship, whose slope is independent of the initial radius of the droplet. The suggested physical model qualitatively explains the time evolution of the droplet size. The reported process demonstrates a potential for use in industrial desalination.
Collapse
|
19
|
Kumar Roy P, Legchenkova I, Shoval S, Dombrovsky LA, Bormashenko E. Osmotic evolution of composite liquid marbles. J Colloid Interface Sci 2021; 592:167-173. [PMID: 33662822 DOI: 10.1016/j.jcis.2021.02.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS We hypothesized that the reported evolution (growth) of composite water marbles filled with saline water and coated with lycopodium dispersed in a thin layer of silicone oil is due to the osmotic mass transfer. The hypothesis is supported by the semi-empirical model of osmotic growth of small liquid marbles floating on distilled water. EXPERIMENTS Saline composite, silicone oil-coated marbles floating on distilled water grew with time; whereas, composite marbles filled with distilled water floating on aqueous solutions of NaCl lost mass with time and shrunk. However, composite liquid marbles filled with saline water and floating on aqueous solutions of NaCl remained stable during 25 h of the laboratory experiment. FINDINGS The reported findings are reasonably attributed to osmotic mass transport through the thin silicon layer filled with lycopodium particles coating the marbles, acting as an osmotic membrane. This is supported by the suggested model for the osmotic growth of marbles.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- Chemical Engineering Department, Faculty of Engineering, Ariel University, P.O.B. 3, 407000 Ariel, Israel
| | - Irina Legchenkova
- Chemical Engineering Department, Faculty of Engineering, Ariel University, P.O.B. 3, 407000 Ariel, Israel
| | - Shraga Shoval
- Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, P.O.B. 3, 407000 Ariel, Israel
| | - Leonid A Dombrovsky
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St, Tyumen 625003, Russia; Heat Transfer Department, Joint Institute for High Temperatures, 17A Krasnokazarmennaya St, Moscow 111116, Russia
| | - Edward Bormashenko
- Chemical Engineering Department, Faculty of Engineering, Ariel University, P.O.B. 3, 407000 Ariel, Israel.
| |
Collapse
|
20
|
Abstract
Microsystem technologies allow a plethora of operations to be achieved for microemulsion- and microdroplet-based assays, providing miniaturized, yet large-throughput capabilities to assist experimentation in analytical chemistry, biology, and synthetic biology. Many of such approaches have been implemented on-chip, using microfluidic and lab-on-a-chip technologies. However, the microfabrication of such devices relies on expensive equipment and time-consuming methods, thus hindering their uptake and use by many research laboratories where microfabrication expertise is not available. Here, we demonstrate how fundamental water-in-oil microdroplet operations, such as droplet trapping, merging, diluting, and splitting, can be obtained using straightforward, inexpensive, and manually fabricated polymeric microtube modules. The modules are based on creating an angled tubing interface at the interconnection between two polymeric microtubes. We have characterized how the geometry and fluid dynamic conditions at this interface enabled different droplet operations to be achieved in a versatile and functional manner. We envisage this approach to be an alternative solution to expensive and laborious microfabrication protocols for droplet microfluidic applications.
Collapse
Affiliation(s)
- Yu Zhang
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow G1 1XW, U.K
| | - Ziyun Wang
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow G1 1XW, U.K
| | - Declan New
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow G1 1XW, U.K
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow G1 1XW, U.K
| |
Collapse
|
21
|
Su H, Wang Z, Chen Y, Mo S, An L. Numerical Simulation on Interface Dynamics of Core Coalescence of Double-Emulsion Droplets. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongshi Su
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Matter, Guangzhou 510006, China
| | - Zhibin Wang
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Matter, Guangzhou 510006, China
| | - Ying Chen
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Matter, Guangzhou 510006, China
| | - Songping Mo
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Matter, Guangzhou 510006, China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, China
| |
Collapse
|
22
|
Lange T, Charton S, Bizien T, Testard F, Malloggi F. OSTE+ for in situ SAXS analysis with droplet microfluidic devices. LAB ON A CHIP 2020; 20:2990-3000. [PMID: 32696785 DOI: 10.1039/d0lc00454e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years, microfluidic-based sample preparation techniques have emerged as a powerful tool for measurements at large scale X-ray facilities. Most often the microfluidic device was a form of hybrid system, i.e. an assembly of different materials, because a simple, versatile and inexpensive microfabrication method, on the one hand, and X-ray compatibility, on the other hand, cannot generally be achieved by the same material. The arrival of a new polymer family based on off-stoichiometric thiol-ene-epoxy (OSTE+) has recently redistributed the cards. In this context, we studied the relevance and the compatibility of OSTE+ for small-angle X-ray scattering (SAXS) studies. The material was characterized regarding its X-ray properties (transmission coefficient, attenuation coefficient, scattering pattern and polymer aging under X-ray light) and their comparison with those of the usual polymers used in microfluidics and/or for synchrotron radiation experiments. We show that OSTE+ has a better SAXS signal than polyimide, the polymer of reference in the SAXS community. Then a detailed protocol to manufacture a suitably thin full OSTE+ chip (total thickness <500 μm) is described and the potency of full OSTE+ devices for in situ SAXS studies is highlighted in two case-studies: the characterization of gold nanoparticles and the precipitation of cerium oxalate particles, both in moving droplets. Additionally, a method to analyze the scattering signals from droplet and carrier phase in a segmented flow is proposed.
