1
|
Gan D, Ren Y, Sun S, Yang Y, Li X, Xia S. Atomically dispersed copper-zinc dual sites anchored on nitrogen-doped porous carbon toward peroxymonosulfate activation for degradation of various organic contaminants. J Colloid Interface Sci 2024; 673:756-764. [PMID: 38905997 DOI: 10.1016/j.jcis.2024.06.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
Single-atom catalysts (SACs) have been widely studied in Fenton-like reactions, wherein their catalytic performance could be further enhanced by adjusting electronic structure and regulating coordination environment, although relevant research is rarely reported. This text elucidates fabrication of dual atom catalyst systems aimed at augmenting their catalytic efficiency. Herein, atomically dispersed copper-zinc (Cu-Zn) dual sites anchored on nitrogen (N)-doped porous carbon (NC), referred to as CuZn-NC, were synthesized using cage-encapsulated pyrolysis and host-guest strategies. The CuZn-NC catalyst exhibited high activity in activation of peroxymonosulfate (PMS) for degradation of organic pollutants. Based on synergistic effects of adjacent Cu and Zn atom pairs, CuZn-NC (PMS) system achieved 94.44 % bisphenol A (BPA) degradation in 24 min. The radical pathway predominated, and coexistence of non-radical species was demonstrated for BPA degradation in CuZn-NC/PMS system. More importantly, CuZn-NC/PMS system showed generality for degradation of various refractory contaminants. Our experiments indicate that CuZn-N sites on CuZn-NC act as active sites for bonding PMS molecules with optimal binding energy, while pyrrolic N sites are considered as adsorption sites for organic molecules. Overall, this research designs diatomic site catalysts (DACs), with promising implications for wastewater treatment.
Collapse
Affiliation(s)
- Defu Gan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifan Ren
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Environmental Functional Materials, Tongji University, Shanghai 200092, China
| | - Shiqiang Sun
- College of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221000, China
| | - Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Zhang T, Wang D, Liu J. Periodic Single-Metal Site Catalysts: Creating Homogeneous and Ordered Atomic-Precision Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408259. [PMID: 39149786 DOI: 10.1002/adma.202408259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Heterogeneous single-metal-site catalysts (SMSCs), often referred to as single-atom catalysts (SACs), demonstrate promising catalytic activity, selectivity, and stability across a wide spectrum of reactions due to their rationally designed microenvironments encompassing coordination geometry, binding ligands, and electronic configurations. However, the inherent disorderliness of SMSCs at both atomic scale and nanoscale poses challenges in deciphering working principles and establishing the correlations between microenvironments and the catalytic performances of SMSCs. The rearrangement of randomly dispersed single metals into homogeneous and atomic-precisely structured periodic single-metal site catalysts (PSMSCs) not only simplifies the chaos in SMSCs systems but also unveils new opportunities for manipulating catalytic performance and gaining profound insights into reaction mechanisms. Moreover, the synergistic effects of adjacent single metals and the integration effects of periodic single-metal arrangement further broaden the industrial application scope of SMSCs. This perspective offers a comprehensive overview of recent advancements and outlines prospective avenues for research in the design and characterizations of PSMSCs, while also acknowledging the formidable challenges encountered and the promising prospects that lie ahead.
Collapse
Affiliation(s)
- Tianyu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Haroon H, Xiang Q. Single-Atom based Metal-Organic Framework Photocatalysts for Solar-Fuel Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401389. [PMID: 38733221 DOI: 10.1002/smll.202401389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Indexed: 05/13/2024]
Abstract
The growing demand for fossil fuels and subsequent CO2 emissions prompted a search for alternate sources of energy and a reduction in CO2. Photocatalysis driven by solar light has been found as a potential research area to tackle both these problems. In this direction, SAC@MOF (Single-atom loaded MOFs) photocatalysis is an emerging field and a promising technology. The unique properties of single-atom catalysts (SACs), such as high catalytic activity and selectivity, are leveraged in these systems. Photocatalysis, focusing on the utilization of Metal-Organic Frameworks (MOFs) as platforms for creating single-atom catalysts (SACs) characterized by metal single-atoms (SAs) as their active sites, are noted for their unparalleled atomic efficiency, precisely defined active sites, and superior photocatalytic performance. The synergy between MOFs and SAs in photocatalytic systems is meticulously examined, highlighting how they collectively enhance photocatalytic efficiency. This review examines SAC@MOF development and applications in environmental and energy sectors, focusing on synthesis and stabilization methods for SACs on MOFs and also characterization techniques vital for understanding these catalysts. The potential of SAC@MOF in CO2 Photoreduction and Photocatalytic H2 evolution is highlighted, emphasizing its role in green energy technologies and advances in materials science and Photocatalysis.
Collapse
Affiliation(s)
- Haamid Haroon
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
5
|
Chen Y, Liu X, Wang P, Mansoor M, Zhang J, Peng D, Han L, Zhang D. Challenges and Perspectives of Environmental Catalysis for NO x Reduction. JACS AU 2024; 4:2767-2791. [PMID: 39211630 PMCID: PMC11350593 DOI: 10.1021/jacsau.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Environmental catalysis has attracted great interest in air and water purification. Selective catalytic reduction with ammonia (NH3-SCR) as a representative technology of environmental catalysis is of significance to the elimination of nitrogen oxides (NO x ) emitting from stationary and mobile sources. However, the evolving energy landscape in the nonelectric sector and the changing nature of fuel in motor vehicles present new challenges for NO x catalytic purification over the traditional NH3-SCR catalysts. These challenges primarily revolve around the application limitations of conventional industrial NH3-SCR catalysts, such as V2O5-WO3(MoO3)/TiO2 and chabazite (CHA) structured zeolites, in meeting both the severe requirements of high activity at ultralow temperatures and robust resistance to the wide array of poisons (SO2, HCl, phosphorus, alkali metals, and heavy metals, etc.) existing in more complex operating conditions of new application scenarios. Additionally, volatile organic compounds (VOCs) coexisting with NO x in exhaust gas has emerged as a critical factor further impeding the highly efficient reduction of NO x . Therefore, confronting the challenges inherent in current NH3-SCR technology and drawing from the established NH3-SCR reaction mechanisms, we discern that the strategic manipulation of the properties of surface acidity and redox over NH3-SCR catalysts constitutes an important pathway for increasing the catalytic efficiency at low temperatures. Concurrently, the establishment of protective sites and confined structures combined with the strategies for triggering antagonistic effects emerge as imperative items for strengthening the antipoisoning potentials of NH3-SCR catalysts. Finally, we contemplate the essential status of selective synergistic catalytic elimination technology for abating NO x and VOCs. By virtue of these discussions, we aim to offer a series of innovative guiding perspectives for the further advancement of environmental catalysis technology for the highly efficient NO x catalytic purification from nonelectric industries and motor vehicles.
Collapse
Affiliation(s)
- Yanqi Chen
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Xiangyu Liu
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Penglu Wang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Maryam Mansoor
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Jin Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengchao Peng
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Lupeng Han
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengsong Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| |
Collapse
|
6
|
Yoshida I, Kikukawa Y, Mitsuhashi R, Hayashi Y. Reactivity control of nitrate-incorporating octadecavanadates by changing the oxidation state and metal substitution. NANOSCALE 2024; 16:10584-10589. [PMID: 38738681 DOI: 10.1039/d4nr01243g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Clarification and control of the active sites at the atomic/molecular level are important to develop nanocatalysts. The catalytic performance of two oxidation states of nitrate-incorporating octadecavanadates, [V18O46(NO3)]5- (V18) and [V18O46(NO3)]4- (V18ox), and a copper-substituted one, [Cu2V16O44(NO3)]5- (Cu2V16), in selective oxidation was investigated. Both V18 and V18ox possessed the same double-helical structures and one of two tetravalent vanadium sites of V18 was oxidized in V18ox. The comparison of the mobility of the incorporated nitrate reveals that tetravalent vanadium centres show stronger interaction with the incorporated anions than pentavalent ones. The oxidation reaction with V18ox proceeded more smoothly with tert-BuOOH as an oxidant than that with V18. The reactivity and selectivity of the oxidation of 2-cyclohexen-1-ol were different among the derivatives. V18ox showed the higher reactivity with 72% selectivity to epoxide. With V18, reactivity was lower but higher selectivity to epoxide was achieved. In the presence of Cu2V16, 2-cyclohexen-1-one was selectively obtained with 81% selectivity. The order of the reactivity for cyclooctene was V18ox, V18 and Cu2V16. These results shows that the cap part of the double-helix acts as the active site. Even though the vanadium-oxygen species exhibit the same structures, the catalytic properties can be controlled by changing the valence of vanadium and metal substitution.
