1
|
Peña LF, González-Andrés P, Parte LG, Escribano R, Guerra J, Barbero A, López E. Continuous Flow Chemistry: A Novel Technology for the Synthesis of Marine Drugs. Mar Drugs 2023; 21:402. [PMID: 37504932 PMCID: PMC10381277 DOI: 10.3390/md21070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
In this perspective, we showcase the benefits of continuous flow chemistry and photochemistry and how these valuable tools have contributed to the synthesis of organic scaffolds from the marine environment. These technologies have not only facilitated previously described synthetic pathways, but also opened new opportunities in the preparation of novel organic molecules with remarkable pharmacological properties which can be used in drug discovery programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Enol López
- Department of Organic Chemistry, Campus Miguel Delibes, University of Valladolid, 47011 Valladolid, Spain; (L.F.P.); (P.G.-A.); (L.G.P.); (R.E.); (J.G.); (A.B.)
| |
Collapse
|
2
|
Tebben J, Zurhelle C, Tubaro A, Samdal IA, Krock B, Kilcoyne J, Sosa S, Trainer VL, Deeds JR, Tillmann U. Structure and toxicity of AZA-59, an azaspiracid shellfish poisoning toxin produced by Azadinium poporum (Dinophyceae). HARMFUL ALGAE 2023; 124:102388. [PMID: 37164556 DOI: 10.1016/j.hal.2023.102388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 05/12/2023]
Abstract
To date, the putative shellfish toxin azaspiracid 59 (AZA-59) produced by Azadinium poporum (Dinophyceae) has been the only AZA found in isolates from the Pacific Northwest coast of the USA (Northeast Pacific Ocean). Anecdotal reports of sporadic diarrhetic shellfish poisoning-like illness, with the absence of DSP toxin or Vibrio contamination, led to efforts to look for other potential toxins, such as AZAs, in water and shellfish from the region. A. poporum was found in Puget Sound and the outer coast of Washington State, USA, and a novel AZA (putative AZA-59) was detected in low quantities in SPATT resins and shellfish. Here, an A. poporum strain from Puget Sound was mass-cultured and AZA-59 was subsequently purified and structurally characterized. In vitro cytotoxicity of AZA-59 towards Jurkat T lymphocytes and acute intraperitoneal toxicity in mice in comparison to AZA-1 allowed the derivation of a provisional toxicity equivalency factor of 0.8 for AZA-59. Quantification of AZA-59 using ELISA and LC-MS/MS yielded reasonable quantitative results when AZA-1 was used as an external reference standard. This study assesses the toxic potency of AZA-59 and will inform guidelines for its potential monitoring in case of increasing toxin levels in edible shellfish.
Collapse
Affiliation(s)
- Jan Tebben
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Am Handelshafen 12, Bremerhaven, 27570, Germany.
| | - Christian Zurhelle
- University of Bremen, Department of Biology and Chemistry, Marine Chemistry, Leobener Straße 6, Bremen, 28359, Germany
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, Trieste, 34127, Italy
| | | | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, County Galway H91 R673, Ireland
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, Trieste, 34127, Italy
| | - Vera L Trainer
- Olympic Natural Resources Center, University of Washington, 1455 S. Forks Ave, Forks, WA 98331, United States
| | - Jonathan R Deeds
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland, 20740, United States of America
| | - Urban Tillmann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Am Handelshafen 12, Bremerhaven, 27570, Germany.
| |
Collapse
|
3
|
Sandvik M, Miles CO, Løvberg KLE, Kryuchkov F, Wright EJ, Mudge EM, Kilcoyne J, Samdal IA. In Vitro Metabolism of Azaspiracids 1-3 with a Hepatopancreatic Fraction from Blue Mussels ( Mytilus edulis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11322-11335. [PMID: 34533950 DOI: 10.1021/acs.jafc.1c03831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Azaspiracids (AZAs) are a group of biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. Of the 60 AZAs identified, levels of AZA1, AZA2, and AZA3 are regulated in shellfish as a food safety measure based on occurrence and toxicity. Information about the metabolism of AZAs in shellfish is limited. Therefore, a fraction of blue mussel hepatopancreas was made to study the metabolism of AZA1-3 in vitro. A range of AZA metabolites were detected by liquid chromatography-high-resolution tandem mass spectrometry analysis, most notably the novel 22α-hydroxymethylAZAs AZA65 and AZA66, which were also detected in naturally contaminated mussels. These appear to be the first intermediates in the metabolic conversion of AZA1 and AZA2 to their corresponding 22α-carboxyAZAs (AZA17 and AZA19). α-Hydroxylation at C-23 was also a prominent metabolic pathway, producing AZA8, AZA12, and AZA5 as major metabolites of AZA1-3, respectively, and AZA67 and AZA68 as minor metabolites via double-hydroxylation of AZA1 and AZA2, but only low levels of 3β-hydroxylation were observed in this study. In vitro generation of algal toxin metabolites, such as AZA3, AZA5, AZA6, AZA8, AZA12, AZA17, AZA19, AZA65, and AZA66 that would otherwise have to be laboriously purified from shellfish, has the potential to be used for the production of standards for analytical and toxicological studies.