Collapse
Affiliation(s)
- Tobias Lange
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
23
|
Linsenmeier M, Kopp MRG, Stavrakis S, de Mello A, Arosio P. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118823. [PMID: 32800925 DOI: 10.1016/j.bbamcr.2020.118823] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
An increasing body of evidence shows that membraneless organelles are key components in cellular organization. These observations open a variety of outstanding questions about the physico-chemical rules underlying their assembly, disassembly and functions. Some molecular determinants of biomolecular condensates are challenging to probe and understand in complex in vivo systems. Minimalistic in vitro reconstitution approaches can fill this gap, mimicking key biological features, while maintaining sufficient simplicity to enable the analysis of fundamental aspects of biomolecular condensates. In this context, microfluidic technologies are highly attractive tools for the analysis of biomolecular phase transitions. In addition to enabling high-throughput measurements on small sample volumes, microfluidic tools provide for exquisite control of self-assembly in both time and space, leading to accurate quantitative analysis of biomolecular phase transitions. Here, with a specific focus on droplet-based microfluidics, we describe the advantages of microfluidic technology for the analysis of several aspects of phase separation. These include phase diagrams, dynamics of assembly and disassembly, rheological and surface properties, exchange of materials with the surrounding environment and the coupling between compartmentalization and biochemical reactions. We illustrate these concepts with selected examples, ranging from simple solutions of individual proteins to more complex mixtures of proteins and RNA, which represent synthetic models of biological membraneless organelles. Finally, we discuss how this technology may impact the bottom-up fabrication of synthetic artificial cells and for the development of synthetic protein materials in biotechnology.
Collapse
Affiliation(s)
- Miriam Linsenmeier
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Andrew de Mello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
24
|
Meldrum FC, O'Shaughnessy C. Crystallization in Confinement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001068. [PMID: 32583495 DOI: 10.1002/adma.202001068] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/23/2023]
Abstract
Many crystallization processes of great importance, including frost heave, biomineralization, the synthesis of nanomaterials, and scale formation, occur in small volumes rather than bulk solution. Here, the influence of confinement on crystallization processes is described, drawing together information from fields as diverse as bioinspired mineralization, templating, pharmaceuticals, colloidal crystallization, and geochemistry. Experiments are principally conducted within confining systems that offer well-defined environments, varying from droplets in microfluidic devices, to cylindrical pores in filtration membranes, to nanoporous glasses and carbon nanotubes. Dramatic effects are observed, including a stabilization of metastable polymorphs, a depression of freezing points, and the formation of crystals with preferred orientations, modified morphologies, and even structures not seen in bulk. Confinement is also shown to influence crystallization processes over length scales ranging from the atomic to hundreds of micrometers, and to originate from a wide range of mechanisms. The development of an enhanced understanding of the influence of confinement on crystal nucleation and growth will not only provide superior insight into crystallization processes in many real-world environments, but will also enable this phenomenon to be used to control crystallization in applications including nanomaterial synthesis, heavy metal remediation, and the prevention of weathering.
Collapse
Affiliation(s)
- Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | | |
Collapse
|
25
|
Sohrabi S, Kassir N, Keshavarz Moraveji M. Droplet microfluidics: fundamentals and its advanced applications. RSC Adv 2020; 10:27560-27574. [PMID: 35516933 PMCID: PMC9055587 DOI: 10.1039/d0ra04566g] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/03/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023] Open
Abstract
Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as micro-reactors ranging from the nano- to femtoliter (10-15 liters) range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. For this, in the following article we will focus on the various droplet operations, as well as the numerous applications of the system and its future in many advanced scientific fields. Due to advantages of droplet-based systems, this technology has the potential to offer solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.
Collapse
Affiliation(s)
- Somayeh Sohrabi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran Polytechnic Iran
| | - Nour Kassir
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran Polytechnic Iran
| | | |
Collapse
|
26
|
Water Droplets Translocation and Fission in a 3D Bi-Planar Multifurcated T-Junction Microchannels. Processes (Basel) 2020. [DOI: 10.3390/pr8050510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Droplet fission has gained notable interest in drug delivery applications due to its ability to perform parallel operations in single device. Hitherto, droplet flow behavior in a 3D constriction was scarcely investigated. This study aims to investigate droplets fission inside a 3D bi-planar multifurcated microfluidic device. The flow behavior and droplet size distribution were studied in trifurcated microchannels using distilled water as dispersed phase (1 mPa·s) and olive oil (68 mPa·s) as continuous phase. Various sizes of subordinate daughter droplets were manipulated passively through the modulation of flowrate ratio (Q) (0.15 < Q < 3.33). Overall, we found droplet size coefficient of variations (CV%) ranging from 0.72% to 69%. Highly monodispersed droplets were formed at the upstream T-junction (CV% < 2%) while the droplet fission process was unstable at higher flowrate ratio (Q > 0.4) as they travel downstream (1.5% < CV% < 69%) to splitting junctions. Complex responses to the non-monotonic behavior of mean droplet size was found at the downstream boundaries, which arose from the deformations under nonuniform flow condition. CFD was used as a tool to study the preliminary maximum velocity (Umax) profile for the symmetrical (0.01334 m/s < Umax < 0.0153 m/s) and asymmetrical branched channels (0.0223 m/s< Umax < 0.00438 m/s), thus complementing the experimental model studies.
