1
|
Zhang D, Robinson K, Washington I. C20D3-Vitamin A Prevents Retinal Pigment Epithelium Atrophic Changes in a Mouse Model. Transl Vis Sci Technol 2021; 10:8. [PMID: 34878528 PMCID: PMC8662574 DOI: 10.1167/tvst.10.14.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose This study aimed to evaluate the contribution of vitamin A dimerization to retinal pigment epithelium (RPE) atrophic changes. Leading causes of irreversible blindness, including Stargardt disease and age-related macular degeneration (AMD), occur as a result of atrophic changes in RPE. The cause of the RPE atrophic changes is not apparent. During the vitamin A cycle, vitamin A dimerizes, leading to vitamin A cycle byproducts, such as vitamin A dimers, in the RPE. Methods To study the consequence of vitamin A dimerization to RPE atrophic changes, we used a rodent model with accelerated vitamin A dimerization, Abca4−/−/Rdh8−/− mice, and the vitamin A analog C20D3-vitamin A to selectively ameliorate the accelerated rate of vitamin A dimerization. Results We show that ameliorating the rate of vitamin A dimerization with C20D3-vitamin A mitigates pathological changes observed in the prodromal phase of the most prevalent retinal degenerative diseases, including fundus autofluorescence changes, dark adaptation delays, and signature RPE atrophic changes. Conclusions Data demonstrate that the dimerization of vitamin A during the vitamin A cycle is sufficient alone to cause the prerequisite RPE atrophic changes thought to be responsible for the leading causes of irreversible blindness and that correcting the dimerization rate with C20D3-vitamin A may be sufficient to prevent the RPE atrophic changes. Translational Relevance Preventing the dimerization of vitamin A with the vitamin A analog C20D3-vitamin A may be sufficient to alter the clinical course of the most prevalent forms of blindness, including Stargardt disease and age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Kiera Robinson
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY, USA.,biOOrg3.14, Buffalo, WY, USA
| |
Collapse
|
2
|
Zhang D, Mihai DM, Washington I. Vitamin A cycle byproducts explain retinal damage and molecular changes thought to initiate retinal degeneration. Biol Open 2021; 10:273577. [PMID: 34842275 PMCID: PMC8649638 DOI: 10.1242/bio.058600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
In the most prevalent retinal diseases, including Stargardt disease and age-related macular degeneration (AMD), byproducts of vitamin A form in the retina abnormally during the vitamin A cycle. Despite evidence of their toxicity, whether these vitamin A cycle byproducts contribute to retinal disease, are symptoms, beneficial, or benign has been debated. We delivered a representative vitamin A byproduct, A2E, to the rat's retina and monitored electrophysiological, histological, proteomic, and transcriptomic changes. We show that the vitamin A cycle byproduct is sufficient alone to damage the RPE, photoreceptor inner and outer segments, and the outer plexiform layer, cause the formation of sub-retinal debris, alter transcription and protein synthesis, and diminish retinal function. The presented data are consistent with the theory that the formation of vitamin A byproducts during the vitamin A cycle is neither benign nor beneficial but may be sufficient alone to cause the most prevalent forms of retinal disease. Retarding the formation of vitamin A byproducts could potentially address the root cause of several retinal diseases to eliminate the threat of irreversible blindness for millions of people. Summary: During the vitamin A cycle, byproducts of vitamin A form in the eye. Using a rat model, we show that the byproducts alone can explain several retinal derangements observed in the prodromal phase of human retinal disease. Retarding the formation of these byproducts may address the root cause of the most prevalent retinal diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Doina M Mihai
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA.,biOOrg3.14, Buffalo, WY 82834, USA
| |
Collapse
|
3
|
Vitamin A cycle byproducts impede dark adaptation. J Biol Chem 2021; 297:101074. [PMID: 34391781 PMCID: PMC8427233 DOI: 10.1016/j.jbc.2021.101074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Impaired dark adaptation (DA), a defect in the ability to adjust to dimly lit settings, is a universal hallmark of aging. However, the mechanisms responsible for impaired DA are poorly understood. Vitamin A byproducts, such as vitamin A dimers, are small molecules that form in the retina during the vitamin A cycle. We show that later in life, in the human eye, these byproducts reach levels commensurate with those of vitamin A. In mice, selectively inhibiting the formation of these byproducts, with the investigational drug C20D3-vitamin A, results in faster DA. In contrast, acutely increasing these ocular byproducts through exogenous delivery leads to slower DA, with otherwise preserved retinal function and morphology. Our findings reveal that vitamin A cycle byproducts alone are sufficient to cause delays in DA and suggest that they may contribute to universal age-related DA impairment. Our data further indicate that the age-related decline in DA may be tractable to pharmacological intervention by C20D3-vitamin A.