Collapse
Affiliation(s)
- Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
| | - Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | | | - Fedor Kryuchkov
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
| | - Elliott J Wright
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | - Elizabeth M Mudge
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, County Galway H91 R673, Ireland
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
| |
Collapse
|
4
|
Nicolaou KC, Rigol S, Yu R. Total Synthesis Endeavors and Their Contributions to Science and Society:A Personal Account. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20190006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The advent of organic synthesis in the 19th century, serendipitous as it was, set in motion a revolution in science that continues to evolve into increasing levels of sophistication and to expand into new domains of science and technology for the benefits of science and society. Its evolution was always driven by the challenges posed by natural products, whose structures were becoming increasingly complex and diverse. In response to these challenges, synthetic organic chemists were prompted to sharpen their art to reach their target molecules, whose structures were often confirmed only after their synthesis in the laboratory through the art and science of total synthesis. The latter became the “locomotive” and the “flagship” of organic synthesis, for through this practice novel synthetic methods were discovered and invented, and also tested for their generality, applicability, and scope with regard to molecular complexity and diversity. The purpose of total synthesis has also evolved over the years to include aspects beyond the synthesis of the molecule and confirmation of its structure. In this article, we briefly review the evolution of total synthesis in terms of its power and reach and demonstrate its current state of the art that combines fundamentals with translational aspects through examples from our laboratories. The highlighted examples reflect the newly emerged paradigm of the discipline that includes—in addition to the total synthesis of the target molecule—structural elucidations, method discovery and development, design, synthesis, and biological evaluation of analogues for biology and medicine, and training of young students, preparing them for academic and industrial careers in the various disciplines that require knowledge and skills to practice the central science of chemical synthesis. Such disciplines include chemical biology, drug discovery and development, materials science and nanotechnology, and other endeavors whose fundamentals depend and rely on the structure of the molecule and its synthesis.
Collapse
Affiliation(s)
- K. C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston,TX 77005 (United States of America)
| | - Stephan Rigol
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston,TX 77005 (United States of America)
| | - Ruocheng Yu
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston,TX 77005 (United States of America)
| |
Collapse
|
5
|
Saito F, Trapp N, Bode JW. Iterative Assembly of Polycyclic Saturated Heterocycles from Monomeric Building Blocks. J Am Chem Soc 2019; 141:5544-5554. [PMID: 30845799 DOI: 10.1021/jacs.9b01537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycyclic saturated heterocycles with predictable shapes and structures are assembled by iterative couplings of bifunctional stannyl amine protocol (SnAP) reagents and a single morpholine-forming assembly reaction. Combinations of just a few monomers enable the programmable construction of rotationally restricted, nonplanar heterocyclic arrays with discrete sizes and molecular shapes. The three-dimensional structures of these constrained scaffolds can be quickly and reliably predicted by DFT calculations and the target structures immediately decompiled into the constituent building blocks and assembly sequences. As a demonstration, in silico combinations of the building blocks predict saturated heptacyclic structures with elementary shapes including helices, S-turns and U-turns, which are synthesized in 5-6 steps from the monomers using just three chemical reactions.
Collapse
Affiliation(s)
- Fumito Saito
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences , ETH-Zürich , 8093 Zürich , Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences , ETH-Zürich , 8093 Zürich , Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences , ETH-Zürich , 8093 Zürich , Switzerland
| |
Collapse
|
6
|
Yasukawa Y, Tsuchikawa H, Todokoro Y, Murata M. Stereoselective Construction of Cisoidal Bisspiroacetal Frameworks through Magnesium Coordination of the Bilateral Acetal Oxygen Atoms. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshifumi Yasukawa
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yasuto Todokoro
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
7
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, Zhang Z, Chen Y, Nguyen S, Xu J, Ding Y, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Total Synthesis of (6
R
,10
R
,13
R
,14
R
,16
R
,17
R
,19
S
,20
R
,21
R
,24
S
, 25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 Reveals Non‐Identity with the Natural Product. Angew Chem Int Ed Engl 2018; 57:805-809. [DOI: 10.1002/anie.201711006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/16/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Zhigao Zhang
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yong Chen
- Asymchem Life Science No. 71 7th Ave., TEDA Tianjin 300000 P. R. China
| | - Son Nguyen
- Johnson Matthey Pharma Services 25 Patton Road Devens MA 01434 USA
| | - Jianyan Xu
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yue Ding
- Viva Biotech Ltd. 581 Shenkuo Rd., Pudong District Shanghai 201203 China
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
8
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, Zhang Z, Chen Y, Nguyen S, Xu J, Ding Y, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Total Synthesis of (6
R
,10
R
,13
R
,14
R
,16
R
,17
R
,19
S
,20
R
,21
R
,24
S
, 25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 Reveals Non‐Identity with the Natural Product. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Zhigao Zhang
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yong Chen
- Asymchem Life Science No. 71 7th Ave., TEDA Tianjin 300000 P. R. China
| | - Son Nguyen
- Johnson Matthey Pharma Services 25 Patton Road Devens MA 01434 USA
| | - Jianyan Xu
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yue Ding
- Viva Biotech Ltd. 581 Shenkuo Rd., Pudong District Shanghai 201203 China
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
9
|
Hu J, Bian M, Ding H. Recent application of oxa-Michael reaction in complex natural product synthesis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Stotani S, Lorenz C, Winkler M, Medda F, Picazo E, Ortega Martinez R, Karawajczyk A, Sanchez-Quesada J, Giordanetto F. Design and Synthesis of Fsp(3)-Rich, Bis-Spirocyclic-Based Compound Libraries for Biological Screening. ACS COMBINATORIAL SCIENCE 2016; 18:330-6. [PMID: 27163646 DOI: 10.1021/acscombsci.6b00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exploration of innovative chemical space is a critical step in the early phases of drug discovery. Bis-spirocyclic frameworks occur in natural products and other biologically relevant metabolites and show attractive features, such as molecular compactness, structural complexity, and three-dimensional character. A concise approach to the synthesis of bis-spirocyclic-based compound libraries starting from readily available commercial reagents and robust chemical transformations has been developed. A number of novel bis-spirocyclic scaffold examples, as implemented in the European Lead Factory project, is presented.