Collapse
|
27
|
Dong Z, Fang Q. Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Mosior J, Bourland R, Soma S, Nathan C, Sacchettini J. Structural insights into phosphopantetheinyl hydrolase PptH from Mycobacterium tuberculosis. Protein Sci 2020; 29:744-757. [PMID: 31886928 PMCID: PMC7021004 DOI: 10.1002/pro.3813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022]
Abstract
The amidinourea 8918 was recently reported to inhibit the type II phosphopantetheinyl transferase (PPTase) of Mycobacterium tuberculosis (Mtb), PptT, a potential drug-target that activates synthases and synthetases involved in cell wall biosynthesis and secondary metabolism. Surprisingly, high-level resistance to 8918 occurred in Mtb harboring mutations within the gene adjacent to pptT, rv2795c, highlighting the role of the encoded protein as a potentiator of the bactericidal action of the amidinourea. Those studies revealed that Rv2795c (PptH) is a phosphopantetheinyl (PpT) hydrolase, possessing activity antagonistic with respect to PptT. We have solved the crystal structure of Mtb's phosphopantetheinyl hydrolase, making it the first phosphopantetheinyl (carrier protein) hydrolase structurally characterized. The 2.5 Å structure revealed the hydrolases' four-layer (α/β/β/α) sandwich fold featuring a Mn-Fe binuclear center within the active site. A structural similarity search confirmed that PptH most closely resembles previously characterized metallophosphoesterases (MPEs), particularly within the vicinity of the active site, suggesting that it may utilize a similar catalytic mechanism. In addition, analysis of the structure has allowed for the rationalization of the previously reported PptH mutations associated with 8918-resistance. Notably, differences in the sequences and predicted structural characteristics of the PpT hydrolases PptH of Mtb and E. coli's acyl carrier protein hydrolase (AcpH) indicate that the two enzymes evolved convergently and therefore are representative of two distinct PpT hydrolase families.
Collapse
Affiliation(s)
- John Mosior
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| | - Ronnie Bourland
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| | - Shivatheja Soma
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| | - Carl Nathan
- Department of Microbiology and ImmunologyWeill Cornell MedicineNew YorkNew York
| | - James Sacchettini
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| |
Collapse
|
29
|
Ma Y, Sun M, Duan X, van den Berg A, Eijkel JCT, Xie Y. Dimension-reconfigurable bubble film nanochannel for wetting based sensing. Nat Commun 2020; 11:814. [PMID: 32041959 PMCID: PMC7010761 DOI: 10.1038/s41467-020-14580-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
Dimensions and surface properties are the predominant factors for the applications of nanofluidic devices. Here we use a thin liquid film as a nanochannel by inserting a gas bubble in a glass capillary, a technique we name bubble-based film nanofluidics. The height of the film nanochannel can be regulated by the Debye length and wettability, while the length independently changed by applied pressure. The film nanochannel behaves functionally identically to classical solid state nanochannels, as ion concentration polarizations. Furthermore, the film nanochannels can be used for label-free immunosensing, by principle of wettability change at the solid interface. The optimal sensitivity for the biotin-streptavidin reaction is two orders of magnitude higher than for the solid state nanochannel, suitable for a full range of electrolyte concentrations. We believe that the film nanochannel represents a class of nanofluidic devices that is of interest for fundamental studies and also can be widely applied, due to its reconfigurable dimensions, low cost, ease of fabrication and multiphase interfaces.
Collapse
Affiliation(s)
- Yu Ma
- International Joint Laboratory of Nanofluidics and Interfaces, School of Physical Science and Technology, Northwestern Polytechnical University, 710100, Xi'an, China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Miao Sun
- International Joint Laboratory of Nanofluidics and Interfaces, School of Physical Science and Technology, Northwestern Polytechnical University, 710100, Xi'an, China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, 300072, Tianjin, China
| | - Albert van den Berg
- International Joint Laboratory of Nanofluidics and Interfaces, School of Physical Science and Technology, Northwestern Polytechnical University, 710100, Xi'an, China
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre and Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522NB, Enschede, The Netherlands
| | - Jan C T Eijkel
- International Joint Laboratory of Nanofluidics and Interfaces, School of Physical Science and Technology, Northwestern Polytechnical University, 710100, Xi'an, China
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre and Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522NB, Enschede, The Netherlands
| | - Yanbo Xie
- International Joint Laboratory of Nanofluidics and Interfaces, School of Physical Science and Technology, Northwestern Polytechnical University, 710100, Xi'an, China.