Collapse
Affiliation(s)
- Isshin Yoshida
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Yuji Kikukawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Ryoji Mitsuhashi
- Institute of Liberal Arts and Science, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yoshihito Hayashi
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
7
|
Dombrowski JP, Kalendra V, Ziegler MS, Lakshmi KV, Bell AT, Tilley TD. M-Ge-Si thermolytic molecular precursors and models for germanium-doped transition metal sites on silica. Dalton Trans 2024; 53:7340-7349. [PMID: 38602311 DOI: 10.1039/d4dt00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The synthesis, thermolysis, and surface organometallic chemistry of thermolytic molecular precursors based on a new germanosilicate ligand platform, -OGe[OSi(OtBu)3]3, is described. Use of this ligand is demonstrated with preparation of complexes containing the first-row transition metals Cr, Mn, and Fe. The thermolysis and grafting behavior of the synthesized complexes, Fe{OGe[OSi(OtBu)3]3}2 (FeGe), Mn{OGe[OSi(OtBu)3]3}2(THF)2 (MnGe) and Cr{OGe[OSi(OtBu)3]3}2(THF)2 (CrGe), was evaluated using a combination of thermogravimetric analysis; nuclear magnetic resonance (NMR), ultraviolet-visible (UV-Vis), and electron paramagnetic resonance (EPR) spectroscopies; and single-crystal X-ray diffraction (XRD). Grafting of the precursors onto SBA-15 mesoporous silica and subsequent calcination in air led to substantial changes in transition metal coordination environments and oxidation states, the implications of which are discussed in the context of low-coordinate and low oxidation state thermolytic molecular precursors.
Collapse
Affiliation(s)
- James P Dombrowski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Micah S Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexis T Bell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman Hall, Berkeley, CA, USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| |
Collapse
|
8
|
Sebastian O, Al-Shaibani A, Taccardi N, Haumann M, Wasserscheid P. Kinetics of dehydrogenation of n-heptane over GaPt supported catalytically active liquid metal solutions (SCALMS). REACT CHEM ENG 2024; 9:1154-1163. [PMID: 38694426 PMCID: PMC11060413 DOI: 10.1039/d3re00490b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/17/2023] [Indexed: 05/04/2024]
Abstract
The concept of Supported Catalytically Active Liquid Metal Solutions (SCALMS) was explored for the catalytic dehydrogenation of n-heptane. For this purpose, a GaPt on alumina (Ga84Pt/Al2O3) was compared with a Pt on alumina catalyst at different reaction temperatures and feed compositions. While the observed activation energies with both catalysts for the overall n-heptane depletion rate were similar with both catalysts, the SCALMS systems provides a lower activation energy for the desired dehydrogenation path and significantly higher activation energies for the undesired aromatization and cracking reaction. Thus, the SCALMS catalyst under investigation shows technically interesting features, in particular at high temperature operation. The partial pressure variation revealed an effective reaction order of around 0.7 for n-heptane for both catalysts, while the effective order for hydrogen was 0.35 for Pt/Al2O3 and almost zero for SCALMS.
Collapse
Affiliation(s)
- Oshin Sebastian
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstraße 3 91058 Erlangen Germany
| | - Asem Al-Shaibani
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstraße 3 91058 Erlangen Germany
| | - Nicola Taccardi
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstraße 3 91058 Erlangen Germany
| | - Marco Haumann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstraße 3 91058 Erlangen Germany
- Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg P.O. Box 524 Auckland Park 2006 South Africa
| | - Peter Wasserscheid
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstraße 3 91058 Erlangen Germany
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK 11) Egerlandstraße 3 91058 Erlangen Germany
| |
Collapse
|
9
|
Rojas-Buzo S, Salusso D, Le THT, Ortuño MA, Lomachenko KA, Bordiga S. Unveiling the Role and Stabilization Mechanism of Cu + into Defective Ce-MOF Clusters during CO Oxidation. J Phys Chem Lett 2024; 15:3962-3967. [PMID: 38569092 PMCID: PMC11017307 DOI: 10.1021/acs.jpclett.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Copper single-site catalysts supported on Zr-based metal-organic frameworks (MOFs) are well-known systems in which the nature of the active sites has been deeply investigated. Conversely, the redox chemistry of the Ce-counterparts is more limited, because of the often-unclear Cu2+/Cu+ and Ce4+/Ce3+ pairs behavior. Herein, we studied a novel Cu2+ single-site catalyst supported on a defective Ce-MOF, Cu/UiO-67(Ce), as a catalyst for the CO oxidation reaction. Based on a combination of in situ DRIFT and operando XAS spectroscopies, we established that Cu+ sites generated during catalysis play a pivotal role. Moreover, the oxygen vacancies associated with Ce3+ sites and presented in the defective Cu/UiO-67(Ce) material are able to activate the O2 molecules, closing the catalytic cycle. The results presented in this work open a new route for the design of active and stable single-site catalysts supported on defective Ce-MOFs.
Collapse
Affiliation(s)
- Sergio Rojas-Buzo
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Davide Salusso
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Thanh-Hiep Thi Le
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel A. Ortuño
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, 10125 Turin, Italy
| |
Collapse
|
10
|
Yao L, Pütz AM, Vignolo-González H, Lotsch BV. Covalent Organic Frameworks as Single-Site Photocatalysts for Solar-to-Fuel Conversion. J Am Chem Soc 2024; 146:9479-9492. [PMID: 38547041 PMCID: PMC11009957 DOI: 10.1021/jacs.3c11539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Single-site photocatalysts (SSPCs) are well-established as potent platforms for designing innovative materials to accomplish direct solar-to-fuel conversion. Compared to classical inorganic porous materials, such as zeolites and silica, covalent organic frameworks (COFs)─an emerging class of porous polymers that combine high surface areas, structural diversity, and chemical stability─are attractive candidates for SSPCs due to their molecular-level precision and intrinsic light harvesting ability, both amenable to structural engineering. In this Perspective, we summarize the design concepts and state-of-the-art strategies for the construction of COF SSPCs, and we review the development of COF SSPCs and their applications in solar-to-fuel conversion from their inception. Underlying pitfalls concerning photocatalytic characterization are discussed, and perspectives for the future development of this burgeoning field are given.
Collapse
Affiliation(s)
- Liang Yao
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Alexander M. Pütz
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Hugo Vignolo-González
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Bettina V. Lotsch
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
- E-Conversion
and Center for Nanoscience, Lichtenbergstraße 4a, Garching, 85748 Munich, Germany
| |
Collapse
|
11
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
12
|
Muratsugu S, Sawaguchi K, Shiraogawa T, Chiba S, Sakata Y, Shirai S, Baba H, Ehara M, Akine S, Tada M. Induced chirality at the surface: fixation of a dynamic M/ P invertible helical Co 3 complex on SiO 2. Chem Commun (Camb) 2024; 60:2094-2097. [PMID: 38294205 DOI: 10.1039/d3cc05534e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Dynamic M/P invertible helicity was successfully induced at a SiO2 surface immobilized with a dynamic helical trinuclear cobalt complex, [LCo3(NHMe2)6](OTf)3, using chiral ((R) or (S))-1-phenylethylamine. Solid-state CD spectra and theoretical calculations suggested that the fixation of the M/P helical complex on the surface via coordination interactions was the key factor of the induced chirality at the surface.
Collapse
Affiliation(s)
- Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Aichi, Japan.
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Aichi, Japan
| | - Kana Sawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Aichi, Japan.
- Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Aichi, Japan
| | - Takafumi Shiraogawa
- Institute for Molecular Science/School of Physical Sciences, Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 Aichi, Japan.
| | - Shunsuke Chiba
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Ishikawa, Japan.
| | - Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Ishikawa, Japan.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Ishikawa, Japan
| | - Sora Shirai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Aichi, Japan.
| | - Hiroshi Baba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Aichi, Japan.
| | - Masahiro Ehara
- Institute for Molecular Science/School of Physical Sciences, Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 Aichi, Japan.
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Ishikawa, Japan.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Ishikawa, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Aichi, Japan.