Collapse
Affiliation(s)
- Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| | - Christoph Lorenz
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| | - Matthias Winkler
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| | - Federico Medda
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| | - Edwige Picazo
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| | - Raquel Ortega Martinez
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| | - Anna Karawajczyk
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| | - Jorge Sanchez-Quesada
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Zhang Z, Chen Y, Adu-Ampratwum D, Okumu AA, Kenton NT, Forsyth CJ. Synthesis of the C22–C40 Domain of the Azaspiracids. Org Lett 2016; 18:1824-7. [DOI: 10.1021/acs.orglett.6b00557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhigao Zhang
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yong Chen
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel Adu-Ampratwum
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Antony Akura Okumu
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathaniel T. Kenton
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig J. Forsyth
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Mailyan AK, Eickhoff JA, Minakova AS, Gu Z, Lu P, Zakarian A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. Chem Rev 2016; 116:4441-557. [DOI: 10.1021/acs.chemrev.5b00712] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Artur K. Mailyan
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - John A. Eickhoff
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Anastasiia S. Minakova
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ping Lu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Armen Zakarian
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Samdal IA, Løvberg KE, Briggs LR, Kilcoyne J, Xu J, Forsyth CJ, Miles CO. Development of an ELISA for the Detection of Azaspiracids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7855-7861. [PMID: 26245830 DOI: 10.1021/acs.jafc.5b02513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Azaspiracids (AZAs) are a group of biotoxins that cause food poisoning in humans. These toxins are produced by small marine dinoflagellates such as Azadinium spinosum and accumulate in shellfish. Ovine polyclonal antibodies were produced and used to develop an ELISA for quantitating AZAs in shellfish, algal cells, and culture supernatants. Immunizing antigens were prepared from synthetic fragments of the constant region of AZAs, while plate coating antigen was prepared from AZA-1. The ELISA provides a sensitive and rapid analytical method for screening large numbers of samples. It has a working range of 0.45-8.6 ng/mL and a limit of quantitation for total AZAs in whole shellfish at 57 μg/kg, well below the maximum permitted level set by the European Commission. The ELISA has good cross-reactivity to AZA-1-10, -33, and -34 and 37-epi-AZA-1. Naturally contaminated Irish mussels gave similar results whether they were cooked or uncooked, indicating that the ELISA also detects 22-carboxy-AZA metabolites (e.g., AZA-17 and AZA-19). ELISA results showed excellent correlation with LC-MS/MS analysis, both for mussel extract spiked with AZA-1 and for naturally contaminated Irish mussels. The assay is therefore well suited to screening for AZAs in shellfish samples intended for human consumption, as well as for studies on AZA metabolism.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Lyn R Briggs
- AgResearch, Ruakura, East Street, Private Bag 3123, Hamilton, New Zealand
| | - Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, County Galway, Ireland
| | - Jianyan Xu
- Department of Chemistry, University of Minnesota-Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
14
|
Chevallier OP, Graham SF, Alonso E, Duffy C, Silke J, Campbell K, Botana LM, Elliott CT. New insights into the causes of human illness due to consumption of azaspiracid contaminated shellfish. Sci Rep 2015; 5:9818. [PMID: 25928256 PMCID: PMC4415421 DOI: 10.1038/srep09818] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/18/2015] [Indexed: 12/29/2022] Open
Abstract
Azaspiracid (AZA) poisoning was unknown until 1995 when shellfish harvested in Ireland caused illness manifesting by vomiting and diarrhoea. Further in vivo/vitro studies showed neurotoxicity linked with AZA exposure. However, the biological target of the toxin which will help explain such potent neurological activity is still unknown. A region of Irish coastline was selected and shellfish were sampled and tested for AZA using mass spectrometry. An outbreak was identified in 2010 and samples collected before and after the contamination episode were compared for their metabolite profile using high resolution mass spectrometry. Twenty eight ions were identified at higher concentration in the contaminated samples. Stringent bioinformatic analysis revealed putative identifications for seven compounds including, glutarylcarnitine, a glutaric acid metabolite. Glutaric acid, the parent compound linked with human neurological manifestations was subjected to toxicological investigations but was found to have no specific effect on the sodium channel (as was the case with AZA). However in combination, glutaric acid (1mM) and azaspiracid (50nM) inhibited the activity of the sodium channel by over 50%. Glutaric acid was subsequently detected in all shellfish employed in the study. For the first time a viable mechanism for how AZA manifests itself as a toxin is presented.
Collapse
Affiliation(s)
- O P Chevallier
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| | - S F Graham
- Beaumont Research Institute, 3811 W Thirteen Mile Road, Royal Oak, MI, 48073
| | - E Alonso
- Department of Pharmacology, Faculty of Veterinary, Campus Lugo, USC, 27002 Lugo, Spain
| | - C Duffy
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - J Silke
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - K Campbell
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| | - L M Botana
- Department of Pharmacology, Faculty of Veterinary, Campus Lugo, USC, 27002 Lugo, Spain
| | - C T Elliott
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
15
|
McCarron P, Giddings SD, Reeves KL, Hess P, Quilliam MA. A mussel (Mytilus edulis) tissue certified reference material for the marine biotoxins azaspiracids. Anal Bioanal Chem 2014; 407:2985-96. [PMID: 25335820 DOI: 10.1007/s00216-014-8250-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 11/28/2022]
Abstract
Azaspiracids (AZAs) are lipophilic biotoxins produced by marine algae that can contaminate shellfish and cause human illness. The European Union (EU) regulates the level of AZAs in shellfish destined for the commercial market, with liquid chromatography-mass spectrometry (LC-MS) being used as the official reference method for regulatory analysis. Certified reference materials (CRMs) are essential tools for the development, validation, and quality control of LC-MS methods. This paper describes the work that went into the planning, preparation, characterization, and certification of CRM-AZA-Mus, a tissue matrix CRM, which was prepared as a wet homogenate from mussels (Mytilus edulis) naturally contaminated with AZAs. The homogeneity and stability of CRM-AZA-Mus were evaluated, and the CRM was found to be fit for purpose. Extraction and LC-MS/MS methods were developed to accurately certify the concentrations of AZA1 (1.16 mg/kg), AZA2 (0.27 mg/kg), and AZA3 (0.21 mg/kg) in the CRM. Quantitation methods based on standard addition and matrix-matched calibration were used to compensate for the matrix effects in LC-MS/MS. Other toxins present in this CRM at lower levels were also measured with information values reported for okadaic acid, dinophysistoxin-2, yessotoxin, and several spirolides.