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi'an, China.
| |
Collapse
|
30
|
Junius N, Jaho S, Sallaz-Damaz Y, Borel F, Salmon JB, Budayova-Spano M. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction. LAB ON A CHIP 2020; 20:296-310. [PMID: 31804643 DOI: 10.1039/c9lc00651f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper reports a versatile microfluidic chip developed for on-chip crystallization of proteins through the dialysis method and in situ X-ray diffraction experiments. A microfabrication process enabling the integration of regenerated cellulose dialysis membranes between two layers of the microchip is thoroughly described. We also describe a rational approach for optimizing on-chip protein crystallization via chemical composition and temperature control, allowing the crystal size, number and quality to be tailored. Combining optically transparent microfluidics and dialysis provides both precise control over the experiment and reversible exploration of the crystallization conditions. In addition, the materials composing the microfluidic chip were tested for their transparency to X-rays in order to assess their compatibility for in situ diffraction data collection. Background scattering was evaluated using a synchrotron X-ray source and the background noise generated by our microfluidic device was compared to that produced by commercial crystallization plates used for diffraction experiments at room temperature. Once crystals of 3 model proteins (lysozyme, IspE, and insulin) were grown on-chip, the microchip was mounted onto the beamline and partial diffraction data sets were collected in situ from several isomorphous crystals and were merged to a complete data set for structure determination. We therefore propose a robust and inexpensive way to fabricate microchips that cover the whole pipeline from crystal growth to the beam and does not require any handling of the protein crystals prior to the diffraction experiment, allowing the collection of crystallographic data at room temperature for solving the three-dimensional structure of the proteins under study. The results presented here allow serial crystallography experiments on synchrotrons and X-ray lasers under dynamically controllable sample conditions to be observed using the developed microchips.
Collapse
Affiliation(s)
- Niels Junius
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Sofia Jaho
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Franck Borel
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Kiran Raj M
- Department of Biomedical EngineeringNational University of Singapore Singapore 117576 Singapore
| | - Suman Chakraborty
- Department of Mechanical EngineeringIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
32
|
Chaussavoine I, Beauvois A, Mateo T, Vasireddi R, Douri N, Priam J, Liatimi Y, Lefrançois S, Tabuteau H, Davranche M, Vantelon D, Bizien T, Chavas LMG, Lassalle-Kaiser B. The microfluidic laboratory at Synchrotron SOLEIL. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:230-237. [PMID: 31868757 DOI: 10.1107/s1600577519015042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
A microfluidic laboratory recently opened at Synchrotron SOLEIL, dedicated to in-house research and external users. Its purpose is to provide the equipment and expertise that allow the development of microfluidic systems adapted to the beamlines of SOLEIL as well as other light sources. Such systems can be used to continuously deliver a liquid sample under a photon beam, keep a solid sample in a liquid environment or provide a means to track a chemical reaction in a time-resolved manner. The laboratory provides all the amenities required for the design and preparation of soft-lithography microfluidic chips compatible with synchrotron-based experiments. Three examples of microfluidic systems that were used on SOLEIL beamlines are presented, which allow the use of X-ray techniques to study physical, chemical or biological phenomena.
Collapse
Affiliation(s)
| | | | - Tiphaine Mateo
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | - Nadine Douri
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Jordan Priam
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Youssef Liatimi
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | - Hervé Tabuteau
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Mélanie Davranche
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | | | - Thomas Bizien
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | | |
Collapse
|
33
|
Yao J, Lin F, Kim HS, Park J. The Effect of Oil Viscosity on Droplet Generation Rate and Droplet Size in a T-Junction Microfluidic Droplet Generator. MICROMACHINES 2019; 10:E808. [PMID: 31771159 PMCID: PMC6952800 DOI: 10.3390/mi10120808] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/09/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
There have been growing interests in droplet-based microfluidics due to its capability to outperform conventional biological assays by providing various advantages, such as precise handling of liquid/cell samples, fast reaction time, and extremely high-throughput analysis/screening. The droplet-based microfluidics utilizes the interaction between the interfacial tension and the fluidic shear force to break continuous fluids into uniform-sized segments within a microchannel. In this paper, the effect of different viscosities of carrier oil on water-in-oil emulsion, particularly how droplet size and droplet generation rate are affected, has been investigated using a commonly used T-junction microfluidic droplet generator design connected to a pressure-controlled pump. We have tested mineral oils with four different viscosities (5, 7, 10, and 15 cSt) to compare the droplet generation under five different flow pressure conditions (i.e., water flow pressure of 30-150 mbar and oil flow pressure of 40-200 mbar). The results showed that regardless of the flow pressure levels, the droplet size decreased as the oil viscosity increased. Average size of the droplets decreased by approximately 32% when the viscosity of the oil changed from 5 to 15 cSt at the flow pressure of 30 mbar for water and 40 mbar for oil. Interestingly, a similar trend was observed in the droplet generation rate. Droplet generation rate and the oil viscosity showed high linear correlation (R2 = 0.9979) at the water flow pressure 30 mbar and oil flow pressure 40 mbar.
Collapse
Affiliation(s)
- Junyi Yao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fan Lin
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hyun Soo Kim
- Korea Institute of Machinery and Materials, Daegu Research Center for Medical Devices and Rehabilitation, Daegu 42994, Korea
| | - Jaewon Park
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
34
|
A Liquid-Metal-Based Dielectrophoretic Microdroplet Generator. MICROMACHINES 2019; 10:mi10110769. [PMID: 31718029 PMCID: PMC6915379 DOI: 10.3390/mi10110769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
This paper proposes a novel microdroplet generator based on the dielectrophoretic (DEP) force. Unlike the conventional continuous microfluidic droplet generator, this droplet generator is more like “invisible electric scissors”. It can cut the droplet off from the fluid matrix and modify droplets’ length precisely by controlling the electrodes’ length and position. These electrodes are made of liquid metal by injection. By applying a certain voltage on the liquid-metal electrodes, the electrodes generate an uneven electric field inside the main microfluidic channel. Then, the uneven electric field generates DEP force inside the fluid. The DEP force shears off part from the main matrix, in order to generate droplets. To reveal the mechanism, numerical simulations were performed to analyze the DEP force. A detailed experimental parametric study was also performed. Unlike the traditional droplet generators, the main separating force of this work is DEP force only, which can produce one droplet at a time in a more precise way.