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Aichi, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Aichi, Japan
| |
Collapse
|
13
|
Hassan A, Baghel AS, Kumar A, Das N. Palladium(II)-immobilized Triptycene based Hypercrosslinked Polymers: An Efficient, Green, and Reusable Heterogenous Catalyst for Suzuki-Miyaura Cross-coupling Reaction. Chem Asian J 2024; 19:e202300778. [PMID: 37950487 DOI: 10.1002/asia.202300778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
The Suzuki-Miyaura cross-coupling (SMCC) involves the coupling of organohalides and organoboron molecules in the presence of Pd(II)-based catalysts. Often SMCC reactions employ homogenous catalysts. However, such homogenous SMCC reactions are associated with certain limitations which has motivated design of effective and sustainable Pd(II)-based heterogeneous catalytic systems. Herein, we report a systematic development of a Pd(II)-immobilized and triptycene based ionic hyper crosslinked polymer (Pd@TP-iHCP) and explored its application as a heterogeneous catalyst for SMCC reaction. Pd@TP-iHCP has ample N-heterocyclic carbene (NHC) pendants that anchor Pd(II) centres on the polymeric matrix. Pd@TP-iHCP was characterized satisfactorily using FT-IR, 13 C CP-MAS NMR, BET surface area analysis, SEM, EDX and HRTEM. The performance of Pd@TP-iHCP as a heterogeneous catalyst for SMCC reactions was explored using various combinations of aryl boronic acids and aryl halides. Experimental results show that Pd@TP-iHCP is associated with a moderately high surface area. It is an efficient catalyst for SMCC (in aqueous media) with a modest loading of 0.8 mol % Pd(II)-catalyst since high yields of the expected products were obtained in shorter time intervals. Pd@TP-iHCP also features excellent stability and catalyst recyclability since it could be re-used for several cycles without any significant decrease in catalytic efficiency.
Collapse
Affiliation(s)
- Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801106, Bihar, India
| | - Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801106, Bihar, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801106, Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801106, Bihar, India
| |
Collapse
|
14
|
Haider SNUZ, Qureshi WA, Ali RN, Shaosheng R, Naveed A, Ali A, Yaseen M, Liu Q, Yang J. Contemporary advances in photocatalytic CO 2 reduction using single-atom catalysts supported on carbon-based materials. Adv Colloid Interface Sci 2024; 323:103068. [PMID: 38101149 DOI: 10.1016/j.cis.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The persistent issue of CO2 emissions and their subsequent impact on the Earth's atmosphere can be effectively addressed through the utilization of efficient photocatalysts. Employing a sustainable carbon cycle via photocatalysis presents a promising technology for simultaneously managing the greenhouse effect and the energy dilemma. However, the efficiency of energy conversion encounters limitations due to inadequate carrier utilization and a deficiency of reactive sites. Single-atom catalysts (SACs) have demonstrated exceptional performance in efficiently addressing the aforementioned challenges. This review article commences with an overview of SAC types, structures, fundamentals, synthesis strategies, and characterizations, providing a logical foundation for the design and properties of SACs based on the correlation between their structure and efficiency. Additionally, we delve into the general mechanism and the role of SACs in photocatalytic CO2 reduction. Furthermore, we furnish a comprehensive survey of the latest advancements in SACs concerning their capacity to enhance efficiency, long-term stability, and selectivity in CO2 reduction. Carbon-structured support materials such as covalent organic frameworks (COFs), graphitic carbon nitride (g-C3N4), metal-organic frameworks (MOFs), covalent triazine frameworks (CTFs), and graphene-based photocatalysts have garnered significant attention due to their substantial surface area, superior conductivity, and chemical stability. These carbon-based materials are frequently chosen as support matrices for anchoring single metal atoms, thereby enhancing catalytic activity and selectivity. The motivation behind this review article lies in evaluating recent developments in photocatalytic CO2 reduction employing SACs supported on carbon substrates. In conclusion, we highlight critical issues associated with SACs, potential prospects in photocatalytic CO2 reduction, and existing challenges. This review article is dedicated to providing a comprehensive and organized compilation of recent research findings on carbon support materials for SACs in photocatalytic CO2 reduction, with a specific focus on materials that are environmentally friendly, readily accessible, cost-effective, and exceptionally efficient. This work offers a critical assessment and serves as a systematic reference for the development of SACs supported on MOFs, COFs, g-C3N4, graphene, and CTFs support materials to enhance photocatalytic CO2 conversion.
Collapse
Affiliation(s)
| | - Waqar Ahmad Qureshi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Rai Nauman Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Rao Shaosheng
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ahmad Naveed
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Amjad Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-600, Poland
| | - Maria Yaseen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
15
|
Wang X, Zhao J, Eliasson H, Erni R, Ziarati A, Mckeown Walker S, Bürgi T. Very Low Temperature CO Oxidation over Atomically Precise Au 25 Nanoclusters on MnO 2. J Am Chem Soc 2023; 145:27273-27281. [PMID: 38065568 PMCID: PMC10739995 DOI: 10.1021/jacs.3c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 12/21/2023]
Abstract
Atomically precise Au25 nanoclusters have garnered significant interest in the field of heterogeneous catalysis due to their remarkable activity and selectivity. However, for the extensively studied reaction of low-temperature CO oxidation, their performance has not been competitive compared to other known gold nanocatalysts. To address this, we deposited Au25(SR)18 (R = CH2CH2Ph) nanoclusters onto a manganese oxide support (Au25/MnO2), resulting in a very stable and highly active catalyst. By optimizing the pretreatment temperature, we were able to significantly enhance the performance of the Au25/MnO2 catalyst, which outperformed most other gold catalysts. Impressively, 100% conversion of CO was achieved at temperatures as low as -50 °C, with 50% conversion being reached below -70 °C. Furthermore, the existence of ligands could also influence the negative apparent activation energy observed at intermediate temperatures. Analysis using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray diffraction (XRD) techniques indicated that the Au25 nanoclusters remained stable on the catalyst surface even after pretreatment at high temperatures. In-situ modulation excitation spectroscopy (MES) spectra also confirmed that the Au cluster was the active site for CO oxidation, highlighting the potential of atomically precise Au25 nanoclusters as primary active sites at very low temperatures.
Collapse
Affiliation(s)
- Xianwei Wang
- Department
of Physical Chemistry, University of Geneva, 4, 1211 Geneva, Switzerland
| | - Jiangtao Zhao
- Department
of Physical Chemistry, University of Geneva, 4, 1211 Geneva, Switzerland
| | - Henrik Eliasson
- Electron
Microscopy Center, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Rolf Erni
- Electron
Microscopy Center, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Abolfazl Ziarati
- Department
of Physical Chemistry, University of Geneva, 4, 1211 Geneva, Switzerland
| | - Siobhan Mckeown Walker
- Department
of Quantum Matter Physics, University of
Geneva, 1211 Geneva 4, Switzerland
- Laboratory
of Advanced Technology, University of Geneva, 4, 1211 Geneva, Switzerland
| | - Thomas Bürgi
- Department
of Physical Chemistry, University of Geneva, 4, 1211 Geneva, Switzerland
| |
Collapse
|
16
|
Kruczała K, Neubert S, Dhaka K, Mitoraj D, Jánošíková P, Adler C, Krivtsov I, Patzsch J, Bloh J, Biskupek J, Kaiser U, Hocking RK, Caspary Toroker M, Beranek R. Enhancing Photocatalysis: Understanding the Mechanistic Diversity in Photocatalysts Modified with Single-Atom Catalytic Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303571. [PMID: 37888857 PMCID: PMC10724417 DOI: 10.1002/advs.202303571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/16/2023] [Indexed: 10/28/2023]
Abstract
Surface modification of heterogeneous photocatalysts with single-atom catalysts (SACs) is an attractive approach for achieving enhanced photocatalytic performance. However, there is limited knowledge of the mechanism of photocatalytic enhancement in SAC-modified photocatalysts, which makes the rational design of high-performance SAC-based photocatalysts challenging. Herein, a series of photocatalysts for the aerobic degradation of pollutants based on anatase TiO2 modified with various low-cost, non-noble SACs (vanadate, Cu, and Fe ions) is reported. The most active SAC-modified photocatalysts outperform TiO2 modified with the corresponding metal oxide nanoparticles and state-of-the-art benchmark photocatalysts such as platinized TiO2 and commercial P25 powders. A combination of in situ electron paramagnetic resonance spectroscopy and theoretical calculations reveal that the best-performing photocatalysts modified with Cu(II) and vanadate SACs exhibit significant differences in the mechanism of activity enhancement, particularly with respect to the rate of oxygen reduction. The superior performance of vanadate SAC-modified TiO2 is found to be related to the shallow character of the SAC-induced intragap states, which allows for both the effective extraction of photogenerated electrons and fast catalytic turnover in the reduction of dioxygen, which translates directly into diminished recombination. These results provide essential guidelines for developing efficient SAC-based photocatalysts.