Collapse
Affiliation(s)
- Pearse McCarron
- National Research Council of Canada, Measurement Science and Standards, Biotoxin Metrology, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada,
| | | | | | | | | |
Collapse
|
16
|
Triantafyllakis M, Tofi M, Montagnon T, Kouridaki A, Vassilikogiannakis G. Singlet Oxygen-Mediated Synthesis of Bis-spiroketals Found in Azaspiracids. Org Lett 2014; 16:3150-3. [DOI: 10.1021/ol501301w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Myron Triantafyllakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Maria Tofi
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Antonia Kouridaki
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | | |
Collapse
|
17
|
Abstract
Abstract
The synthesis of urea in 1828 set in motion the discipline of organic synthesis in general and of total synthesis in particular, the art and science of synthesizing natural products, the molecules of living nature. Early endeavors in total synthesis had as their main objective the proof of structure of the target molecule. Later on, the primary goal became the demonstration of the power of synthesis to construct complex molecules through appropriately devised strategies, making the endeavor an achievement whose value was measured by its elegance and efficiency. While these objectives continue to be important, contemporary endeavors in total synthesis are increasingly focused on practical aspects, including method development, efficiency, and biological and medical relevance. In this article, the emergence and evolution of total synthesis to its present state is traced, selected total syntheses from the author's laboratories are highlighted, and projections for the future of the field are discussed.
Collapse
|
18
|
Rodríguez LP, Vilariño N, Louzao MC, Dickerson TJ, Nicolaou KC, Frederick MO, Botana LM. Microsphere-based immunoassay for the detection of azaspiracids. Anal Biochem 2013; 447:58-63. [PMID: 24215909 DOI: 10.1016/j.ab.2013.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022]
Abstract
Azaspiracids (AZAs) are a group of lipophilic toxins discovered in mussels from Ireland in 1995 following a human poisoning incident. Nowadays the regulatory limit for AZAs in many countries is set at 160 μg of azaspiracid equivalents per kilogram of shellfish meat. In this work a microsphere-based immunoassay has been developed for the detection of AZAs using a Luminex system. This method is based on the competition between AZA-2 immobilized onto the surface of microspheres and free AZAs for the interaction with a monoclonal anti-azaspiracid antibody (mAb 8F4). In this inhibition immunoassay the amount of mAb 8F4 bound to AZA-2 microspheres was quantified using a phycoerythrin-labeled anti-mouse antibody, and the fluorescence was measured with a Luminex analyzer. Simple acetate/methanol or methanol extractions yielded final extracts with no matrix interferences and adequate recovery rates of 86.5 and 75.8%, respectively. In summary, this work presents a sensitive and easily performed screening method capable of detecting AZAs at concentrations below the range of the European regulatory limit using a microsphere/flow cytometry system.
Collapse
Affiliation(s)
- Laura P Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Tobin J Dickerson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA; Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX 77030, USA
| | - Michael O Frederick
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
19
|
Kan SBJ, Ng KK, Paterson I. Die Bedeutung der Mukaiyama‐Aldolreaktion für die Totalsynthese. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303914] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S. B. Jennifer Kan
- Laboratory of Synthetic Organic Chemistry and Special Laboratory of Organocatalytic Chemistry, Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606‐8502 (Japan)
| | - Kenneth K.‐H. Ng
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (Großbritannien) http://www‐paterson.ch.cam.ac.uk
| | - Ian Paterson
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (Großbritannien) http://www‐paterson.ch.cam.ac.uk
| |
Collapse
|
20
|
Kan SBJ, Ng KKH, Paterson I. The impact of the Mukaiyama aldol reaction in total synthesis. Angew Chem Int Ed Engl 2013; 52:9097-108. [PMID: 23893491 DOI: 10.1002/anie.201303914] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Indexed: 01/20/2023]
Abstract
Four decades since Mukaiyama's first reports on the successful application of silicon and boron enolates in directed aldol reactions, the ability of this highly controlled carbon-carbon bond-forming method to simultaneously define stereochemistry, introduce complexity, and construct the carbon skeleton with a characteristic 1,3-oxygenation pattern has made it a powerful tool for natural product synthesis. This Minireview highlights a number of representative total syntheses that demonstrate the impact of the Mukaiyama aldol reaction and discusses the underlying mechanistic rationale that determines the stereochemical outcomes.
