1
|
Nucera A, Macchia ML, Baranyai Z, Carniato F, Tei L, Ravera M, Botta M. Comprehensive Investigation of [Fe(EDTA)] --Functionalized Derivatives and their Supramolecular Adducts with Human Serum Albumin. Inorg Chem 2024; 63:12992-13004. [PMID: 38949627 DOI: 10.1021/acs.inorgchem.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, the coordination chemistry of high-spin Fe(III) complexes has increasingly attracted interest due to their potential as effective alternatives to Gd(III)-based MRI contrast agents. This paper discusses the results from our study on Fe(III) complexes with two EDTA derivatives, each modified with either one (EDTA-BOM) or two (EDTA-BOM2) benzyloxymethylene (BOM) groups on the acetic arm(s). These pendant hydrophobic groups enable the complexes to form noncovalent adducts with human serum albumin (HSA), leading to an observed increase in relaxivity due to the reduction in molecular tumbling. Our research involved detailed relaxometric measurements and analyses of both 1H and 17O NMR data at varying temperatures and magnetic field strengths, which is conducted with and without the presence of a protein. A significant finding of this study is the effect of electronic relaxation time on the effectiveness of [Fe(EDTA-BOM)(H2O)]- and [Fe(EDTA-BOM2)(H2O)]- as diagnostic MRI probes. By integrating these relaxometric results with comprehensive thermodynamic, kinetic, and electrochemical data, we have thoroughly characterized how structural modifications to the EDTA base ligand influence the properties of the complexes.
Collapse
Affiliation(s)
- Alessandro Nucera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Maria Ludovica Macchia
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, Basovizza, TS 34149, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
- Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
- Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| |
Collapse
|
2
|
Gao S, Miura Y, Sumiyoshi A, Ohno S, Ogata K, Nomoto T, Matsui M, Honda Y, Suzuki M, Iiyama M, Osada K, Aoki I, Nishiyama N. Self-Folding Macromolecular Drug Carrier for Cancer Imaging and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304171. [PMID: 38030413 PMCID: PMC10870020 DOI: 10.1002/advs.202304171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Nano-sized contrast agents (NCAs) hold potential for highly specific tumor contrast enhancement during magnetic resonance imaging. Given the quantity of contrast agents loaded into a single nano-carrier and the anticipated relaxation effects, the current molecular design approaches its limits. In this study, a novel molecular mechanism to augment the relaxation of NCAs is introduced and demonstrated. NCA formation is driven by the intramolecular self-folding of a single polymer chain that possesses systematically arranged hydrophilic and hydrophobic segments in water. Utilizing this self-folding molecular design, the relaxivity value can be elevated with minimal loading of gadolinium complexes, enabling sharp tumor imaging. Furthermore, the study reveals that this NCA can selectively accumulate into tumor tissues, offering effective anti-tumor results through gadolinium neutron capture therapy. The efficacy and versatility of this self-folding molecular design underscore its promise for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan Gao
- Laboratory for Chemistry and Life ScienceTokyo Institute of TechnologyR1‐11, 4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
- Department of Life Science and TechnologySchool of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life ScienceTokyo Institute of TechnologyR1‐11, 4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
- Department of Life Science and TechnologySchool of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
| | - Akira Sumiyoshi
- Institute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyAnagawa 4‐9‐1, InageChiba263‐8555Japan
| | - Satoshi Ohno
- Laboratory for Chemistry and Life ScienceTokyo Institute of TechnologyR1‐11, 4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
- Department of Life Science and TechnologySchool of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
| | - Keisuke Ogata
- Laboratory for Chemistry and Life ScienceTokyo Institute of TechnologyR1‐11, 4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
- Department of Life Science and TechnologySchool of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life ScienceTokyo Institute of TechnologyR1‐11, 4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
- Department of Life Science and TechnologySchool of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
- Department of Life SciencesGraduate School of Arts and SciencesThe University of Tokyo3‐8‐1 Komaba, Meguro‐kuTokyo153‐8902Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life ScienceTokyo Institute of TechnologyR1‐11, 4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life ScienceTokyo Institute of TechnologyR1‐11, 4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