Collapse
Affiliation(s)
- Krzysztof Kruczała
- Faculty of ChemistryJagiellonian University in KrakówGronostajowa 2/C1‐21Krakow30–387Poland
| | - Susann Neubert
- Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Kapil Dhaka
- Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Dariusz Mitoraj
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
| | - Petra Jánošíková
- Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Christiane Adler
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
| | - Igor Krivtsov
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
- Department of Chemical and Environmental EngineeringUniversity of OviedoOviedo33006Spain
| | - Julia Patzsch
- Chemical Technology GroupDECHEMA Research InstituteTheodor‐Heuss‐Allee 2560486Frankfurt am MainGermany
| | - Jonathan Bloh
- Chemical Technology GroupDECHEMA Research InstituteTheodor‐Heuss‐Allee 2560486Frankfurt am MainGermany
| | - Johannes Biskupek
- Central Facility of Electron MicroscopyElectron Microscopy Group of Material ScienceUniversity of UlmD‐89081UlmGermany
| | - Ute Kaiser
- Central Facility of Electron MicroscopyElectron Microscopy Group of Material ScienceUniversity of UlmD‐89081UlmGermany
| | - Rosalie K. Hocking
- Department of Chemistry and BiotechnologyARC Training Centre for Surface Engineering for Advanced Material SEAMSwinburne University of TechnologyHawthornVIC3122Australia
| | - Maytal Caspary Toroker
- Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
- The Nancy and Stephen Grand Technion Energy ProgramTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Radim Beranek
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
| |
Collapse
|
17
|
Apilardmongkol P, Ratanasak M, Hasegawa JY, Parasuk V. DFT insight into metals and ligands substitution effects on reactivity of phenoxy-imine catalysts for ethylene polymerization. J Mol Graph Model 2023; 125:108586. [PMID: 37567049 DOI: 10.1016/j.jmgm.2023.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
The reaction mechanism of ethylene (ET) polymerization catalyzed by the phenoxy-imine (FI) ligands using DFT calculations was studied. Among five possible isomers, isomer A which has an octahedral geometry and a (cis-N/trans-O/cis-Cl) arrangement is the most stable pre-reaction Ti-FI dichloride complex. The isomer A can be activated by MAO to form the active catalyst and the active form was used for the study of the mechanism for Ti-FI. The second ethylene insertion was found to be the rate-determining step of the catalyzed ethylene polymerization. To examine the effect of group IVB transition metals (M = Ti, Zr, Hf) substitutions, calculated activation energies at the rate-determining step (EaRDS) were compared, where values of EaRDS of Zr < Hf < Ti agree with experiments. Moreover, we examined the effect of substitution on (O, X) ligands of the Ti-phenoxy-imine (Ti-1) based catalyst. The results revealed that EaRDS of (O, N) > (O, O) > (O, P) > O, S). Hence, the (O, S) ligand has the highest potential to improve the catalytic activity of the Ti-FI catalyst. We also found the activation energy to be related to the Ti-X distance. In addition, a novel Ni-based FI catalyst was investigated. The results indicated that the nickel (II) complex based on the phenoxy-imine (O, N) ligand in the square-planar geometry is more active than in the octahedral geometry. This work provides fundamental insights into the reaction mechanism of M - FI catalysts which can be used for the design and development of M - FI catalysts for ET polymerization.
Collapse
Affiliation(s)
- Pavee Apilardmongkol
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Manussada Ratanasak
- Institute for Catalysis, Hokkaido University, Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Vudhichai Parasuk
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Yatomi M, Hikino T, Yamazoe S, Kuroda K, Shimojima A. Immobilization of isolated dimethyltin species on crystalline silicates through surface modification of layered octosilicate. Dalton Trans 2023. [PMID: 38018470 DOI: 10.1039/d3dt03231k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Single metal atoms supported on silica are attractive catalysts, and precise control of the local environment around the metal species is essential. Crystalline silica is useful as an efficient support for the incorporation of well-defined metal sites. Dimethyltin species were regularly grafted onto the layer surfaces of layered octosilicate, a type of two-dimensional (2D) crystalline silica. Dimethyltin dichlorides react with the surface silanol (SiOH) groups of the silicate layers. The formation of Si-O-Sn bonds was confirmed by 29Si magic-angle spinning (MAS) NMR. X-ray absorption fine structure (XAFS) analysis showed the four-coordinated Sn species. These results suggested the presence of well-defined dipodal dimethyltin species on the layer surfaces. The degree of modification of the silanol groups with the dimethyltin groups increased with increasing amounts of dimethyltin dichloride; however, the maximum degree of modification was approximately 50%. This value was interpreted as an alternate modification of the octosilicate reaction sites with dimethyltin groups. These results demonstrate the potential for developing highly active single metal catalysts with a high density of regularly arranged active sites on high surface area supports.
Collapse
Affiliation(s)
- Masashi Yatomi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Takuya Hikino
- Department of Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
19
|
Cheng L, Tang Y, Ostrikov KK, Xiang Q. Single-Atom Heterogeneous Catalysts: Human- and AI-Driven Platform for Augmented Designs, Analytics and Reality-Enabled Manufacturing. Angew Chem Int Ed Engl 2023:e202313599. [PMID: 37891153 DOI: 10.1002/anie.202313599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Heterogeneous catalysts with targeted functionality can be designed with atomic precision, but it is challenging to retain the structure and performance upon the scaled-up manufacturing. Particularly challenging is to ensure the "atomic economy", where every catalytic site is most gainfully utilized. Given the emerging synergistic integration of human- and artificial intelligence (AI)-driven augmented designs (AD), augmented analytics (AA), and augmented reality manufacturing (AM) platforms, this minireview focuses on single-atom heterogeneous catalysts (SAHCs) and examines the current status, challenges, and future perspectives of translating atomic-level structural precision and data-driven discovery to next-generation industrial manufacturing. We critically examine the atomistic insights into structure-driven SAHCs functionality and discuss the opportunities and challenges on the way towards the synergistic human-AI collaborative data-driven platform capable of monitoring, analyzing, manufacturing, and retaining the atomic-scale structure and functions. Enhanced by the atomic-level AD, AA, and AM, evolving from the current high-throughput capabilities and digital materials manufacturing acceleration, this synergistic human-AI platform is promising to enable atom-efficient and atomically precise heterogeneous catalyst production.
Collapse
Affiliation(s)
- Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Quanjun Xiang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| |
Collapse
|
20
|
Wang Y, Tong C, Liu Q, Han R, Liu C. Intergrowth Zeolites, Synthesis, Characterization, and Catalysis. Chem Rev 2023; 123:11664-11721. [PMID: 37707958 DOI: 10.1021/acs.chemrev.3c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Microporous zeolites that can act as heterogeneous catalysts have continued to attract a great deal of academic and industrial interest, but current progress in their synthesis and application is restricted to single-phase zeolites, severely underestimating the potential of intergrowth frameworks. Compared with single-phase zeolites, intergrowth zeolites possess unique properties, such as different diffusion pathways and molecular confinement, or special crystalline pore environments for binding metal active sites. This review first focuses on the structural features and synthetic details of all the intergrowth zeolites, especially providing some insightful discussion of several potential frameworks. Subsequently, characterization methods for intergrowth zeolites are introduced, and highlighting fundamental features of these crystals. Then, the applications of intergrowth zeolites in several of the most active areas of catalysis are presented, including selective catalytic reduction of NOx by ammonia (NH3-SCR), methanol to olefins (MTO), petrochemicals and refining, fine chemicals production, and biomass conversion on Beta, and the relationship between structure and catalytic activity was profiled from the perspective of intergrowth grain boundary structure. Finally, the synthesis, characterization, and catalysis of intergrowth zeolites are summarized in a comprehensive discussion, and a brief outlook on the current challenges and future directions of intergrowth zeolites is indicated.
Collapse
Affiliation(s)
- Yanhua Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Chengzheng Tong
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Rui Han
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Caixia Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
Comini N, Diulus JT, Parkinson GS, Osterwalder J, Novotny Z. Stability of Iridium Single Atoms on Fe 3O 4(001) in the mbar Pressure Range. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19097-19106. [PMID: 37791099 PMCID: PMC10544020 DOI: 10.1021/acs.jpcc.3c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/24/2023] [Indexed: 10/05/2023]
Abstract
Stable single metal adatoms on oxide surfaces are of great interest for future applications in the field of catalysis. We studied iridium single atoms (Ir1) supported on a Fe3O4(001) single crystal, a model system previously only studied in ultra-high vacuum, to explore their behavior upon exposure to several gases in the millibar range (up to 20 mbar) utilizing ambient-pressure X-ray photoelectron spectroscopy. The Ir1 single adatoms appear stable upon exposure to a variety of common gases at room temperature, including oxygen (O2), hydrogen (H2), nitrogen (N2), carbon monoxide (CO), argon (Ar), and water vapor. Changes in the Ir 4f binding energy suggest that Ir1 interacts not only with adsorbed and dissociated molecules but also with water/OH groups and adventitious carbon species deposited inevitably under these pressure conditions. At higher temperatures (473 K), iridium adatom encapsulation takes place in an oxidizing environment (a partial O2 pressure of 0.1 mbar). We attribute this phenomenon to magnetite growth caused by the enhanced diffusion of iron cations near the surface. These findings provide an initial understanding of the behavior of single atoms on metal oxides outside the UHV regime.