Collapse
Affiliation(s)
- S B Jennifer Kan
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
21
|
Zhang Z, Ding Y, Xu J, Chen Y, Forsyth CJ. Synthesis of the C1–C21 Domain of Azaspiracids-1 and −3. Org Lett 2013; 15:2338-41. [DOI: 10.1021/ol400487e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhigao Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yue Ding
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianyan Xu
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yong Chen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig J. Forsyth
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
|
23
|
Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev 2012; 41:5185-238. [PMID: 22743704 PMCID: PMC3426871 DOI: 10.1039/c2cs35116a] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
24
|
Gallardo-Rodríguez J, Sánchez-Mirón A, García-Camacho F, López-Rosales L, Chisti Y, Molina-Grima E. Bioactives from microalgal dinoflagellates. Biotechnol Adv 2012; 30:1673-84. [PMID: 22884890 DOI: 10.1016/j.biotechadv.2012.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 01/12/2023]
Abstract
Dinoflagellate microalgae are an important source of marine biotoxins. Bioactives from dinoflagellates are attracting increasing attention because of their impact on the safety of seafood and potential uses in biomedical, toxicological and pharmacological research. Here we review the potential applications of dinoflagellate toxins and the methods for producing them. Only sparing quantities of dinoflagellate toxins are generally available and this hinders bioactivity characterization and evaluation in possible applications. Approaches to production of increased quantities of dinoflagellate bioactives are discussed. Although many dinoflagellates are fragile and grow slowly, controlled culture in bioreactors appears to be generally suitable for producing many of the metabolites of interest.
Collapse
|
25
|
Furey A, O'Doherty S, O'Callaghan K, Lehane M, James KJ. Azaspiracid poisoning (AZP) toxins in shellfish: Toxicological and health considerations. Toxicon 2010; 56:173-90. [DOI: 10.1016/j.toxicon.2009.09.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 09/18/2009] [Indexed: 11/29/2022]
|
26
|
Cao Z, LePage KT, Frederick MO, Nicolaou KC, Murray TF. Involvement of caspase activation in azaspiracid-induced neurotoxicity in neocortical neurons. Toxicol Sci 2010; 114:323-34. [PMID: 20047973 DOI: 10.1093/toxsci/kfp312] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azaspiracids (AZAs) are a novel group of marine phycotoxins that have been associated with severe human intoxication. We found that AZA-1 exposure increased lactate dehydrogense (LDH) efflux in murine neocortical neurons. AZA-1 also produced nuclear condensation and stimulated caspase-3 activity with an half maximal effective concentration (EC(50)) value of 25.8 nM. These data indicate that AZA-1 triggers neuronal death in neocortical neurons by both necrotic and apoptotic mechanisms. An evaluation of the structure-activity relationships of AZA analogs on LDH efflux and caspase-3 activation demonstrated that the full structure of AZAs was required to produce necrotic or apoptotic cell death. The similar potencies of AZA-1 to stimulate LDH efflux and caspase-3 activation and the parallel structure-activity relationships of azaspiracid analogs in the two assays are consistent with a common molecular target for both responses. To explore the molecular mechanism for AZA-1-induced neurotoxicity, we assessed the influence of AZA-1 on Ca(2+) homeostasis. AZA-1 suppressed spontaneous Ca(2+) oscillations (EC(50) = 445 nM) in neocortical neurons. A distinct structure-activity profile was found for inhibition of Ca(2+) oscillations where both the full structure as well as analogs containing only the FGHI domain attached to a phenyl glycine methyl ester moiety were potent inhibitors. The molecular targets for inhibition of spontaneous Ca(2+) oscillations and neurotoxicity may therefore differ. The caspase protease inhibitor Z-VAD-FMK produced a complete elimination of AZA-1-induced LDH efflux and nuclear condensation in neocortical neurons. Although the molecular target for AZA-induced neurotoxicity remains to be established, these results demonstrate that the observed neurotoxicity is dependent on a caspase signaling pathway.
Collapse
Affiliation(s)
- Zhengyu Cao
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska 68178, USA
| | | | | | | | | |
Collapse
|
27
|
Synthesis of oxa-aza spirobicycles by intramolecular hydrogen atom transfer promoted by N-radicals in carbohydrate systems. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.05.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Frederick MO, Janda KD, Nicolaou KC, Dickerson TJ. Monoclonal antibodies with orthogonal azaspiracid epitopes. Chembiochem 2009; 10:1625-9. [PMID: 19492388 PMCID: PMC2750835 DOI: 10.1002/cbic.200900201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Indexed: 12/29/2022]
Abstract
Azaspiracid antibodies: Immunization of azaspiracid immunoconjugates has elicited monoclonal antibodies with distinct epitopes on the marine toxin; this will open the way toward azaspiracid diagnostics and the detection of contaminated shellfish before they can enter the food supply.
Collapse
Affiliation(s)
- Michael O. Frederick
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) and Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute of Chemical Biology and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - K. C. Nicolaou
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) and Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Tobin J. Dickerson
- Department of Chemistry and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
29
|
Abstract
The last one hundred years have witnessed a dramatic increase in the power and reach of total synthesis. The pantheon of accomplishments in the field includes the total synthesis of molecules of unimaginable beauty and diversity such as the four discussed in this article: endiandric acids (1982), calicheamicin gamma(1)(I) (1992), Taxol (1994), and brevetoxin B (1995). Chosen from the collection of the molecules synthesized in the author's laboratories, these structures are but a small fraction of the myriad constructed in laboratories around the world over the last century. Their stories, and the background on which they were based, should serve to trace the evolution of the art of chemical synthesis to its present sharp condition, an emergence that occurred as a result of new theories and mechanistic insights, new reactions, new reagents and catalysts, and new synthetic technologies and strategies. Indeed, the advent of chemical synthesis as a whole must be considered as one of the most influential developments of the twentieth century in terms of its impact on society.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
30
|
|
31
|
Evans DA, Kvaernø L, Dunn TB, Beauchemin A, Raymer B, Mulder JA, Olhava EJ, Juhl M, Kagechika K, Favor DA. Total synthesis of (+)-azaspiracid-1. An exhibition of the intricacies of complex molecule synthesis. J Am Chem Soc 2008; 130:16295-309. [PMID: 19006391 PMCID: PMC3408805 DOI: 10.1021/ja804659n] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of the marine neurotoxin azaspiracid-1 has been accomplished. The individual fragments were synthesized by catalytic enantioselective processes: A hetero-Diels-Alder reaction to afford the E- and HI-ring fragments, a carbonyl-ene reaction to furnish the CD-ring fragment, and a Mukaiyama aldol reaction to deliver the FG-ring fragment. The subsequent fragment couplings were accomplished by aldol and sulfone anion methodologies. All ketalization events to form the nonacyclic target were accomplished under equilibrating conditions utilizing the imbedded configurations of the molecule to adopt one favored conformation. A final fragment coupling of the anomeric EFGHI-sulfone anion to the ABCD-aldehyde completed the convergent synthesis of (+)-azaspiracid-1.