Collapse
|
35
|
Echelmeier A, Kim D, Cruz Villarreal J, Coe J, Quintana S, Brehm G, Egatz-Gomez A, Nazari R, Sierra RG, Koglin JE, Batyuk A, Hunter MS, Boutet S, Zatsepin N, Kirian RA, Grant TD, Fromme P, Ros A. 3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating. J Appl Crystallogr 2019; 52:997-1008. [PMID: 31636518 PMCID: PMC6782075 DOI: 10.1107/s1600576719010343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
The role of surface wetting properties and their impact on the performance of 3D printed microfluidic droplet generation devices for serial femtosecond crystallography (SFX) are reported. SFX is a novel crystallography method enabling structure determination of proteins at room temperature with atomic resolution using X-ray free-electron lasers (XFELs). In SFX, protein crystals in their mother liquor are delivered and intersected with a pulsed X-ray beam using a liquid jet injector. Owing to the pulsed nature of the X-ray beam, liquid jets tend to waste the vast majority of injected crystals, which this work aims to overcome with the delivery of aqueous protein crystal suspension droplets segmented by an oil phase. For this purpose, 3D printed droplet generators that can be easily customized for a variety of XFEL measurements have been developed. The surface properties, in particular the wetting properties of the resist materials compatible with the employed two-photon printing technology, have so far not been characterized extensively, but are crucial for stable droplet generation. This work investigates experimentally the effectiveness and the long-term stability of three different surface treatments on photoresist films and glass as models for our 3D printed droplet generator and the fused silica capillaries employed in the other fluidic components of an SFX experiment. Finally, the droplet generation performance of an assembly consisting of the 3D printed device and fused silica capillaries is examined. Stable and reproducible droplet generation was achieved with a fluorinated surface coating which also allowed for robust downstream droplet delivery. Experimental XFEL diffraction data of crystals formed from the large membrane protein complex photosystem I demonstrate the full compatibility of the new injection method with very fragile membrane protein crystals and show that successful droplet generation of crystal-laden aqueous droplets intersected by an oil phase correlates with increased crystal hit rates.
Collapse
Affiliation(s)
- Austin Echelmeier
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jesse Coe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sebastian Quintana
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Gerrit Brehm
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jason E. Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Richard A. Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Thomas D. Grant
- Hauptman-Woodward Institute, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
36
|
Ballinger E, Mosior J, Hartman T, Burns-Huang K, Gold B, Morris R, Goullieux L, Blanc I, Vaubourgeix J, Lagrange S, Fraisse L, Sans S, Couturier C, Bacqué E, Rhee K, Scarry SM, Aubé J, Yang G, Ouerfelli O, Schnappinger D, Ioerger TR, Engelhart CA, McConnell JA, McAulay K, Fay A, Roubert C, Sacchettini J, Nathan C. Opposing reactions in coenzyme A metabolism sensitize Mycobacterium tuberculosis to enzyme inhibition. Science 2019; 363:363/6426/eaau8959. [PMID: 30705156 DOI: 10.1126/science.aau8959] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the leading infectious cause of death in humans. Synthesis of lipids critical for Mtb's cell wall and virulence depends on phosphopantetheinyl transferase (PptT), an enzyme that transfers 4'-phosphopantetheine (Ppt) from coenzyme A (CoA) to diverse acyl carrier proteins. We identified a compound that kills Mtb by binding and partially inhibiting PptT. Killing of Mtb by the compound is potentiated by another enzyme encoded in the same operon, Ppt hydrolase (PptH), that undoes the PptT reaction. Thus, loss-of-function mutants of PptH displayed antimicrobial resistance. Our PptT-inhibitor cocrystal structure may aid further development of antimycobacterial agents against this long-sought target. The opposing reactions of PptT and PptH uncover a regulatory pathway in CoA physiology.
Collapse
Affiliation(s)
- Elaine Ballinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - John Mosior
- Departments of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX, USA
| | - Travis Hartman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Roxanne Morris
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Laurent Goullieux
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Isabelle Blanc
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sophie Lagrange
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Laurent Fraisse
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Stéphanie Sans
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Cedric Couturier
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Eric Bacqué
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sarah M Scarry
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guangbin Yang
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas R Ioerger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer A McConnell
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Kathrine McAulay
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Roubert
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - James Sacchettini
- Departments of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX, USA.