- Department of Life Science and TechnologySchool of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
| | - Minoru Suzuki
- Division of Particle Radiation OncologyParticle Radiation Oncology Research CenterInstitute for Integrated Radiation and Nuclear ScienceKyoto University2–1010, Asashiro‐nishi, Kumatori‐cho, Sennan‐gunOsaka590‐0494Japan
| | - Megumi Iiyama
- Institute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyAnagawa 4‐9‐1, InageChiba263‐8555Japan
| | - Kensuke Osada
- Institute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyAnagawa 4‐9‐1, InageChiba263‐8555Japan
| | - Ichio Aoki
- Institute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyAnagawa 4‐9‐1, InageChiba263‐8555Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life ScienceTokyo Institute of TechnologyR1‐11, 4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
- Department of Life Science and TechnologySchool of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho, Midori‐kuYokohamaKanagawa226‐8503Japan
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3‐25‐14 TonomachiKawasakiKanagawa210‐0821Japan
| |
Collapse
|
3
|
Okada S, Nishimura K, Ainaya Q, Shiraishi K, Anufriev SA, Sivaev IB, Sakurai Y, Suzuki M, Yokoyama M, Nakamura H. Development of a Gadolinium-Boron-Conjugated Albumin for MRI-Guided Neutron Capture Therapy. Mol Pharm 2023; 20:6311-6318. [PMID: 37909734 DOI: 10.1021/acs.molpharmaceut.3c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Noninvasive monitoring of boron agent biodistribution is required in advance of neutron capture therapy. In this study, we developed a gadolinium-boron-conjugated albumin (Gd-MID-BSA) for MRI-guided neutron capture therapy. Gd-MID-BSA was prepared by labeling bovine serum albumin with a maleimide-functionalized gadolinium complex and a maleimide-functionalized closo-dodecaborate orthogonally. The accumulation of Gd-MID-BSA in tumors in CT26 tumor-bearing mice reached a maximum at 24 h after the injection, as confirmed by T1-based MRI and biodistribution analysis using inductively coupled plasma optical emission spectrometry. The concentrations of boron and gadolinium in the tumors exceeded the thresholds required for boron neutron capture therapy (BNCT) and gadolinium neutron capture therapy (GdNCT), respectively. The boron concentration ratios of tumor to blood and tumor to normal tissues satisfied the clinical criteria, indicating the reduction of undesired nuclear reactions of endogenous nuclei. The molar ratio of boron to gadolinium in the tumor was close to that of Gd-MID-BSA, demonstrating that the accumulation of Gd-MID-BSA in the tumor can be evaluated by MRI. Thermal neutron irradiation with Gd-MID-BSA resulted in significant suppression of tumor growth compared to the group injected with a boron-conjugated albumin without gadolinium (MID-BSA). The neutron irradiation with Gd-MID-BSA did not cause apparent side effects. These results demonstrate that the conjugation of gadolinium and boron within the albumin molecule offers a novel strategy for enhancing the therapeutic effect of BNCT and the potential of MRI-guided neutron capture therapy as a promising treatment for malignant tumors.
Collapse
Affiliation(s)
- Satoshi Okada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| | - Kai Nishimura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| | - Qarri Ainaya
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| | - Kouichi Shiraishi
- Division of Medical Engineering, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwashita, Kashiwa, Chiba 277-8567, Japan
| | - Sergey A Anufriev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494, Japan
| | - Masayuki Yokoyama
- Division of Medical Engineering, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwashita, Kashiwa, Chiba 277-8567, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
4
|
Licciardi G, Rizzo D, Salobehaj M, Massai L, Geri A, Messori L, Ravera E, Fragai M, Parigi G. Large Protein Assemblies for High-Relaxivity Contrast Agents: The Case of Gadolinium-Labeled Asparaginase. Bioconjug Chem 2022; 33:2411-2419. [PMID: 36458591 PMCID: PMC9782335 DOI: 10.1021/acs.bioconjchem.2c00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Biologics are emerging as the most important class of drugs and are used to treat a large variety of pathologies. Most of biologics are proteins administered in large amounts, either by intramuscular injection or by intravenous infusion. Asparaginase is a large tetrameric protein assembly, currently used against acute lymphoblastic leukemia. Here, a gadolinium(III)-DOTA derivative has been conjugated to asparaginase, and its relaxation properties have been investigated to assess its efficiency as a possible theranostic agent. The field-dependent 1H longitudinal relaxation measurements of water solutions of gadolinium(III)-labeled asparaginase indicate a very large increase in the relaxivity of this paramagnetic protein complex with respect to small gadolinium chelates, opening up the possibility of its use as an MRI contrast agent.