Collapse
Affiliation(s)
- David A Evans
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nicolaou KC, Chen JS, Dalby SM. From nature to the laboratory and into the clinic. Bioorg Med Chem 2008; 17:2290-303. [PMID: 19028103 DOI: 10.1016/j.bmc.2008.10.089] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/31/2008] [Indexed: 01/17/2023]
Abstract
Natural products possess a broad diversity of structure and function, and they provide inspiration for chemistry, biology, and medicine. In this review article, we highlight and place in context our laboratory's total syntheses of, and related studies on, complex secondary metabolites that were clinically important drugs, or have since been developed into useful medicines, namely amphotericin B (1), calicheamicin gamma(1)(I) (2), rapamycin (3), Taxol (4), the epothilones [e.g., epothilones A (5) and B (6)], and vancomycin (7). We also briefly highlight our research with other selected inspirational natural products possessing interesting biological activities [i.e., dynemicin A (8), uncialamycin (9), eleutherobin (10), sarcodictyin A (11), azaspiracid-1 (12), thiostrepton (13), abyssomicin C (14), platensimycin (15), platencin (16), and palmerolide A (17)].
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC408, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
33
|
Li J, Li X, Mootoo DR. Synthetic and Computational Studies on the ABC Trioxadispiroketal Subunit of the Marine Biotoxin Azaspiracid-1. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800301106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The trioxadispiroketal residue in the marine biotoxin azaspiracid-1, which exists in a configuration capable of exhibiting a double anomeric effect, is believed to be the thermodynamically most stable bis-spiroketal diastereomer. In order to get insight into how structural factors affect this equilibrium, a simplified ABC trioxadispiroketal analog of azaspiracid-1 was synthesized and subjected to equilbration and computational studies. Compound 7, which represents a double anomeric effect was obtained as the major isomer, together with diastereomers 14 and 15, in a respective ratio of 62:22:16. DFT calculations for 7, 14 and 15 qualitatively matched this observation. These results suggest that while a double anomeric effect may play a major role in the stability of the trioxadispiroketal configuration in the more complex natural product, the substitution pattern of the C ring is also a contributing factor.
Collapse
Affiliation(s)
- Jialiang Li
- Department of Chemistry, Hunter College/CUNY, New York, NY 10021, USA
| | - Xiaohua Li
- Department of Chemistry, Hunter College/CUNY, New York, NY 10021, USA
| | - David R. Mootoo
- Department of Chemistry, Hunter College/CUNY, New York, NY 10021, USA
| |
Collapse
|
34
|
Vale C, Wandscheer C, Nicolaou K, Frederick MO, Alfonso C, Vieytes MR, Botana LM. Cytotoxic effect of azaspiracid-2 and azaspiracid-2-methyl ester in cultured neurons: Involvement of the c-Jun N-terminal kinase. J Neurosci Res 2008; 86:2952-62. [DOI: 10.1002/jnr.21731] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Marine biotoxins in shellfish – Azaspiracid group ‐ Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Vilariño N, Nicolaou KC, Frederick MO, Cagide E, Alfonso C, Alonso E, Vieytes MR, Botana LM. Azaspiracid substituent at C1 is relevant to in vitro toxicity. Chem Res Toxicol 2008; 21:1823-31. [PMID: 18707138 DOI: 10.1021/tx800165c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The azaspiracids are a group of marine toxins recently described that currently includes 20 analogues. Not much is known about their mechanism of action, although effects on some cellular functions have been found in vitro. We used the reported effects on cell viability, actin cytoskeleton, and caspase activation to study the structure-activity relationship of AZA-1 and AZA-2 and the role of the carboxylic acid moiety in toxicity. AZA-1, AZA-2, and the synthetic AZA-2-methyl ester (AZA-2-ME), where the C1 carboxylic acid moiety of AZA-2 was esterified to the corresponding methyl ester moiety, induced a reduction of cell viability in neuroblastoma and hepatocyte cell lines with similar potency and kinetics. Interestingly, the mast cell line HMC-1 was resistant to AZA-induced cytotoxicity. Actin cytoskeleton alterations and caspase activation appeared after treatment with AZA-1, AZA-2, AZA-2-ME, and biotin-AZA-2 (AZA-2 labeled with biotin at C1) in neuroblastoma cells with similar qualitative, quantitative, and kinetics characteristics. Irreversibility of AZA effects on the actin cytoskeleton and cell morphology after short incubations with the toxin were common to AZA-1, AZA-2, and AZA-2-ME; however, 10-fold higher concentrations of biotin-AZA-2 were needed for irreversible effects. AZA-2-ME was rapidly metabolized in the cell to AZA-2, while transformation of biotin-AZA-2 into AZA-2 was less efficient, which explains the different potency in short exposure times. The moiety present at C1 is related to AZA toxicity in vitro. However, the presence of a methyl moiety at C8 is irrelevant to AZA toxicity since AZA-1 and AZA-2 were equipotent regardless of the readout effect.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Mar Drugs 2008; 6:39-72. [PMID: 18728760 PMCID: PMC2525481 DOI: 10.3390/md20080004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/21/2008] [Accepted: 03/18/2008] [Indexed: 01/05/2023] Open
Abstract
Azaspiracids (AZA) are polyether marine toxins that accumulate in various shellfish species and have been associated with severe gastrointestinal human intoxications since 1995. This toxin class has since been reported from several countries, including Morocco and much of western Europe. A regulatory limit of 160 μg AZA/kg whole shellfish flesh was established by the EU in order to protect human health; however, in some cases, AZA concentrations far exceed the action level. Herein we discuss recent advances on the chemistry of various AZA analogs, review the ecology of AZAs, including the putative progenitor algal species, collectively interpret the in vitro and in vivo data on the toxicology of AZAs relating to human health issues, and outline the European legislature associated with AZAs.