Collapse
|
4
|
Turque O, Greer A, Wauchope OR. Synthetic feasibility of oxygen-driven photoisomerizations of alkenes and polyenes. Org Biomol Chem 2020; 18:9181-9190. [PMID: 33155598 DOI: 10.1039/d0ob01993c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review describes O2-dependent photoreactions for possible routes to double-bond isomerizations. E,Z-isomerizations triggered by O2 and visible light are a new area of potential synthetic interest. The reaction involves the reversible addition of O2 to form a peroxy intermediate with oxygen evolution and partial regeneration of the compound as its isomer. Targeting of O2-dependent photoisomerizations also relates to a practical use of visible light, for example the improved light penetration depth for visible as opposed to UV photons in batch sensitized reactions. This review is intended to draw a link between visible-light formation of a peroxy intermediate and its dark degradation with O2 release for unsaturated compound isomerization. This review should be of interest both to photochemists and synthetic organic chemists, as it ties together mechanistic and synthetic work, drawing attention to an overlooked subject.
Collapse
Affiliation(s)
- Oliver Turque
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, USA.
| | | | | |
Collapse
|
5
|
Ellestad G, Zask A, Berova N. The enduring legacy of Koji Nakanishi's research on bioorganic chemistry and natural products. Part 1: Isolation, structure determination and mode of action. Chirality 2020; 32:632-651. [PMID: 32157754 DOI: 10.1002/chir.23214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
In this brief review on Koji Nakanishi's remarkable career in natural products chemistry, we have highlighted a number of his accomplishments that illustrate the broad diversity of his interests. These include the isolation, structure determination, and biological mechanism of action of many natural products including the triterpenoid pristimerin; the diterpenoid ginkgolides; insect and crustacean molting hormones; phytoalexins; the toxic red tide principle brevetoxin; the vanadium tunicate pigments; philanthotoxin from killer wasps; antisickling agents; mitomycin DNA adducts; insect antifeedants; a mitotic hormone, the small molecule fish attractants from the sea anemone; new isolation and purification technologies; molecular chemistry of vision; age-related macular degeneration; and the development of the exciton circular dichroism (CD) chirality method for microscale determination of absolute configuration of natural products and chirality of other chiral molecules and supramolecular assembly.
Collapse
Affiliation(s)
- George Ellestad
- Department of Chemistry, Columbia University, New York, New York
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, New York
| | - Nina Berova
- Department of Chemistry, Columbia University, New York, New York
| |
Collapse
|
6
|
Foti MC, Amorati R, Baschieri A, Rocco C. Singlet oxygen quenching- and chain-breaking antioxidant-properties of a quercetin dimer able to prevent age-related macular degeneration. Biophys Chem 2018; 243:17-23. [PMID: 30352336 DOI: 10.1016/j.bpc.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 01/07/2023]
Abstract
A dimer of quercetin prepared through a Mannich reaction protects pyridinium bisretinoid A2E from photooxidation at 430 nm in aqueous medium at pH 7.4. In the presence of light and O2, A2E is quickly attacked by 1O2 produced in situ (by excited A2E) to give nonaoxirane and other oxygenated compounds which can be involved in diseases of the macula. Peroxyl radicals might have only a marginal role on the photooxidation of A2E. The dimer is actually a potent quencher of 1O2 with a rate constant kQ of 8.5 × 108 M-1 s-1 in methanol at room temperature. On the other hand, its antioxidant abilities against ROO· radicals are quite limited since kROO· = 7.3 × 105 M-1 s-1 (in buffer solution at pH 7.4), the value being essentially identical to that of quercetin. The quenching of 1O2 by the dimer is therefore the main reason for the A2E protection and prevention of age-related macular degeneration.