Collapse
Affiliation(s)
- Giulia Licciardi
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Domenico Rizzo
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Maria Salobehaj
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Lara Massai
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy
| | - Andrea Geri
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy
| | - Luigi Messori
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Marco Fragai
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,
| |
Collapse
|
5
|
Ning Y, Zhou IY, Roberts JD, Rotile NJ, Akam E, Barrett SC, Sojoodi M, Barr MN, Punshon T, Pantazopoulos P, Drescher HK, Jackson BP, Tanabe KK, Caravan P. Molecular MRI quantification of extracellular aldehyde pairs for early detection of liver fibrogenesis and response to treatment. Sci Transl Med 2022; 14:eabq6297. [PMID: 36130015 PMCID: PMC10189657 DOI: 10.1126/scitranslmed.abq6297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Liver fibrosis plays a critical role in the evolution of most chronic liver diseases and is characterized by a buildup of extracellular matrix, which can progress to cirrhosis, hepatocellular carcinoma, liver failure, or death. Now, there are no noninvasive methods available to accurately assess disease activity (fibrogenesis) to sensitively detect early onset of fibrosis or to detect early response to treatment. Here, we hypothesized that extracellular allysine aldehyde (LysAld) pairs formed by collagen oxidation during active fibrosis could be a target for assessing fibrogenesis with a molecular probe. We showed that molecular magnetic resonance imaging (MRI) using an extracellular probe targeting these LysAld pairs acts as a noninvasive biomarker of fibrogenesis and demonstrated its high sensitivity and specificity in detecting fibrogenesis in toxin- and dietary-induced mouse models, a cholestasis rat model of liver fibrogenesis, and in human fibrotic liver tissues. Quantitative molecular MRI was highly correlated with fibrogenesis markers and enabled noninvasive detection of early onset fibrosis and response to antifibrotic treatment, showing high potential for clinical translation.
Collapse
Affiliation(s)
- Yingying Ning
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Iris. Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jesse D. Roberts
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Eman Akam
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Stephen C. Barrett
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Matthew N. Barr
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03766, USA
| | - Tracy Punshon
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03766, USA
| | - Pamela Pantazopoulos
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Hannah K. Drescher
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03766, USA
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
6
|
Ning Y, Zhou IY, Rotile NJ, Pantazopoulos P, Wang H, Barrett SC, Sojoodi M, Tanabe KK, Caravan P. Dual Hydrazine-Equipped Turn-On Manganese-Based Probes for Magnetic Resonance Imaging of Liver Fibrogenesis. J Am Chem Soc 2022; 144:16553-16558. [PMID: 35998740 PMCID: PMC10083724 DOI: 10.1021/jacs.2c06231] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver fibrogenesis is accompanied by upregulation of lysyl oxidase enzymes, which catalyze oxidation of lysine ε-amino groups on the extracellular matrix proteins to form the aldehyde containing amino acid allysine (LysAld). Here, we describe the design and synthesis of novel manganese-based MRI probes with high signal amplification for imaging liver fibrogenesis. Rational design of a series of stable hydrazine-equipped manganese MRI probes gives Mn-2CHyd with the highest affinity and turn-on relaxivity (4-fold) upon reaction with LysAld. A dynamic PET-MRI study using [52Mn]Mn-2CHyd showed low liver uptake of the probe in healthy mice. The ability of the probe to detect liver fibrogenesis was then demonstrated in vivo in CCl4-injured mice. This study enables further development and application of manganese-based hydrazine-equipped probes for imaging liver fibrogenesis.
Collapse
Affiliation(s)
- Yingying Ning
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Pamela Pantazopoulos
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Stephen Cole Barrett
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
7
|
Goswami LN, Chakravarty S, Cai QY, Shapiro EM, Hawthorne MF, Ma L. Amphiphilic DTPA Multimer Assembled on Icosahedral Closo-Borane Motif as High-Performance MRI Blood Pool Contrast Agent. ACS APPLIED BIO MATERIALS 2021; 4:6658-6663. [PMID: 35006969 DOI: 10.1021/acsabm.1c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lalit N. Goswami
- International Institute of Nano and Molecular Medicine and Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Shatadru Chakravarty
- International Institute of Nano and Molecular Medicine and Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, Michigan 48823, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Quan-Yu Cai
- International Institute of Nano and Molecular Medicine and Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201, United States
| | - Erik M. Shapiro
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, Michigan 48823, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - M. Frederick Hawthorne
- International Institute of Nano and Molecular Medicine and Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Lixin Ma
- International Institute of Nano and Molecular Medicine and Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201, United States
| |
Collapse
|
8
|
Aqueous solutions of triblock copolymers used as the media affecting the magnetic relaxation properties of gadolinium ions trapped by metal-oxide nanostructures. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 905] [Impact Index Per Article: 150.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
10
|
Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018; 8:2521-2548. [PMID: 29721097 PMCID: PMC5928907 DOI: 10.7150/thno.23789] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact.