Collapse
|
38
|
Nicolaou KC, Lister T, Denton RM, Gelin CF. Total synthesis of atrochamins F, H, I, and J through cascade reactions. Tetrahedron 2008; 64:4736-4757. [PMID: 19461992 DOI: 10.1016/j.tet.2008.02.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A concise and efficient cascade-based total synthesis of artochamins F, H, I, and J is described. The potential biogenetic connection between artochamin F, or a derivative thereof, and artochamins H, I, and J, through an unusual formal [2+2] cycloaddition process, was shown to be feasible. An alternative mechanism for this transformation is also proposed.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla 92037, U.S.A
| | | | | | | |
Collapse
|
39
|
Abstract
Total synthesis campaigns toward complex heterocyclic natural products are a prime source of inspiration for the design and execution of complex cascade sequences, powerful reactions, and efficient synthetic strategies. We highlight selected examples of such innovations in the course of our total syntheses of diazonamide A, azaspiracid-1, thiostrepton, 2,2'-epi-cytoskyrin A and rugulosin, abyssomycin C, platensimycin, and uncialamycin.
Collapse
Affiliation(s)
- K. C. Nicolaou
- 1Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA and the Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jason S. Chen
- 1Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA and the Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
40
|
Vale C, Gómez-Limia B, Nicolaou KC, Frederick MO, Vieytes MR, Botana LM. The c-Jun-N-terminal kinase is involved in the neurotoxic effect of azaspiracid-1. Cell Physiol Biochem 2007; 20:957-66. [PMID: 17982278 DOI: 10.1159/000110456] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2007] [Indexed: 01/02/2023] Open
Abstract
AIMS Azaspiracids (AZAs) are marine phycotoxins with an unknown mechanism of action, recently implicated in human intoxications. The predominant analog in nature, AZA-1 targets several organs in vivo, including the central nervous system and exhibits high neurotoxicity in vitro. METHODS We used pharmacological tools to inhibit the cytotoxic effect of the toxin in primary cultured neurons. Immunocytochemical techniques in combination with confocal microscopy were employed to examine the cellular mechanisms involved in the neurotoxic effect of AZA-1. RESULTS Several targets for azaspiracid-induced neurotoxicity, specifically the cAMP pathway, or protein kinase C and phosphatidylinositol 3-kinase activation were excluded. Interestingly, the specific c-Jun-N-terminal protein kinase (JNK) inhibitor SP 600125 protected cultured neurons against AZA-induced cytotoxicity. Immunocytochemistry experiments showed that AZA-1 increased the amount of phosphorylated JNK and caused nuclear translocation of the active protein that was prevented by SP 600125. CONCLUSION Our data constitute the relationship between azaspiracid-induced cytotoxicity and specific modifications in cellular transduction signals, specifically we found that JNK activation is associated with the cytotoxic effect of the toxin. These results should provide the basis to identify the mechanism of action of this group of toxins.
Collapse
Affiliation(s)
- Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, USC, Lugo, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Yadav J, Joyasawal S, Dutta S, Kunwar A. Stereoselective synthesis of the ABCD ring framework of azaspiracids. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Vilariño N, Nicolaou KC, Frederick MO, Vieytes MR, Botana LM. Irreversible cytoskeletal disarrangement is independent of caspase activation during in vitro azaspiracid toxicity in human neuroblastoma cells. Biochem Pharmacol 2007; 74:327-35. [PMID: 17485074 DOI: 10.1016/j.bcp.2007.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/30/2007] [Accepted: 04/04/2007] [Indexed: 11/19/2022]
Abstract
Azaspiracid-1 (AZA-1) is a marine toxin discovered in 1995. Besides damage to several tissues in vivo, AZA-1 has been shown to cause cytotoxicity in a number of cell lines and alterations in actin cytoskeleton and cell morphology. We studied the reversibility of AZA-1-induced morphological changes in human neuroblastoma cells and their dependence on caspases and signaling pathways involved in cytoskeleton regulation. Morphological/cytoskeletal changes were clearly observed by confocal microscopy 24h after the addition of toxin, without recovery upon toxin removal. Interestingly, 2min of incubation with AZA-1 was enough for the cytoskeleton to be altered 24-48h later. The activation of caspases by AZA-1 was studied next using a fluorescent caspase inhibitor. A cell population with activated caspases was observed after 48h of exposure to the toxin, but not at 24h. Two fragments and a stereoisomer of AZA-1 were tested to analyze structure-activity relationship. Only ABCD-epi-AZA-1 was active with a similar effect to AZA-1. Additionally, regarding the involvement of apoptosis/cytoskeleton signaling in AZA-1-induced morphological effects, inhibition of caspases with Z-VAD-FMK did not affect AZA-1-induced cytoskeletal changes, suggesting, together with the activation kinetics, that caspases are not responsible for AZA-1-elicited morphological changes. Modulation of PKA, PKC, PI3K, Erk, p38MAPK, glutathione and microtubules with inhibitors/activators did not inhibit AZA-1-induced actin cytoskeleton rearrangement. The JNK inhibitor SP600125 seemed to slightly diminish AZA-1 effects, however due to the effects of the drug by itself the involvement of JNK in AZA-1 toxicity needs further investigation. The results suggest that AZA-1 binds irreversibly to its cellular target, needing moieties located in the ABCDE and FGHI rings of the molecule. Cytotoxicity of AZA-1 has been previously described without reference to the type of cell death, we report that AZA-1 induces the activation of caspases, commonly used as an early marker of apoptosis, and that these proteases are not responsible for AZA-1-induced cytoskeleton disarragement in human neuroblastoma cells.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario, 27002 Lugo, Spain