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
37
|
Wang JW, Gao J, Wang HF, Jin QH, Rao B, Deng W, Cao Y, Lei M, Ye S, Fang Q. Miniaturization of the Whole Process of Protein Crystallographic Analysis by a Microfluidic Droplet Robot: From Nanoliter-Scale Purified Proteins to Diffraction-Quality Crystals. Anal Chem 2019; 91:10132-10140. [PMID: 31276402 DOI: 10.1021/acs.analchem.9b02138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To obtain diffraction-quality crystals is one of the largest barriers to analyze the protein structure using X-ray crystallography. Here we describe a microfluidic droplet robot that enables successful miniaturization of the whole process of crystallization experiments including large-scale initial crystallization screening, crystallization optimization, and crystal harvesting. The combination of the state-of-the-art droplet-based microfluidic technique with the microbatch crystallization mode dramatically reduces the volumes of droplet crystallization reactors to tens nanoliter range, allowing large-scale initial screening of 1536 crystallization conditions and multifactor crystallization condition optimization with extremely low protein consumption, and on-chip harvesting of diffraction-quality crystals directly from the droplet reactors. We applied the droplet robot in miniaturized crystallization experiments of seven soluble proteins and two membrane proteins, and on-chip crystal harvesting of six proteins. The X-ray diffraction data sets of these crystals were collected using synchrotron radiation for analyzing the structures with similar diffraction qualities as conventional crystallization methods.
Collapse
Affiliation(s)
- Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Jie Gao
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Hui-Feng Wang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Qiu-Heng Jin
- Life Sciences Institute , Zhejiang University , Hangzhou , 310058 , China
| | - Bing Rao
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Wei Deng
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Yu Cao
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Ming Lei
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Sheng Ye
- Life Sciences Institute , Zhejiang University , Hangzhou , 310058 , China.,School of Life Sciences , Tianjin University , Tianjin , 300072 , China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| |
Collapse
|
38
|
Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology. MICROMACHINES 2019; 10:mi10060412. [PMID: 31226819 PMCID: PMC6631694 DOI: 10.3390/mi10060412] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Recently, droplet-based microfluidic systems have been widely used in various biochemical and molecular biological assays. Since this platform technique allows manipulation of large amounts of data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over the last decade a range of basic biochemical and molecular biological operations have been transferred to drop-based microfluidic formats. In this review, we introduce recent advances and examples of droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology research including genomics, proteomics and cellomics. Their advantages and weaknesses in various applications are also comprehensively discussed here. The purpose of this review is to provide a new point of view and current status in droplet-based microfluidics to biochemists and molecular biologists. We hope that this review will accelerate communications between researchers who are working in droplet-based microfluidics, biochemistry and molecular biology.
Collapse
|
39
|
Tona RM, McDonald TAO, Akhavein N, Larkin JD, Lai D. Microfluidic droplet liquid reactors for active pharmaceutical ingredient crystallization by diffusion controlled solvent extraction. LAB ON A CHIP 2019; 19:2127-2137. [PMID: 31114833 DOI: 10.1039/c9lc00204a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A novel method for crystallization utilizing solvent/antisolvent extraction in microfluidic droplet liquid reactors has been developed for rapid and low-cost screening of crystal polymorphism (i.e. molecular crystallographic arrangement or internal structure) and habit (i.e. crystallographic shape or external structure). The method involves a ternary solvent system consisting of a dispersed phase of two miscible fluids, one in which the active pharmaceutical ingredient (API) is soluble (solvent) and one in which the API is insoluble (antisolvent). The solvent/antisolvent dispersed phase is immiscible with a third continuous phase. Crystallization of an API, GSK1, was controlled within droplets by altering the rate of solvent extraction from droplets into the continuous phase, thereby decreasing API solubility. Crystal size, habit, and population per droplet were directly impacted by the solvent's rate of extraction. Single crystals were grown in individual droplets by slow extraction of solvent into the surrounding continuous phase, which occurs when crystal growth gradually reduces API concentration such that it is maintained within the metastable zone throughout extraction. Rapid extraction of solvent from droplets results in API concentration significantly exceeding its metastable limit, producing a greater number of crystal nuclei compared to slow extraction conditions. When holding constant solubilized API mass per droplet, crystal sizes were larger for slow extraction rates (l = 96.3, w = 16.6 μm) compared to fast extraction rates (l = 48.8, w = 9.5 μm) as a result of crystal growth occurring on fewer crystal nuclei per droplet. Crystal habit can be controlled by adjusting the solvent extraction rate and consequently the saturation, where minimal saturation resulted in a rhombohedral habit and comparatively higher saturation resulted in an acicular habit with a higher aspect ratio. Antisolvents were tested using two hydrophobic APIs demonstrating the method's capability for rapidly identifying favorable crystal morphologies for downstream manufacturability using miniscule amounts of API.
Collapse
Affiliation(s)
- Robert M Tona
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | |
Collapse
|
40
|
Hua T, Hartman RL. Computational fluid dynamics of DNA origami folding in microfluidics. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00168e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computational fluid dynamics study of single and multiphase microfluidics for understanding DNA origami folding kinetics in continuous-flow.