Collapse
Affiliation(s)
- Nicolo Comini
- Physik-Institut, Universität Zürich, Zürich CH-8057, Switzerland
- Swiss
Light Source, Paul Scherrer Institut, Villigen-PSI CH-5232, Switzerland
| | - J. Trey Diulus
- Physik-Institut, Universität Zürich, Zürich CH-8057, Switzerland
- Swiss
Light Source, Paul Scherrer Institut, Villigen-PSI CH-5232, Switzerland
| | | | - Jürg Osterwalder
- Physik-Institut, Universität Zürich, Zürich CH-8057, Switzerland
| | - Zbynek Novotny
- Physik-Institut, Universität Zürich, Zürich CH-8057, Switzerland
- Swiss
Light Source, Paul Scherrer Institut, Villigen-PSI CH-5232, Switzerland
- EMPA,
Laboratory for Joining Technologies and Corrosion, Swiss Federal Laboratories
for Materials, Dübendorf CH-8600, Switzerland
| |
Collapse
|
22
|
Liu Y, Agarwal A, Kratish Y, Marks TJ. Single-Site Carbon-Supported Metal-Oxo Complexes in Heterogeneous Catalysis: Structure, Reactivity, and Mechanism. Angew Chem Int Ed Engl 2023; 62:e202304221. [PMID: 37142561 DOI: 10.1002/anie.202304221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
When early transition metal complexes are molecularly grafted onto catalyst supports, well-defined, surface-bound species are created, which are highly active and selective single-site heterogeneous catalysts (SSHCs) for diverse chemical transformations. In this minireview, we analyze and summarize a less conventional type of SSHC in which molybdenum dioxo species are grafted onto unusual carbon-unsaturated scaffolds, such as activated carbon, reduced graphene oxide, and carbon nanohorns. The choice of earth-abundant, low-toxicity, versatile metal constituents, and various carbon supports illustrates "catalyst by design" principles and yields insights into new catalytic systems of both academic and technological interest. Here, we summarize experimental and computational investigations of the bonding, electronic structure, reaction scope, and mechanistic pathways of these unusual catalysts.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Chemistry and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Amol Agarwal
- Department of Material Science and Engineering and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yosi Kratish
- Department of Chemistry and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Tobin J Marks
- Department of Chemistry and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
23
|
Song J, Yu X, Nefedov A, Weidler PG, Grosjean S, Bräse S, Wang Y, Wöll C. Metal-Organic Framework Thin Films as Ideal Matrices for Azide Photolysis in Vacuum. Angew Chem Int Ed Engl 2023; 62:e202306155. [PMID: 37243400 DOI: 10.1002/anie.202306155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
Studies on reactions in solutions are often hampered by solvent effects. In addition, detailed investigation on kinetics is limited to the small temperature regime where the solvent is liquid. Here, we report the in situ spectroscopic observation of UV-induced photochemical reactions of aryl azides within a crystalline matrix in vacuum. The matrices are formed by attaching the reactive moieties to ditopic linkers, which are then assembled to yield metal-organic frameworks (MOFs) and surface-mounted MOFs (SURMOFs). These porous, crystalline frameworks are then used as model systems to study azide-related chemical processes under ultrahigh vacuum (UHV) conditions, where solvent effects can be safely excluded and in a large temperature regime. Infrared reflection absorption spectroscopy (IRRAS) allowed us to monitor the photoreaction of azide in SURMOFs precisely. The in situ IRRAS data, in conjunction with XRD, MS, and XPS, reveal that illumination with UV light first leads to forming a nitrene intermediate. In the second step, an intramolecular rearrangement occurs, yielding an indoloindole derivative. These findings unveil a novel pathway for precisely studying azide-related chemical transformations. Reference experiments carried out for solvent-loaded SURMOFs reveal a huge diversity of other reaction schemes, thus highlighting the need for model systems studied under UHV conditions.
Collapse
Affiliation(s)
- Jimin Song
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Xiaojuan Yu
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexei Nefedov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter G Weidler
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sylvian Grosjean
- Institute for Biological and Chemical Systems (IBCS-FMS) and IBG3-SML, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute for Biological and Chemical Systems (IBCS-FMS) and IBG3-SML, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
24
|
Liao YK, Lagostina V, Salvadori E, Hartmann M, Poeppl A, Chiesa M. Short-Range Electronic Interactions between Vanadium and Molybdenum in Bimetallic SAPO-5 Catalysts Revealed by Hyperfine Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11103-11110. [PMID: 37342203 PMCID: PMC10278125 DOI: 10.1021/acs.jpcc.3c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/16/2023] [Indexed: 06/22/2023]
Abstract
Engineering two cooperative sites into a catalyst implies the onset of synergistic effects related to the existence of short-range electronic interactions between two metal components. However, these interactions and the relative structure-property correlations are often difficult to obtain. Here we show that hyperfine spectroscopy has the potential to reveal the presence of V4+-O-Mo6+ linkages assessing the degree of spin density transfer from paramagnetic V4+ species to proximal oxo-bridged Mo6+ metal ions. The dimer species were prepared by adsorption of Mo(CO)6 in the pores of SAPO-5, followed by thermal decomposition and oxidation and subsequent grafting of anhydrous VCl4(g) followed by hydrolysis and dehydration. The metal species react with SAPO protons during the exchange process and generate new Lewis acid sites, which act as redox centers. X- and Q-band EPR and HYSCORE experiments have been employed to monitor the local environment of V4+ species obtaining direct evidence for spin delocalization over 27Al, 31P, 95Mo, and 97Mo nuclei, demonstrating the presence of bimetallic V-O-Mo well-defined structures.
Collapse
Affiliation(s)
- Yu-Kai Liao
- Department
of Chemistry and NIS Centre of Excellence, University of Turin, via Giuria 9, 10125 Torino, Italy
- Felix
Bloch Institute for Solid State Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - Valeria Lagostina
- Department
of Chemistry and NIS Centre of Excellence, University of Turin, via Giuria 9, 10125 Torino, Italy
| | - Enrico Salvadori
- Department
of Chemistry and NIS Centre of Excellence, University of Turin, via Giuria 9, 10125 Torino, Italy
| | - Martin Hartmann
- Erlangen
Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Poeppl
- Felix
Bloch Institute for Solid State Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - Mario Chiesa
- Department
of Chemistry and NIS Centre of Excellence, University of Turin, via Giuria 9, 10125 Torino, Italy
| |
Collapse
|
25
|
Darkwah WK, Appiagyei AB, Puplampu JB, Otabil Bonsu J. Mechanistic Understanding of the Use of Single-Atom and Nanocluster Catalysts for Syngas Production via Partial Oxidation of Methane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37315185 DOI: 10.1021/acs.langmuir.2c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-atom and nanocluster catalysts presenting potent catalytic activity and excellent stability are used in high-temperature applications such as in structural composites, electrical devices, and catalytic chemical reactions. Recently, more attention has been drawn to application of these materials in clean fuel processing based on oxidation in terms of recovery and purification. The most popular media for catalytic oxidation reactions include gas phases, pure organic liquid phases, and aqueous solutions. It has been proven from the literature that catalysts are frequently selected as the finest in regulating organic wastewater, solar energy utilization, and environmental treatment applications in most catalytic oxidation of methane vis-à-vis photons and in environmental treatment applications. Single-atom and nanocluster catalysts have been engineered and applied in catalytic oxidations considering metal-support interactions and mechanisms facilitating catalytic deactivation. In this review, the present improvements on engineering single-atom and nano-catalysts are discussed. In detail, we summarize structure modification strategies, catalytic mechanisms, methods of synthesis, and application of single-atom and nano-catalysts for partial oxidation of methane (POM). We also present the catalytic performance of various atoms in the POM reaction. Full knowledge of the use of remarkable POM vis-à-vis the excellent structure is revealed. Based on the review conducted on single-atom and nanoclustered catalysts, we conclude their viability for POM reactions; however, the catalyst design must be carefully considered not only for isolating the individual influences from the active metal and support but also for incorporating the interactions of these components.