| | | | | | | | | |
Collapse
|
43
|
Nicolaou KC, Frederick MO, Petrovic G, Cole KP, Loizidou EZ. Total synthesis and confirmation of the revised structures of azaspiracid-2 and azaspiracid-3. Angew Chem Int Ed Engl 2007; 45:2609-15. [PMID: 16548033 DOI: 10.1002/anie.200600295] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
44
|
Evans D, Kværnø L, Mulder J, Raymer B, Dunn T, Beauchemin A, Olhava E, Juhl M, Kagechika K. Total Synthesis of (+)-Azaspiracid-1. Part I: Synthesis of the Fully Elaborated ABCD Aldehyde. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701515] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Evans DA, Dunn TB, Kvaernø L, Beauchemin A, Raymer B, Olhava EJ, Mulder JA, Juhl M, Kagechika K, Favor DA. Total Synthesis of (+)-Azaspiracid-1. Part II: Synthesis of the EFGHI Sulfone and Completion of the Synthesis. Angew Chem Int Ed Engl 2007; 46:4698-703. [PMID: 17546578 DOI: 10.1002/anie.200701520] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David A Evans
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Evans D, Dunn T, Kværnø L, Beauchemin A, Raymer B, Olhava E, Mulder J, Juhl M, Kagechika K, Favor D. Total Synthesis of (+)-Azaspiracid-1. Part II: Synthesis of the EFGHI Sulfone and Completion of the Synthesis. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701520] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Evans DA, Kvaernø L, Mulder JA, Raymer B, Dunn TB, Beauchemin A, Olhava EJ, Juhl M, Kagechika K. Total Synthesis of (+)-Azaspiracid-1. Part I: Synthesis of the Fully Elaborated ABCD Aldehyde. Angew Chem Int Ed Engl 2007; 46:4693-7. [PMID: 17546577 DOI: 10.1002/anie.200701515] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David A Evans
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nicolaou KC, Snyder SA. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew Chem Int Ed Engl 2007; 44:1012-1044. [PMID: 15688428 DOI: 10.1002/anie.200460864] [Citation(s) in RCA: 479] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over the course of the past half century, the structural elucidation of unknown natural products has undergone a tremendous revolution. Before World War II, a chemist would have relied almost exclusively on the art of chemical synthesis, primarily in the form of degradation and derivatization reactions, to develop and test structural hypotheses in a process that often took years to complete when grams of material were available. Today, a battery of advanced spectroscopic methods, such as multidimensional NMR spectroscopy and high-resolution mass spectrometry, not to mention X-ray crystallography, exist for the expeditious assignment of structures to highly complex molecules isolated from nature in milligram or sub-milligram quantities. In fact, it could be argued that the characterization of natural products has become a routine task, one which no longer even requires a reaction flask! This Review makes the case that imaginative detective work and chemical synthesis still have important roles to play in the process of solving nature's most intriguing molecular puzzles.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Scott A Snyder
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
49
|
O'Connor PD, Brimble MA. Synthesis of macrocyclic shellfish toxins containing spiroimine moieties. Nat Prod Rep 2007; 24:869-85. [PMID: 17653363 DOI: 10.1039/b700307m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview of the structure and biological activity of macrocyclic polyketides derived from dinoflagellates that contain unusual cyclic imine units is provided. The total and partial syntheses of these molecules are discussed with an emphasis on the construction of the spiroimine functionality thought to be the key pharmacophore of these fact-acting shellfish toxins.
Collapse
Affiliation(s)
- Patrick D O'Connor
- Department of Chemistry, The University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | | |
Collapse
|
50
|
Zhou XT, Lu L, Furkert DP, Wells CE, Carter RG. Synthesis of the southern FGHI ring system of azaspiracid-1 and investigation into the controlling elements of C28- and C36-ketalization. Angew Chem Int Ed Engl 2006; 45:7622-6. [PMID: 17044107 PMCID: PMC2414259 DOI: 10.1002/anie.200603353] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao-Ti Zhou
- Department of Chemistry Oregon State University Corvallis, OR 97331 USA Fax: (+ 1) 541−737−9496 E-mail:
| | - Liang Lu
- Department of Chemistry Oregon State University Corvallis, OR 97331 USA Fax: (+ 1) 541−737−9496 E-mail:
| | - Daniel P. Furkert
- Department of Chemistry Oregon State University Corvallis, OR 97331 USA Fax: (+ 1) 541−737−9496 E-mail:
| | - Charles E. Wells
- Department of Chemistry Oregon State University Corvallis, OR 97331 USA Fax: (+ 1) 541−737−9496 E-mail:
| | - Rich G. Carter
- Department of Chemistry Oregon State University Corvallis, OR 97331 USA Fax: (+ 1) 541−737−9496 E-mail:
| |
Collapse
|