Collapse
Affiliation(s)
- Mario C Foti
- Istituto di Chimica Biomolecolare del CNR, via P. Gaifami 18, I-95126 Catania, Italy.
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Andrea Baschieri
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Concetta Rocco
- Istituto di Chimica Biomolecolare del CNR, via P. Gaifami 18, I-95126 Catania, Italy
| |
Collapse
|
7
|
Yildirim T, Matthäus C, Press AT, Schubert S, Bauer M, Popp J, Schubert US. Uptake of Retinoic Acid-Modified PMMA Nanoparticles in LX-2 and Liver Tissue by Raman Imaging and Intravital Microscopy. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/25/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Turgay Yildirim
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Christian Matthäus
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
| | - Adrian T. Press
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Jena University Hospital; Department of Anesthesiology and Intensive Care Medicine; Am Klinikum 1 07747 Jena Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Department of Pharmaceutical Technology; Institute of Pharmacy; Friedrich Schiller University Jena; Otto-Schott-Str. 41 07745 Jena Germany
| | - Michael Bauer
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Jena University Hospital; Department of Anesthesiology and Intensive Care Medicine; Am Klinikum 1 07747 Jena Germany
| | - Jürgen Popp
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
8
|
Yildirim I, Yildirim T, Kalden D, Festag G, Fritz N, Weber C, Schubert S, Westerhausen M, Schubert US. Retinol initiated poly(lactide)s: stability upon polymerization and nanoparticle preparation. Polym Chem 2017. [DOI: 10.1039/c7py00881c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of retinol initiated polylactide (PLA) by ring opening polymerization (ROP) of l-lactide via in situ calcium alkoxide formation with all-trans-retinol and Ca[N(SiMe3)2]2(THF)2 is described.
Collapse
Affiliation(s)
- Ilknur Yildirim
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Turgay Yildirim
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Diana Kalden
- Institute of Inorganic and Analytical Chemistry (IAAC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Grit Festag
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Nicole Fritz
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Pharmacy
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry (IAAC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
9
|
Washington I, Saad L. The Rate of Vitamin A Dimerization in Lipofuscinogenesis, Fundus Autofluorescence, Retinal Senescence and Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:347-53. [PMID: 26427431 DOI: 10.1007/978-3-319-17121-0_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration.
Collapse
Affiliation(s)
- Ilyas Washington
- Department of Ophthalmology, Columbia University Medical Center, 160 Fort Washington Ave, Eye Research, 10032, New York, NY, USA.
| | - Leonide Saad
- Alkeus Pharmaceuticals, Inc., 02210, Boston, MA, USA.
| |
Collapse
|
10
|
Penn J, Mihai DM, Washington I. Morphological and physiological retinal degeneration induced by intravenous delivery of vitamin A dimers in rabbits. Dis Model Mech 2014; 8:131-8. [PMID: 25504631 PMCID: PMC4314778 DOI: 10.1242/dmm.017194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The eye uses vitamin A as a cofactor to sense light and, during this process, some vitamin A molecules dimerize, forming vitamin A dimers. A striking chemical signature of retinas undergoing degeneration in major eye diseases such as age-related macular degeneration (AMD) and Stargardt disease is the accumulation of these dimers in the retinal pigment epithelium (RPE) and Bruch's membrane (BM). However, it is not known whether dimers of vitamin A are secondary symptoms or primary insults that drive degeneration. Here, we present a chromatography-free method to prepare gram quantities of the vitamin A dimer, A2E, and show that intravenous administration of A2E to the rabbit results in retinal degeneration. A2E-damaged photoreceptors and RPE cells triggered inflammation, induced remolding of the choroidal vasculature and triggered a decline in the retina's response to light. Data suggest that vitamin A dimers are not bystanders, but can be primary drivers of retinal degeneration. Thus, preventing dimer formation could be a preemptive strategy to address serious forms of blindness.