Collapse
Affiliation(s)
- Williams Kweku Darkwah
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales Sydney, Kensington, Sydney, New South Wales 2052, Australia
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 233, Ghana
| | - Alfred Bekoe Appiagyei
- Department of Chemical and Biological Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Joshua B Puplampu
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 233, Ghana
| | - Jacob Otabil Bonsu
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales Sydney, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
26
|
Kandathil V, Manoj N. Advances in CO 2 utilization employing anisotropic nanomaterials as catalysts: a review. Front Chem 2023; 11:1175132. [PMID: 37304687 PMCID: PMC10248019 DOI: 10.3389/fchem.2023.1175132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Anisotropic nanomaterials are materials with structures and properties that vary depending on the direction in which they are measured. Unlike isotropic materials, which exhibit uniform physical properties in all directions, anisotropic materials have different mechanical, electrical, thermal, and optical properties in different directions. Examples of anisotropic nanomaterials include nanocubes, nanowires, nanorods, nanoprisms, nanostars, and so on. These materials have unique properties that make them useful in a variety of applications, such as electronics, energy storage, catalysis, and biomedical engineering. One of the key advantages of anisotropic nanomaterials is their high aspect ratio, which refers to the ratio of their length to their width, which can enhance their mechanical and electrical properties, making them suitable for use in nanocomposites and other nanoscale applications. However, the anisotropic nature of these materials also presents challenges in their synthesis and processing. For example, it can be difficult to align the nanostructures in a specific direction to impart modulation of a specific property. Despite these challenges, research into anisotropic nanomaterials continues to grow, and scientists are working to develop new synthesis methods and processing techniques to unlock their full potential. Utilization of carbon dioxide (CO2) as a renewable and sustainable source of carbon has been a topic of increasing interest due to its impact on reducing the level of greenhouse gas emissions. Anisotropic nanomaterials have been used to improve the efficiency of CO2 conversion into useful chemicals and fuels using a variety of processes such as photocatalysis, electrocatalysis, and thermocatalysis. More study is required to improve the usage of anisotropic nanomaterials for CO2 consumption and to scale up these technologies for industrial use. The unique properties of anisotropic nanomaterials, such as their high surface area, tunable morphology, and high activity, make them promising catalysts for CO2 utilization. This review article discusses briefly about various approaches towards the synthesis of anisotropic nanomaterials and their applications in CO2 utilization. The article also highlights the challenges and opportunities in this field and the future direction of research.
Collapse
|
27
|
Tian Y, Deng D, Xu L, Li M, Chen H, Wu Z, Zhang S. Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction: From Catalyst Design to Device Setup. NANO-MICRO LETTERS 2023; 15:122. [PMID: 37160560 PMCID: PMC10169199 DOI: 10.1007/s40820-023-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 05/11/2023]
Abstract
An environmentally benign, sustainable, and cost-effective supply of H2O2 as a rapidly expanding consumption raw material is highly desired for chemical industries, medical treatment, and household disinfection. The electrocatalytic production route via electrochemical oxygen reduction reaction (ORR) offers a sustainable avenue for the on-site production of H2O2 from O2 and H2O. The most crucial and innovative part of such technology lies in the availability of suitable electrocatalysts that promote two-electron (2e-) ORR. In recent years, tremendous progress has been achieved in designing efficient, robust, and cost-effective catalyst materials, including noble metals and their alloys, metal-free carbon-based materials, single-atom catalysts, and molecular catalysts. Meanwhile, innovative cell designs have significantly advanced electrochemical applications at the industrial level. This review summarizes fundamental basics and recent advances in H2O2 production via 2e--ORR, including catalyst design, mechanistic explorations, theoretical computations, experimental evaluations, and electrochemical cell designs. Perspectives on addressing remaining challenges are also presented with an emphasis on the large-scale synthesis of H2O2 via the electrochemical route.
Collapse
Affiliation(s)
- Yuhui Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
| | - Daijie Deng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Meng Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Hao Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhenzhen Wu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
28
|
Hou Q, Liu K, Al-Maksoud W, Huang Y, Ding D, Lei Y, Zhang Y, Lin B, Zheng L, Liu M, Basset JM, Chen Y. Atomically Dispersed NiN x Site with High Oxygen Electrocatalysis Performance Facilely Produced via a Surface Immobilization Strategy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16809-16817. [PMID: 36972197 DOI: 10.1021/acsami.3c01228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonprecious-metal heterogeneous catalysts with atomically dispersed active sites demonstrated high activity and selectivity in different reactions, and the rational design and large-scale preparation of such catalysts are of great interest but remain a huge challenge. Current approaches usually involve extremely high-temperature and tedious procedures. Here, we demonstrated a straightforward and scalable preparation strategy. In two simple steps, the atomically dispersed Ni electrocatalyst can be synthesized in a tens grams scale with quantitative yield under mild conditions, and the active Ni sites were produced by immobilizing preorganized NiNx complex on the substrate surface via organic thermal reactions. This catalyst exhibits excellent catalysis performances in both oxygen evolution and reduction reactions. It also exhibited tunable catalysis activity, high catalysis reproducibility, and high stability. The atomically dispersed NiNx sites are tolerant at high Ni concentration, as the random reactions and metal nanoparticle formation that generally occurred at high temperatures were avoided. This strategy illustrated a practical and green method for the industrial manufacture of nonprecious-metal single-site catalysts with a predictable structure.
Collapse
Affiliation(s)
- Qiankun Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Kang Liu
- School of Physics and Electronic, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Walid Al-Maksoud
- Catalysis Centre, PSE, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yuchang Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - De Ding
- Shaanxi Electric Power Research Institute, Xi'an, Shanxi 710054, People's Republic of China
| | - Yongpeng Lei
- Powder Metallurgy Research Institute, Central South University, Changsha, Hunan 410083, China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Chinese Academy of Science, Institute of High Energy Physics, Beijing 100049, People's Republic of China
| | - Min Liu
- School of Physics and Electronic, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Jean-Marie Basset
- Catalysis Centre, PSE, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| |
Collapse
|
29
|
Yuan B, Tang SY, Zhou S. Size Effects in Gas-phase C-H Activation. Chemphyschem 2023; 24:e202200769. [PMID: 36420565 DOI: 10.1002/cphc.202200769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
The gas-phase clusters reaction permits addressing fundamental aspects of the challenges related to C-H activation. The size effect plays a key role in the activation processes as it may substantially affect both the reactivity and selectivity. In this paper, we reviewed the size effect related to the hydrocarbon oxidation by early transition metal oxides and main group metal oxides, methane activation mediated by late transition metals. Based on mass-spectrometry experiments in conjunction with quantum chemical calculations, mechanistic discussions were reviewed to present how and why the size greatly regulates the reactivity and product distribution.
Collapse
Affiliation(s)
- Bowei Yuan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China.,Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| | - Shi-Ya Tang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, P. R. China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China.,Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| |
Collapse
|
30
|
Chen Z, Li J, Meng L, Li J, Hao Y, Jiang T, Yang X, Li Y, Liu ZP, Gong M. Ligand vacancy channels in pillared inorganic-organic hybrids for electrocatalytic organic oxidation with enzyme-like activities. Nat Commun 2023; 14:1184. [PMID: 36864050 PMCID: PMC9981682 DOI: 10.1038/s41467-023-36830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Simultaneously achieving abundant and well-defined active sites with high selectivity has been one of the ultimate goals for heterogeneous catalysis. Herein, we construct a class of Ni hydroxychloride-based inorganic-organic hybrid electrocatalysts with the inorganic Ni hydroxychloride chains pillared by the bidentate N-N ligands. The precise evacuation of N-N ligands under ultrahigh-vacuum forms ligand vacancies while partially retaining some ligands as structural pillars. The high density of ligand vacancies forms the active vacancy channel with abundant and highly-accessible undercoordinated Ni sites, exhibiting 5-25 fold and 20-400 fold activity enhancement compared to the hybrid pre-catalyst and standard β-Ni(OH)2 for the electrochemical oxidation of 25 different organic substrates, respectively. The tunable N-N ligand can also tailor the sizes of the vacancy channels to significantly impact the substrate configuration leading to unprecedented substrate-dependent reactivities on hydroxide/oxide catalysts. This approach bridges heterogenous and homogeneous catalysis for creating efficient and functional catalysis with enzyme-like properties.
Collapse
Affiliation(s)
- Zhe Chen
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jili Li
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Lingshen Meng
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jianan Li
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yaming Hao
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Tao Jiang
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Xuejing Yang
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yefei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Zhi-Pan Liu
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
31
|
Heidarpour M, Kiani M, Anaraki-Ardakani H, Rezaei P, Ghaleh SP, Ahmadi R, Maleki M. New magnetic nanocomposite Fe 3O 4@Saponin/Cu(II) as an effective recyclable catalyst for the synthesis of aminoalkylnaphthols via Betti reaction. Steroids 2023; 191:109170. [PMID: 36587779 DOI: 10.1016/j.steroids.2022.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
In this research, a new magnetic nanocomposite Fe3O4@Saponin/Cu(II) based on quillaja saponin was prepared and the catalyst structure was characterized thoroughly using FT-IR, EDS, TGA, XRD, VSM, HR-TEM, SEM, ICP, BET analyzes. The catalyst prepared in the three-component synthesis of several Betti bases, 1-(α-aminoalkyl)naphthols, under environmentally friendly conditions was used. The advantage of this reaction is the high efficiency of the products and the short reaction time. Furthermore, Fe3O4@Saponin/Cu(II) nano-catalyst is recoverable magnetically and is reusable for other processes with no reduction in its activity.