Collapse
Affiliation(s)
- Tianyi Hua
- Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | - Ryan L. Hartman
- Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| |
Collapse
|
41
|
Microfluidic Technologies and Platforms for Protein Crystallography. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Abstract
Materials science is a fast-evolving area that aims to uncover functional materials with ever more sophisticated properties and functions. For this to happen, new methodologies for materials synthesis, optimization, and preparation are desired. In this context, microfluidic technologies have emerged as a key enabling tool for a low-cost and fast prototyping of materials. Their ability to screen multiple reaction conditions rapidly with a small amount of reagent, together with their unique physico-chemical characteristics, have made microfluidic devices a cornerstone technology in this research field. Among the different microfluidic approaches to materials synthesis, the main contenders can be classified in two categories: continuous-flow and segmented-flow microfluidic devices. These two families of devices present very distinct characteristics, but they are often pooled together in general discussions about the field with seemingly little awareness of the major divide between them. In this perspective, we outline the parallel evolution of those two sub-fields by highlighting the key differences between both approaches, via a discussion of their main achievements. We show how continuous-flow microfluidic approaches, mimicking nature, provide very finely-tuned chemical gradients that yield highly-controlled reaction–diffusion (RD) areas, while segmented-flow microfluidic systems provide, on the contrary, very fast homogenization methods, and therefore well-defined super-saturation regimes inside arrays of micro-droplets that can be manipulated and controlled at the milliseconds scale. Those two classes of microfluidic reactors thus provide unique and complementary advantages over classical batch synthesis, with a drive towards the rational synthesis of out-of-equilibrium states for the former, and the preparation of high-quality and complex nanoparticles with narrow size distributions for the latter.
Collapse
|
43
|
Maity S, Chaudhuri J, Mitra S, Rarotra S, Bandyopadhyay D. Electric field assisted multicomponent reaction in a microfluidic reactor for superior conversion and yield. Electrophoresis 2018; 40:401-409. [PMID: 30511476 DOI: 10.1002/elps.201800377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/11/2022]
Abstract
We explore the improvements in yield and conversion of a chemical reaction inside a two-phase microfluidic reactor when subjected to an externally applied alternating current (AC) electric field. A computational fluid dynamic (CFD) framework has been developed to incorporate the descriptions of the two-phase flow, multicomponent transport and reaction, and the Maxwell's stresses generated at oil-water interface owing to the presence of the externally applied electric field. The CFD model ensures that the reactants are flown into a microchannel together with the oil and water phases before the reaction takes place at the interface and products diffuse back to the bulk phases. The study unveils that the variation in the intensity of the AC field helps in converting a two-phase stratified flow into an oil-in-water microemulsion composed of oil slugs, plugs, or droplets. Importantly, the results also suggest that harnessing the vortices inside or outside these flow patterns helps in the improvement in mass transfer across the interface, which can be employed to improve the yield and conversion of a reaction. We have shown an example case of a pseudo-first order reaction for which the variation in frequency and intensity of AC field is found to form higher surface-to-volume-ratio flow patterns having a higher throughput. The convective recirculation in and around these miniaturized flow morphologies increase the rate of mass transfer, mixing of reactant and products, conversion of reactant, and yield of products. The results reported can be of significance in the design and development of future advanced-flow rector technologies.
Collapse
Affiliation(s)
- Surjendu Maity
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India
| | - Joydip Chaudhuri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Saptak Rarotra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India.,Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
44
|
Ferreira J, Castro F, Rocha F, Kuhn S. Protein crystallization in a droplet-based microfluidic device: Hydrodynamic analysis and study of the phase behaviour. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Lactobacillus acidophilus Derived Biosurfactant as a Biofilm Inhibitor: A Promising Investigation Using Microfluidic Approach. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091555] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Biomedical devices and implants are adversely affected by biofilm-associated infections that pose serious public health issues. Biosurfactants (BSs) can combat pathogenic biofilms through their antimicrobial, antibiofilm and antiadhesive capabilities. The objective of our research was to produce biosurfactant (BS) from Lactobacillus acidophilus NCIM 2903 and investigate its antibiofilm, antiadhesive potential using microfluidics strategies by mimicking the micro-environment of biofilm. Methods: Antibiofilm and antiadhesive potential was effectively evaluated using different methods like microfluidics assay, catheter assay, polydimethlysiloxane (PDMS) disc assay. Along with this chemical and physical characteristics of BS were also evaluated. Results: Cell free biosurfactant (CFBS) obtained was found to be effective against biofilm which was validated through the microfluidic (MF) or Lab on Chip (LOC) approach. The potency of CFBS was also evaluated on catheter tubing and PDMS surfaces (representative bioimplants). The efficacy of CFBS was also demonstrated through the reduction in surface tension, interfacial tension, contact angle and low critical micelle concentration. Conclusion: CFBS was found to be a potent antimicrobial and antibiofilm agent. We believe that perhaps this is the first report on demonstrating the inhibiting effect of Lactobacillus spp. derived CFBS against selected bacteria via LOC approach. These findings can be explored to design various BSs based formulations exhibiting antimicrobial, antibiofilm and antiadhesive potential for biomedical applications.
Collapse
|
46
|
Dyett B, Zychowski L, Bao L, Meikle TG, Peng S, Yu H, Li M, Strachan J, Kirby N, Logan A, Conn CE, Zhang X. Crystallization of Femtoliter Surface Droplet Arrays Revealed by Synchrotron Small-Angle X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9470-9476. [PMID: 30021434 DOI: 10.1021/acs.langmuir.8b01252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The crystallization of oil droplets is critical in the processing and storage of lipid-based food and pharmaceutical products. Arrays of femtoliter droplets on a surface offer a unique opportunity to study surfactant-free colloidlike systems. In this work, the crystal growth process in these confined droplets was followed by cooling a model lipid (trimyristin) from a liquid state utilizing synchrotron small-angle X-ray scattering (SAXS). The measurements by SAXS demonstrated a reduced crystallization rate and a greater degree of supercooling required to trigger lipid crystallization in droplets compared to those of bulk lipids. These results suggest that surface droplets crystallize in a stochastic manner. Interestingly, the crystallization rate is slower for larger femtoliter droplets, which may be explained by the onset of crystallization from the three-phase contact line. The larger surface nanodroplets exhibit a smaller ratio of droplet volume to the length of three-phase contact line and hence a slower crystallization rate.