Collapse
Affiliation(s)
- Jackie Penn
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Doina M Mihai
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA.
| |
Collapse
|
11
|
Mihai DM, Washington I. Vitamin A dimers trigger the protracted death of retinal pigment epithelium cells. Cell Death Dis 2014; 5:e1348. [PMID: 25058422 PMCID: PMC4123103 DOI: 10.1038/cddis.2014.314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/24/2014] [Accepted: 05/29/2014] [Indexed: 01/05/2023]
Abstract
Cellular events responsible for the initiation of major neurodegenerative disorders of the eye leading to blindness, including age-related macular degeneration, Stargardt and Best diseases, are poorly understood. Accumulation of vitamin A dimers, such as N-retinylidene-N-retinylethanolamine (A2E) in the retinal pigment epithelium (RPE), is one of the earliest measurable events preceding retinal degeneration. However, the extent to which these dimers contribute to tissue degeneration is not clear. To determine if A2E could trigger morphological changes associated with the degenerating RPE and subsequent cell death, we evaluated its toxicity to cultured human RPE cells (ARPE-19). We show that A2E triggered the accumulation of debris followed by a protracted death. A2E was up to ≈ 14-fold more toxic than its precursor, retinaldehyde. Measurements reveal that the concentration of A2E in the aged human eye could exceed the concentration of all other retinoids, opening the possibility of A2E-triggered cell death by several reported mechanisms. Findings suggest that accumulation of vitamin A dimers such as A2E in the human eye might be responsible for the formation of ubiquitous RPE debris, an early indication of retinal degeneration, and that preventing or reducing the accumulation of vitamin A dimers is a prudent strategy to prevent blindness.
Collapse
Affiliation(s)
- D M Mihai
- Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, USA
| | - I Washington
- Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
12
|
Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium. Proc Natl Acad Sci U S A 2014; 111:E1402-8. [PMID: 24706818 DOI: 10.1073/pnas.1400530111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (β-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of β-CD. Importantly, β-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of β-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of β-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs.
Collapse
|
13
|
Joshi D, Field J, Murphy J, Abdelrahim M, Schönherr H, Sparrow JR, Ellestad G, Nakanishi K, Zask A. Synthesis of antioxidants for prevention of age-related macular degeneration. JOURNAL OF NATURAL PRODUCTS 2013; 76:450-4. [PMID: 23346866 PMCID: PMC4069254 DOI: 10.1021/np300769c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Photooxidation of A2E may be involved in diseases of the macula, and antioxidants could serve as therapeutic agents for these diseases. Inhibitors of A2E photooxidation were prepared by Mannich reaction of the antioxidant quercetin. These compounds contain water-solubilizing amine groups, and several were more potent inhibitors of A2E photooxidation than quercetin.
Collapse
Affiliation(s)
- Dharati Joshi
- Department of Chemistry, 3000 Broadway, Columbia University, New York, NY 10027, United States
| | - James Field
- Department of Chemistry, 3000 Broadway, Columbia University, New York, NY 10027, United States
| | - John Murphy
- Department of Chemistry, 3000 Broadway, Columbia University, New York, NY 10027, United States
| | - Mohammed Abdelrahim
- Department of Chemistry, 3000 Broadway, Columbia University, New York, NY 10027, United States
| | - Heike Schönherr
- Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - George Ellestad
- Department of Chemistry, 3000 Broadway, Columbia University, New York, NY 10027, United States
| | - Koji Nakanishi
- Department of Chemistry, 3000 Broadway, Columbia University, New York, NY 10027, United States
| | - Arie Zask
- Department of Chemistry, 3000 Broadway, Columbia University, New York, NY 10027, United States
| |
Collapse
|
14
|
Ma L, Kaufman Y, Zhang J, Washington I. C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease. J Biol Chem 2010; 286:7966-7974. [PMID: 21156790 DOI: 10.1074/jbc.m110.178657] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stargardt disease, also known as juvenile macular degeneration, occurs in approximately one in 10,000 people and results from genetic defects in the ABCA4 gene. The disease is characterized by premature accumulation of lipofuscin in the retinal pigment epithelium (RPE) of the eye and by vision loss. No cure or treatment is available. Although lipofuscin is considered a hallmark of Stargardt disease, its mechanism of formation and its role in disease pathogenesis are poorly understood. In this work we investigated the effects of long-term administration of deuterium-enriched vitamin A, C20-D(3)-vitamin A, on RPE lipofuscin deposition and eye function in a mouse model of Stargardt's disease. Results support the notion that lipofuscin forms partly as a result of the aberrant reactivity of vitamin A through the formation of vitamin A dimers, provide evidence that preventing vitamin A dimerization may slow disease related, retinal physiological changes and perhaps vision loss and suggest that administration of C20-D(3)-vitamin A may be a potential clinical strategy to ameliorate clinical symptoms resulting from ABCA4 genetic defects.