Collapse
Affiliation(s)
- Majid Heidarpour
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Marziyeh Kiani
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | | | - Parizad Rezaei
- Department of Chemical Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran
| | - Saeed Parvizi Ghaleh
- Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology, Tabriz, Iran
| | - Reza Ahmadi
- Department of Environmental Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Maleki
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
32
|
Din NU, Le D, Rahman TS. Computational screening of chemically active metal center in coordinated dipyridyl tetrazine network. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:154001. [PMID: 36799354 DOI: 10.1088/1361-648x/acb8f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Creation, stabilization, characterization, and control of single transition metal (TM) atoms may lead to significant advancement of the next-generation catalyst. Metal organic network (MON) in which single TM atoms are coordinated and separated by organic ligands is a promising class of material that may serve as a single atom catalyst. Our density functional theory-based calculations of MONs in which dipyridyl tetrazine (DPTZ) ligands coordinate with a TM atom to form linear chains leads to two types of geometries of the chains. Those with V, Cr, Mo, Fe, Co, Pt, or Pd atoms at the coordination center are planar while those with Au, Ag, Cu, or Ni are non-planar. The formation energies of the chains are high (∼2.0-7.9 eV), suggesting that these MON can be stabilized. Moreover, the calculated adsorption energies of CO and O2on the metal atom at center of the chains with the planar configuration lie in the range 1.0-3.0 eV for V, Cr, Mo, Fe, and Co at the coordination center, paving the way for future studies of CO oxidation on TM-DPTZ chains with the above five atoms at the coordination center.
Collapse
Affiliation(s)
- Naseem Ud Din
- Department of Physics, University of Central Florida, Orlando, FL, 32816, United States of America
| | - Duy Le
- Department of Physics, University of Central Florida, Orlando, FL, 32816, United States of America
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, FL, 32816, United States of America
| |
Collapse
|
33
|
Rosen AS, Vijay S, Persson KA. Free-atom-like d states beyond the dilute limit of single-atom alloys. Chem Sci 2023; 14:1503-1511. [PMID: 36794204 PMCID: PMC9906637 DOI: 10.1039/d2sc05772g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Through a data-mining and high-throughput density functional theory approach, we identify a diverse range of metallic compounds that are predicted to have transition metals with "free-atom-like" d states that are highly localized in terms of their energetic distribution. Design principles that favor the formation of localized d states are uncovered, among which we note that site isolation is often necessary but that the dilute limit, as in most single-atom alloys, is not a pre-requisite. Additionally, the majority of localized d state transition metals identified from the computational screening study exhibit partial anionic character due to charge transfer from neighboring metal species. Using CO as a representative probe molecule, we show that localized d states for Rh, Ir, Pd, and Pt tend to reduce the binding strength of CO compared to their pure elemental analogues, whereas this does not occur as consistently for the Cu binding sites. These trends are rationalized through the d-band model, which suggests that the significantly reduced d-band width results in an increased orthogonalization energy penalty upon CO chemisorption. With the multitude of inorganic solids that are predicted to have highly localized d states, the results of the screening study are likely to result in new avenues for heterogeneous catalyst design from an electronic structure perspective.
Collapse
Affiliation(s)
- Andrew S. Rosen
- Department of Materials Science and Engineering, University of California, BerkeleyBerkeleyCalifornia94720USA,Miller Institute for Basic Research in Science, University of California, BerkeleyBerkeleyCalifornia 94720USA,Materials Science Division, Lawrence Berkeley National LaboratoryBerkeleyCalifornia 94720USA
| | - Sudarshan Vijay
- Department of Materials Science and Engineering, University of California, BerkeleyBerkeleyCalifornia94720USA,Materials Science Division, Lawrence Berkeley National LaboratoryBerkeleyCalifornia 94720USA
| | - Kristin A. Persson
- Department of Materials Science and Engineering, University of California, BerkeleyBerkeleyCalifornia94720USA,Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyCalifornia 94720USA
| |
Collapse
|
34
|
Vicchio SP, Chen Z, Chapman KW, Getman RB. Computational and Experimental Characterization of the Ligand Environment of a Ni-Oxo Catalyst Supported in the Metal-Organic Framework NU-1000. J Am Chem Soc 2023; 145:2852-2859. [PMID: 36693214 DOI: 10.1021/jacs.2c10554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heterogeneous catalysts exhibit significant changes in composition due to the influence of operating conditions, and these compositional changes can have dramatic effects on catalytic performance. For traditional bulk metal heterogeneous catalysts, relationships between composition and catalytic operating conditions are well documented. However, the influence of operating conditions on the compositions of single-site heterogeneous catalysts remains largely unresolved. To address this, we report a combined computational and experimental characterization of a Ni oxo catalyst under catalytic hydrogenation conditions. Specifically, pair distribution function (PDF) analysis is combined with ab initio thermodynamic modeling to investigate ligand environments present on a Ni oxo cluster supported in the metal-organic framework NU-1000. Comparisons of the experimentally observed and simulated Ni-O coordination numbers and Ni-O, Ni···Ni, and Ni···Zr distances provide insight into the Ni ligand environment under H2 (g). These comparisons suggest significant OH and H2O content and, further, that different Ni ions within the cluster and/or NU-1000 structure may comprise subtly different numbers of these ligands. Further, the observation of significant H2O content under H2 (g) suggests that the NU-1000 support supplies H2O to the cluster. Examples of ligand environments that could lead to the observed PDFs are provided. The combination of simulations and experiments provides new insights into the ligand environment for Ni-NU-1000 catalysts that will be useful for understanding the ligand environments of other single-site Ni catalysts as well.
Collapse
Affiliation(s)
- Stephen P Vicchio
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina29634, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina29634, United States
| |
Collapse
|
35
|
Iemhoff A, Vennewald M, Palkovits R. Single-Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212015. [PMID: 36108176 PMCID: PMC10108136 DOI: 10.1002/anie.202212015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.
Collapse
Affiliation(s)
- Andree Iemhoff
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maurice Vennewald
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
37
|
Pu Y, He B, Niu Y, Liu X, Zhang B. Chemical Electron Microscopy (CEM) for Heterogeneous Catalysis at Nano: Recent Progress and Challenges. RESEARCH (WASHINGTON, D.C.) 2023; 6:0043. [PMID: 36930759 PMCID: PMC10013794 DOI: 10.34133/research.0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/18/2022] [Indexed: 01/12/2023]
Abstract
Chemical electron microscopy (CEM), a toolbox that comprises imaging and spectroscopy techniques, provides dynamic morphological, structural, chemical, and electronic information about an object in chemical environment under conditions of observable performance. CEM has experienced a revolutionary improvement in the past years and is becoming an effective characterization method for revealing the mechanism of chemical reactions, such as catalysis. Here, we mainly address the concept of CEM for heterogeneous catalysis in the gas phase and what CEM could uniquely contribute to catalysis, and illustrate what we can know better with CEM and the challenges and future development of CEM.
Collapse
Affiliation(s)
- Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Bowen He
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
38
|
Wang Y, Zhu Y, Zhu X, Shi J, Ren X, Zhang L, Li S. Selective Hydrogenation of CO 2 to CH 3OH on a Dynamically Magic Single-Cluster Catalyst: Cu 3/MoS 2/Ag(111). ACS Catal 2022. [DOI: 10.1021/acscatal.2c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yawan Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yandi Zhu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaowen Zhu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Jinlei Shi
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
- School of Physics and Electrical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Xiaoyan Ren
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shunfang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Xu H, Zhang LX, Xing Y, Yin YY, Tang B, Bie LJ. Self-assembled mononuclear complexes: open metal sites and inverse dimension-dependent catalytic activity for the Knoevenagel condensation and CO 2 cycloaddition. NANOSCALE 2022; 14:15897-15907. [PMID: 36268659 DOI: 10.1039/d2nr04103k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To lessen the greenhouse effect, measures such as improving the recovery of crude oil and converting carbon dioxide (CO2) into valuable chemicals are necessary to create a sustainable low-carbon future. To this end, the development of efficient new oil-displacing agents and CO2 conversion has aroused great interest in both academia and industry. The Knoevenagel condensation and CO2 cycloaddition are the key reactions to solve the above problems. Four Cu- or Zn-based molecular complexes built from different ligands possessing hydrophilic-hydrophobic layers and different dimensionalities were chosen as solid catalysts for this study. Structural analysis revealed the presence of hydrophilic-hydrophobic layers and open metal sites in the low-dimensional complexes. To obtain deep insight into the reaction mechanism, first-principles density functional theory (DFT) calculations were carried out. These calculations confirmed that in the Knoevenagel condensation reaction, the final formation of benzylidenemalononitrile is the rate-determining step (an energy barrier (ΔE) value of 73.2 kJ mol-1). The zero-dimensional (0D) Cu molecular complex with unsaturated metal centers, hydrophilic and hydrophobic layers, exhibited higher catalytic activity (yield: 100%, temperature: room temperature, and time: 2 h) compared with one- and two-dimensional Cu complexes. In the presence of a 0D Zn complex co-catalyzed with Br- in the CO2 cycloaddition reaction, the ΔE value reduces to 35.5 kJ mol-1 for the ring opening of styrene oxide (SO), which is significantly lower than Br- catalyzed (80.9 kJ mol-1) reactions. The roles of unsaturated metal centers, hydrophilic-hydrophobic layers and dimensionality in the Knoevenagel condensation and CO2 cycloaddition were explained in the results of structure-activity relationships.