Collapse
Affiliation(s)
| | - Lisa Zychowski
- CSIRO Agriculture and Food , Werribee , Victoria 3030 , Australia
| | | | | | | | | | | | | | - Nigel Kirby
- Australian Synchrotron , 800 Blackburn Road , Clayton , Victoria 3169 , Australia
| | - Amy Logan
- CSIRO Agriculture and Food , Werribee , Victoria 3030 , Australia
| | | | - Xuehua Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , T6G1H9 Alberta , Canada
| |
Collapse
|
47
|
Microfluidics: an Untapped Resource in Viral Diagnostics and Viral Cell Biology. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0105-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Simone E, McVeigh J, Reis NM, Nagy ZK. A high-throughput multi-microfluidic crystal generator (MMicroCryGen) platform for facile screening of polymorphism and crystal morphology for pharmaceutical compounds. LAB ON A CHIP 2018; 18:2235-2245. [PMID: 29946616 DOI: 10.1039/c8lc00301g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, a novel multi-microfluidic crystallization platform called MMicroCryGen is presented, offering a facile methodology for generating individual crystals for fast and easy screening of the polymorphism and crystal habit of solid compounds. The MMicroCryGen device is capable of performing 8 × 10 cooling crystallization experiments in parallel using 8 disposable microcapillary film strips, each requiring less than 25 μL of solution. Compared to traditional microfluidic systems, the MMicroCryGen platform does not require complex fluid handling; it can be directly integrated with a 96-well microplate and it can also work in a "dipstick" mode. The produced crystals can be safely and directly observed inside the capillaries by optical and spectroscopic techniques. The platform was validated by performing a number of independent experimental runs for: (1) polymorph and hydrate screening of ortho-aminobenzoic acid, succinic acid and piroxicam; (2) co-crystal form screening of the p-toluenesulfonamide/triphenylphosphine oxide system; (3) studying the effect of o-toluic acid on ortho-aminobenzoic cooling crystallization (effect of structurally related additives). In all three cases, all known solid forms were identified with a single experiment using ∼200 μL of solvent and just a few micrograms of the solid material. The MMicroCryGen is simple to use, inexpensive and it provides increased flexibility compared to traditional crystallization techniques, being an effective new microfluidic solution for solid form screening in pharmaceutical, fine chemicals, food and agrochemical industries.
Collapse
Affiliation(s)
- E Simone
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
49
|
Pagaduan JV, Bhatta A, Romer LH, Gracias DH. 3D Hybrid Small Scale Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702497. [PMID: 29749014 DOI: 10.1002/smll.201702497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Interfacing nano/microscale elements with biological components in 3D contexts opens new possibilities for mimicry, bionics, and augmentation of organismically and anatomically inspired materials. Abiotic nanoscale elements such as plasmonic nanostructures, piezoelectric ribbons, and thin film semiconductor devices interact with electromagnetic fields to facilitate advanced capabilities such as communication at a distance, digital feedback loops, logic, and memory. Biological components such as proteins, polynucleotides, cells, and organs feature complex chemical synthetic networks that can regulate growth, change shape, adapt, and regenerate. Abiotic and biotic components can be integrated in all three dimensions in a well-ordered and programmed manner with high tunability, versatility, and resolution to produce radically new materials and hybrid devices such as sensor fabrics, anatomically mimetic microfluidic modules, artificial tissues, smart prostheses, and bionic devices. In this critical Review, applications of small scale devices in 3D hybrid integration, biomicrofluidics, advanced prostheses, and bionic organs are discussed.
Collapse
Affiliation(s)
- Jayson V Pagaduan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Anil Bhatta
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Lewis H Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Cell Biology, Department of Biomedical Engineering, Department of Pediatrics and the Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
50
|
Pradhan TK, Panigrahi PK. Convection inside condensing and evaporating droplets of aqueous solution. SOFT MATTER 2018; 14:4335-4343. [PMID: 29761195 DOI: 10.1039/c8sm00205c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We experimentally study the fluid convection inside a condensing droplet of aqueous NaCl solution and compare it with that of an evaporating droplet. The droplets are sandwiched between two horizontal hydrophobic surfaces and surrounded by a reservoir with solution of different concentration. Condensation and evaporation of the droplets occur due to the vapor pressure difference between the droplet and the reservoir solution. The micro-PIV technique has been used to study the velocity field inside the droplets. Buoyancy driven Rayleigh convection is observed inside both the condensing and evaporating droplets. In the condensing droplet, water condenses on the liquid-air interface creating a low density region near the interface. There is upward movement of fluid along the condensing interface towards the top region of the droplet which recirculates back from the center region of the droplet in the downward direction. In contrast, the fluid moves in the downward direction along the interface in the case of an evaporating droplet with an upward plume like flow at the center region of the droplet. Both evaporating and condensing droplets show a recirculating loop inside the droplets of opposite direction.
Collapse
Affiliation(s)
- Tapan Kumar Pradhan
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India.
| | | |
Collapse
|