Collapse
Affiliation(s)
- Li Ma
- From the Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Yardana Kaufman
- From the Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Junhua Zhang
- From the Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Ilyas Washington
- From the Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032.
| |
Collapse
|
15
|
Kaufman Y, Ma L, Washington I. Deuterium enrichment of vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. J Biol Chem 2010; 286:7958-7965. [PMID: 21075840 DOI: 10.1074/jbc.m110.178640] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Degenerative eye diseases are the most common causes of untreatable blindness. Accumulation of lipofuscin (granular deposits) in the retinal pigment epithelium (RPE) is a hallmark of major degenerative eye diseases such as Stargardt disease, Best disease, and age-related macular degeneration. The intrinsic reactivity of vitamin A leads to its dimerization and to the formation of pigments such as A2E, and is believed to play a key role in the formation of ocular lipofuscin. We sought a clinically pragmatic method to slow vitamin A dimerization as a means to elucidate the pathogenesis of macular degenerations and to develop a therapeutic intervention. We prepared vitamin A enriched with the stable isotope deuterium at carbon twenty (C20-D(3)-vitamin A). Results showed that dimerization of deuterium-enriched vitamin A was considerably slower than that of vitamin A at natural abundance as measured in vitro. Administration of C20-D(3)-vitamin A to wild-type rodents with no obvious genetic defects in vitamin A processing, slowed A2E biosynthesis. This study elucidates the mechanism of A2E biosynthesis and suggests that administration of C20-D(3)-vitamin A may be a viable, long-term approach to retard vitamin A dimerization and by extension, may slow lipofuscin deposition and the progression of common degenerative eye diseases.
Collapse
Affiliation(s)
- Yardana Kaufman
- From the Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Li Ma
- From the Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Ilyas Washington
- From the Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032.
| |
Collapse
|
16
|
Li H, Rebmann E, Øpstad CL, Schmid R, Sliwka HR, Partali V. Synthesis of a Highly Unsaturated, Stable Hydroxy Peroxide: A Yellow [lrarr2] Blue Color-Changing Carotenoid Oxidation Product with Leuco Dye Properties. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Kertesz V, Van Berkel GJ. Scanning and surface alignment considerations in chemical imaging with desorption electrospray mass spectrometry. Anal Chem 2008; 80:1027-32. [PMID: 18193892 DOI: 10.1021/ac701947d] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of surface scanning mode (raster vs unidirectional scanning) and the constancy of spray tip-to-surface and atmospheric sampling interface capillary-to-surface distances on chemical image quality using desorption electrospray ionization mass spectrometry were investigated. Unidirectional scanning was found to provide a spatially and a quantitatively more precise chemical image of the surface as compared to raster scanning. Maintaining constant spray tip-to-surface and atmospheric sampling interface capillary-to-surface distances during an imaging experiment was found to also be critical. An automation process was implemented using a custom image analysis software (HandsFree Surface Analysis) to keep these distances constant during the surface sampling experiment. Improved chemical image quality afforded through this software control was illustrated by imaging printed objects on normal copy paper.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6131, USA.
| | | |
Collapse
|
18
|
Petucci C, Diffendal J, Kaufman D, Mekonnen B, Terefenko G, Musselman B. Direct Analysis in Real Time for Reaction Monitoring in Drug Discovery. Anal Chem 2007; 79:5064-70. [PMID: 17542558 DOI: 10.1021/ac070443m] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct analysis in real time (DART) is a novel ionization technique that provides for the rapid ionization of small molecules under ambient conditions. In this study, several commercially available drugs as well as actual compounds from drug discovery research were examined by LC/UV/ESI-MS and DART interfaced to a quadrupole mass spectrometer. For most compounds, the molecular ions observed by ESI-MS were observed by DART/MS. DART/MS was also studied as a means to quickly monitor synthetic organic reactions and to obtain nearly instantaneous molecular weight confirmations of final products in drug discovery. For simple, synthetic organic transformations, the trends in the intensities of the mass spectral signals for the reactant and product obtained by DART/MS scaled closely with those of the diode array or the total ion chromatogram obtained by LC/UV/ESI-MS. In summary, DART is a new tool that complements electrospray ionization for the rapid ionization and subsequent mass spectral analysis of compounds in drug discovery.