Collapse
Affiliation(s)
- Heng Xu
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Le-Xi Zhang
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Yue Xing
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Yan-Yan Yin
- Department of Environmental Science and Engineering, Nankai University Binhai College, Tianjin 300270, China.
| | - Bo Tang
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Li-Jian Bie
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
40
|
Liu Y, Zhang W, Zheng W. Surface chemistry of MXene quantum dots: Virus mechanism-inspired mini-lab for catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Liu H, Zou H, Wang M, Dong H, Wang D, Li F, Dai H, Song T, Wei S, Ji Y, Wang C, Duan L. Single-Site Heterogeneous Organometallic Ir Catalysts Embedded on Graphdiyne: Structural Manipulation Beyond the Carbon Support. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203442. [PMID: 36156407 DOI: 10.1002/smll.202203442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Accurate control over the coordination circumstances of single-atom catalysts (SACs) is decisive to their intrinsic activity. Here, two single-site heterogeneous organometallic catalysts (SHOCs), Cp*Ir-L/GDY (L = OH- and Cl- ; Cp* = pentamethylcyclopentadienyl), with the fine-tuned local coordination and electronic structure of Ir sites, are constructed by anchoring Cp*Ir complexes on graphdiyne (GDY) matrix via a one-pot procedure. The spectroscopic studies and theoretical calculations indicate that the Ir atoms in Cp*Ir-Cl/GDY and Cp*Ir-OH/GDY have a much higher oxidation state than Ir in the SAC Ir/GDY. As a proof-of-principle demonstration, the GDY-supported SHOCs are used for formic acid dehydrogenation, which display a fivefold enhancement of catalytic activity compared with SAC Ir/GDY. The kinetic isotope effect and in situ Fourier-transform infrared studies reveal that the rate-limiting step is the β-hydride elimination process, and Cp* on the Ir site accelerates the β-hydride elimination reaction. The GDY-supported SHOCs integrate the merits of both SACs and molecular catalysts, wherein the isolated Ir anchored on GDY echoes with SACs' behavior, and the Cp* ligand enables precise structural and electronic regulation like molecular catalysts. The scheme of SHOCs adds a degree of freedom in accurate regulation of the local structure, the electronic property, and therefore the catalytic performance of single-atom catalysts.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Haiyuan Zou
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hongliang Dong
- Center for High-Pressure Science and Technology Advanced Research, Pudong, Shanghai, 201203, P. R. China
| | - Dan Wang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fan Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hao Dai
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Tao Song
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shuting Wei
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510075, P. R. China
| | - Lele Duan
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
42
|
Bisio C, Carniato F, Guidotti M. The Control of the Coordination Chemistry for the Genesis of Heterogeneous Catalytically Active Sites in Oxidation Reactions**. Angew Chem Int Ed Engl 2022; 61:e202209894. [DOI: 10.1002/anie.202209894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Tecnologie Avanzate Università del Piemonte Orientale Via T. Michel 15100 Alessandria Italy
- CNR-Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” Via C. Golgi 19 20133 Milano Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Tecnologie Avanzate Università del Piemonte Orientale Via T. Michel 15100 Alessandria Italy
| | - Matteo Guidotti
- CNR-Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” Via C. Golgi 19 20133 Milano Italy
| |
Collapse
|
43
|
Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Photocatalytic Reactions on the Single-Site Heterogeneous Catalysts. Catal Letters 2022. [DOI: 10.1007/s10562-022-04149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
Farberow CA, Wegener EC, Kumar A, Miller JH, Dupuis DP, Kim S, Ruddy DA. Connecting cation site location to alkane dehydrogenation activity in Ni/BEA catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. Isolating Single and Few Atoms for Enhanced Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201796. [PMID: 35577552 DOI: 10.1002/adma.202201796] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Indexed: 05/27/2023]
Abstract
Atomically dispersed metal catalysts have triggered great interest in the field of catalysis owing to their unique features. Isolated single or few metal atoms can be anchored on substrates via chemical bonding or space confinement to maximize atom utilization efficiency. The key challenge lies in precisely regulating the geometric and electronic structure of the active metal centers, thus significantly influencing the catalytic properties. Although several reviews have been published on the preparation, characterization, and application of single-atom catalysts (SACs), the comprehensive understanding of SACs, dual-atom catalysts (DACs), and atomic clusters has never been systematically summarized. Here, recent advances in the engineering of local environments of state-of-the-art SACs, DACs, and atomic clusters for enhanced catalytic performance are highlighted. Firstly, various synthesis approaches for SACs, DACs, and atomic clusters are presented. Then, special attention is focused on the elucidation of local environments in terms of electronic state and coordination structure. Furthermore, a comprehensive summary of isolated single and few atoms for the applications of thermocatalysis, electrocatalysis, and photocatalysis is provided. Finally, the potential challenges and future opportunities in this emerging field are presented. This review will pave the way to regulate the microenvironment of the active site for boosting catalytic processes.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuaiyu Jiang
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
47
|
Ligand-coordination effects on the selective hydrogenation of acetylene in single-site Pd-ligand supported catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Bisio C, Carniato F, Guidotti M. The Control of the Coordination Chemistry for the Genesis of Heterogeneous Catalytically Active Sites in Oxidation Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chiara Bisio
- University of Eastern Piedmont Amedeo Avogadro - Alessandria Campus: Universita degli Studi del Piemonte Orientale Amedeo Avogadro Sede di Alessandria DISTA Via T. Michel 15100 Alessandria ITALY
| | - Fabio Carniato
- University of Eastern Piedmont Amedeo Avogadro - Alessandria Campus: Universita degli Studi del Piemonte Orientale Amedeo Avogadro Sede di Alessandria Dipartimento di Scienze e Tecnologie Avanzate via T. Michel 15100 Alessandria ITALY
| | - Matteo Guidotti
- CNR Instute of Chemical Sciences and Technolgies Dept. Chemistry via Camillo Golgi 19 20133 Milano ITALY
| |
Collapse
|
49
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
50
|
Venkatesh A, Gioffrè D, Atterberry BA, Rochlitz L, Carnahan SL, Wang Z, Menzildjian G, Lesage A, Copéret C, Rossini AJ. Molecular and Electronic Structure of Isolated Platinum Sites Enabled by the Expedient Measurement of 195Pt Chemical Shift Anisotropy. J Am Chem Soc 2022; 144:13511-13525. [PMID: 35861681 DOI: 10.1021/jacs.2c02300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Techniques that can characterize the molecular structures of dilute surface species are required to facilitate the rational synthesis and improvement of Pt-based heterogeneous catalysts. 195Pt solid-state NMR spectroscopy could be an ideal tool for this task because 195Pt isotropic chemical shifts and chemical shift anisotropy (CSA) are highly sensitive probes of the local chemical environment and electronic structure. However, the characterization of Pt surface-sites is complicated by the typical low Pt loadings that are between 0.2 and 5 wt% and broadening of 195Pt solid-state NMR spectra by CSA. Here, we introduce a set of solid-state NMR methods that exploit fast MAS and indirect detection using a sensitive spy nucleus (1H or 31P) to enable the rapid acquisition of 195Pt MAS NMR spectra. We demonstrate that high-resolution wideline 195Pt MAS NMR spectra can be acquired in minutes to a few hours for a series of molecular and single-site Pt species grafted on silica with Pt loading of only 3-5 wt%. Low-power, long-duration, sideband-selective excitation, and saturation pulses are incorporated into t1-noise eliminated dipolar heteronuclear multiple quantum coherence, perfect echo resonance echo saturation pulse double resonance, or J-resolved pulse sequences. The complete 195Pt MAS NMR spectrum is then reconstructed by recording a series of 1D NMR spectra where the offset of the 195Pt pulses is varied in increments of the MAS frequency. Analysis of the 195Pt MAS NMR spectra yields the 195Pt chemical shift tensor parameters. Zeroth order approximation density functional theory calculations accurately predict 195Pt CS tensor parameters. Simple and predictive orbital models relate the CS tensor parameters to the Pt electronic structure and coordination environment. The methodology developed here paves the way for the detailed structural and electronic analysis of dilute platinum surface-sites.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Domenico Gioffrè
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Scott L Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Georges Menzildjian
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Anne Lesage
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|