Collapse
Affiliation(s)
- Chris Petucci
- Discovery Analytical Chemistry, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Jin CK, Yamada T, Sano S, Shiro M, Nagao Y. Stereoselective synthesis of unsymmetrical conjugated dienes and trienes utilizing silacyclobutenes. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.03.122] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Shin YS, Drolet B, Mayer R, Dolence K, Basile F. Desorption electrospray ionization-mass spectrometry of proteins. Anal Chem 2007; 79:3514-8. [PMID: 17394289 PMCID: PMC3176668 DOI: 10.1021/ac062451t] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Desorption electrospray ionization-mass spectrometry (DESI-MS) was evaluated for the detection of proteins ranging in molecular mass from 12 to 66 kDa. Proteins were uniformly deposited on a solid surface without pretreatment and analyzed with a DESI source coupled to a quadrupole ion trap mass spectrometer. DESI-MS parameters optimized for protein detection included solvent flow rate, temperature of heated capillary tube, incident and reflection angle, sheath gas pressure, and ESI voltage. Detection limits were obtained for all protein standards, and they were found to decrease with decreasing protein molecular mass: for cytochrome c (12.3 kDa) and lysozyme (14.3 kDa) a detection limit of 4 ng/mm2 was obtained; for apomyoglobin (16.9 kDa) 20 ng/mm2; for beta-lactoglobulin B (18.2 kDa) 50 ng/mm2; and for chymotrypsinogen A (25.6 kDa) 100 ng/mm2. The DESI-MS analysis of higher molecular mass proteins such as ovalbumin (44.4 kDa) and bovine serum albumin (66.4 kDa) yielded mass spectra of low signal-to-noise ratio, making their detection and molecular weight determination difficult. In this study, DESI-MS proved to be a rapid and robust method for accurate MW determination for proteins up to 17 kDa under ambient conditions. Finally, we demonstrated the DESI-MS detection of the bacteriophage MS2 capsid protein from crude samples with minimal sample preparation.
Collapse
Affiliation(s)
- Yong-Seung Shin
- Department of Chemistry, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071
| | - Barbara Drolet
- Arthropod-Borne Animal Diseases Research Laboratory, ARS, USDA, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071
| | - Richard Mayer
- Arthropod-Borne Animal Diseases Research Laboratory, ARS, USDA, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071
| | - Kurt Dolence
- School of Pharmacy, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071
| | - Franco Basile
- Department of Chemistry, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071
| |
Collapse
|
21
|
Abstract
Atmospheric pressure chemical ionization mass spectroscopy (APCI-MS) was used to examine the light-induced oxidation products of retinoic acid under conditions that favor and preclude its aggregation. We observed that in conditions that favor aggregation, i.e. in aqueous solutions, retinoic acid undergoes superoxidation to yield highly oxidized species. Oxidation is limited, however, in the absence of such communication, i.e. when the polyene is fully solvated. From a comparison of the measured MS with that obtained from chemical oxidation of retinoic acid under conditions that promote radical oxidation and singlet oxygen-mediated oxidation, we conclude that superoxidation is mediated by reactive oxygen species other than singlet oxygen.
Collapse
Affiliation(s)
- Ilyas Washington
- Department of Chemistry, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
22
|
Nyadong L, Green MD, De Jesus VR, Newton PN, Fernández FM. Reactive Desorption Electrospray Ionization Linear Ion Trap Mass Spectrometry of Latest-Generation Counterfeit Antimalarials via Noncovalent Complex Formation. Anal Chem 2007; 79:2150-7. [PMID: 17269655 DOI: 10.1021/ac062205h] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Desorption electrospray ionization mass spectrometry (DESI MS) is rapidly becoming accepted as a powerful surface characterization tool for a wide variety of samples in the open air. Besides its well-established high-throughput capabilities, a unique feature of DESI is that chemical reactions between the charged spray microdroplets and surface molecules can be exploited to enhance ionization. Here, we present a rapid screening assay for artesunate antimalarials based on reactive DESI. Artesunate is a vital therapy for Plasmodium falciparum malaria, but artesunate tablets have been counterfeited on a very large scale in SE Asia, and more recently in Africa. For this reason, faster and more sensitive screening tests are urgently needed. The proposed DESI assay is based on the formation of stable noncovalent complexes between linear alkylamines dissolved in the DESI spray solution and artesunate molecules exposed on the tablet surface. We found that, depending on amine type and concentration, a sensitivity gain of up to 170x can be obtained, in comparison to reagent-less DESI. Hexylamine (Hex), dodecylamine (DDA), and octadecylamine (ODA) produced proton-bound noncovalent complexes with gas-phase stabilities, increasing in the order [M + Hex + H]+ < [M + DDA + H]+ < [M + ODA + H]+. Tandem MS experiments revealed that complex formation occurred by hydrogen bonding between the amine nitrogen and the ether-like moieties within the artesunate lactone ring. After the reactive DESI assay was fully characterized, it was applied to a set of recently collected suspicious artesunate tablets purchased in shops and pharmacies in SE Asia. Not only did we find that these samples were counterfeits, but we also detected the presence of several wrong active ingredients. Of particular concern was the positive detection of artesunate traces in the surface of one of the samples, which we quantified with standard chromatographic techniques.
Collapse
Affiliation(s)
- Leonard Nyadong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
23
|
Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 2007; 5:2889-900. [PMID: 17081040 DOI: 10.1021/pr060346u] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular imaging of tissue by MALDI mass spectrometry is a powerful tool for visualizing the spatial distribution of constituent analytes with high molecular specificity. Although the technique is relatively young, it has already contributed to the understanding of many diverse areas of human health. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. The purpose of this review is to highlight some of the more recent technological advances that have improved the efficiency of imaging mass spectrometry for clinical applications. Advances in the way MALDI mass spectrometry is integrated with histology, improved methods for automation, and better tools for data analysis are outlined in this review. Refined top-down strategies for the identification and validation of candidate biomarkers found in tissue sections are discussed. A clinical example highlighting the application of these methods to a cohort of clinical samples is described.
Collapse
Affiliation(s)
- Pierre Chaurand
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, Nashville Tennessee 37232-8575, USA
| | | | | | | | | |
Collapse
|
24
|
Yang LM, Ding YH, Tian WQ, Sun CC. Planar carbon radical’s assembly and stabilization, a way to design spin-based molecular materials. Phys Chem Chem Phys 2007; 9:5304-14. [PMID: 17914465 DOI: 10.1039/b707898f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report the first computational study on the assembly and stabilization of a novel kind of radical, i.e., the planar tetracoordinate carbon radical CAl(4)(-). Based on the 6-31+G(d)-UB3LYP, UMP2 and UCCSD(T) calculations on charged [D(CAl(4))M](q-), saturated [D(CAl(4))M(n)] and extended (CpM)(p)(CAl(4))(q) sandwich-like compounds (D = CAl(4)(-), Cp(-); M = Li, Na, K, Be, Mg, Ca), we find that for the six metals, the planar radical CAl(4)(-) can only be assembled in the "hetero-decked sandwich" scheme (e.g. [CpM(CAl(4))](q-)) rather than the traditional "homo-decked sandwich" scheme. Moreover, the low and high spin states of the designed sandwich-like species are perfectly degenerate during assembly. This can be ascribed to the good spin conservation of the CAl(4)(-) deck and the good spatial separation between two CAl(4)(-) decks. Our results show for the first time that the planar radical CAl(4)(-) can act as a new type of spin-embedded "superatom" for cluster assembly when it is assisted by a rigid partner like Cp(-). The good spin-conservation of CAl(4)(-) is very promising for the future design of novel paramagnetic and diamagnetic materials. The ionic, clustering and radical interactions between the two decks are analyzed in detail, which is quite crucial to improve the insight and understanding of the nature and origin of the interactions of the "deck-core-deck" in the metallocenes. Such information is also important in understanding the radical reactions and designing novel spin-based molecular materials. The present study should be expected to enrich the flat carbon chemistry, radical chemistry, metallocene chemistry and combinatorial chemistry.
Collapse
Affiliation(s)
- Li-Ming Yang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Gu H, Chen H, Pan Z, Jackson AU, Talaty N, Xi B, Kissinger C, Duda C, Mann D, Raftery D, Cooks RG. Monitoring Diet Effects via Biofluids and Their Implications for Metabolomics Studies. Anal Chem 2007; 79:89-97. [PMID: 17194125 DOI: 10.1021/ac060946c] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of diet on metabolites found in rat urine samples has been investigated using nuclear magnetic resonance (NMR) and a new ambient ionization mass spectrometry experiment, extractive electrospray ionization mass spectrometry (EESI-MS). Urine samples from rats with three different dietary regimens were readily distinguished using multivariate statistical analysis on metabolites detected by NMR and MS. To observe the effect of diet on metabolic pathways, metabolites related to specific pathways were also investigated using multivariate statistical analysis. Discrimination is increased by making observations on restricted compound sets. Changes in diet at 24-h intervals led to predictable changes in the spectral data. Principal component analysis was used to separate the rats into groups according to their different dietary regimens using the full NMR, EESI-MS data or restricted sets of peaks in the mass spectra corresponding only to metabolites found in the urea cycle and metabolism of amino groups pathway. By contrast, multivariate analysis of variance from the score plots showed that metabolites of purine metabolism obscure the classification relative to the full metabolite set. These results suggest that it may be possible to reduce the number of statistical variables used by monitoring the biochemical variability of particular pathways. It should also be possible by this procedure to reduce the effect of diet in the biofluid samples for such purposes as disease detection.
Collapse
Affiliation(s)
- Haiwei Gu
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Van Berkel GJ, Kertesz V. Automated Sampling and Imaging of Analytes Separated on Thin-Layer Chromatography Plates Using Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2006; 78:4938-44. [PMID: 16841914 DOI: 10.1021/ac060690a] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modest modifications to the atmospheric sampling capillary of a commercial electrospray mass spectrometer and upgrades to an in-house-developed surface positioning control software package (HandsFree TLC/MS) were used to enable the automated sampling and imaging of analytes on and within large area surface substrates using desorption electrospray ionization mass spectrometry. Sampling and imaging of rhodamine dyes separated on TLC plates were used to illustrate some of the practical applications of this system. Examples are shown for user-defined spot sampling from separated bands on a TLC plate (one or multiple spots), scanning of a complete development lane (one or multiple lanes), or imaging of analyte bands in a development lane (i.e., multiple lane scans with close spacing). The post data acquisition processing and data display aspects of the software system are also discussed.
Collapse
Affiliation(s)
- Gary J Van Berkel
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, USA.
| | | |
Collapse
|
28
|
Huang MZ, Hsu HJ, Lee JY, Jeng J, Shiea J. Direct Protein Detection from Biological Media through Electrospray-Assisted Laser Desorption Ionization/Mass Spectrometry. J Proteome Res 2006; 5:1107-16. [PMID: 16674100 DOI: 10.1021/pr050442f] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here using a novel technology-electrospray-assisted laser desorption ionization (ELDI)/mass spectrometry-for the rapid and sensitive detection of the major proteins that exist in dried biological fluids (e.g., blood, tears, saliva, serum), bacterial cultures, and tissues (e.g., porcine liver and heart) under ambient conditions. This technique required essentially no sample pretreatment. The proteins in the samples were desorbed using a pulsed nitrogen laser without the assistance of an organic matrix. The desorbed protein molecules were then post-ionized through their fusion into the charged solvent droplets produced from the electrospray of an acidic methanol solution; electrospray ionization (ESI) proceeded from the newly formed droplets to generate the ESI-like protein ions. This new ionization approach combines some of the features of electrospray ionization with those of matrix-assisted laser desorption ionization (MALDI), that is, sampling of a solid surface with spatial resolution, generating ESI-like mass spectra of the desorbed proteins, and operating under ambient conditions.
Collapse
Affiliation(s)
- Min-Zong Huang
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | | | | | | | | |
Collapse
|