Collapse
Affiliation(s)
- Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Lin Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Hongmin Chen
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
11
|
Tripepi M, Capuana F, Gianolio E, Kock FVC, Pagoto A, Stefania R, Digilio G, Aime S. Synthesis of High Relaxivity Gadolinium AAZTA Tetramers as Building Blocks for Bioconjugation. Bioconjug Chem 2018; 29:1428-1437. [PMID: 29470084 DOI: 10.1021/acs.bioconjchem.8b00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular imaging requires the specific accumulation of contrast agents at the target. To exploit the superb resolution of MRI for applications in molecular imaging, gadolinium chelates, as the MRI contrast agents (CA), have to be conjugated to a specific vector able to recognize the epitope of interest. Several Gd(III)-chelates can be chemically linked to the same binding vector in order to deliver multiple copies of the CA (multimers) in a single targeting event thus increasing the sensitivity of the molecular probe. Herein three novel bifunctional agents, carrying one functional group for the bioconjugation to targeting vectors and four Gd(III)-AAZTA chelate functions for MRI contrast enhancement (AAZTA = 6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), are reported. The relaxivity in the tetrameric derivatives is 16.4 ± 0.2 mMGd-1 s-1 at 21.5 MHz and 25 °C, being 2.4-fold higher than that of parent, monomeric Gd(III)-AAZTA. These compounds can be used as versatile building blocks to insert preformed, high relaxivity, and high density Gd-centers to biological targeting vectors. As an example, we describe the use of these bifunctional Gd(III)-chelates to label a fibrin-targeting peptide.
Collapse
Affiliation(s)
- Martina Tripepi
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Federico Capuana
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Flávio Vinicius Crizóstomo Kock
- São Carlos Institute of Chemistry , São Paulo University , Av. Trabalhador São Carlense, 400 , 13566-590 , São Carlos , São Paulo , Brazil
| | - Amerigo Pagoto
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Giuseppe Digilio
- Department of Science and Technological Innovation , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| |
Collapse
|
12
|
Dai L, Jones CM, Chan WTK, Pham TA, Ling X, Gale EM, Rotile NJ, Tai WCS, Anderson CJ, Caravan P, Law GL. Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications. Nat Commun 2018; 9:857. [PMID: 29487362 PMCID: PMC5829242 DOI: 10.1038/s41467-018-03315-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/02/2018] [Indexed: 11/28/2022] Open
Abstract
Despite established clinical utilisation, there is an increasing need for safer, more inert gadolinium-based contrast agents, and for chelators that react rapidly with radiometals. Here we report the syntheses of a series of chiral DOTA chelators and their corresponding metal complexes and reveal properties that transcend the parent DOTA compound. We incorporated symmetrical chiral substituents around the tetraaza ring, imparting enhanced rigidity to the DOTA cavity, enabling control over the range of stereoisomers of the lanthanide complexes. The Gd chiral DOTA complexes are shown to be orders of magnitude more inert to Gd release than [GdDOTA]−. These compounds also exhibit very-fast water exchange rates in an optimal range for high field imaging. Radiolabeling studies with (Cu-64/Lu-177) also demonstrate faster labelling properties. These chiral DOTA chelators are alternative general platforms for the development of stable, high relaxivity contrast agents, and for radiometal complexes used for imaging and/or therapy. MRI contrast agents containing the rare earth metal gadolinium are very effective, yet unstable and thus potentially hazardous. Here, the authors developed complexes between gadolinium and the scaffolding compound DOTA with increased stability, which also lend themselves to radiometal labelling.
Collapse
Affiliation(s)
- Lixiong Dai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Chloe M Jones
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, 02129, United States
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tiffany A Pham
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, United States
| | - Xiaoxi Ling
- Department of Medicine, University of Pittsburgh, Pittsburgh, 15261, Pennsylvania, United States
| | - Eric M Gale
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, 02129, United States
| | - Nicholas J Rotile
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, 02129, United States
| | - William Chi-Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, United States. .,Department of Medicine, University of Pittsburgh, Pittsburgh, 15261, Pennsylvania, United States. .,Departments of Pharmacology & Chemical Biology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, United States.
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, 02129, United States.
| | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
13
|
Rolla G, De Biasio V, Giovenzana GB, Botta M, Tei L. Supramolecular assemblies based on amphiphilic Mn2+-complexes as high relaxivity MRI probes. Dalton Trans 2018; 47:10660-10670. [DOI: 10.1039/c8dt01250d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Mn2+ complexes of amphiphilic derivatives of EDTA and 1,4-DO2A ligands show a strong increase in relaxivity upon micellar aggregation and human serum albumin binding.
Collapse
Affiliation(s)
- Gabriele Rolla
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Valeria De Biasio
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro”
- I-28100 Novara
- Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro”
- I-28100 Novara
- Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| |
Collapse
|
14
|
Phukan B, Mukherjee C, Varshney R. A new heptadentate picolinate-based ligand and its corresponding Gd(iii) complex: the effect of pendant picolinate versus acetate on complex properties. Dalton Trans 2018; 47:135-142. [DOI: 10.1039/c7dt04150k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing one picolinate pendant by acetate group in H4bpeda ligand, the synthesised bis(aquated) Gd(iii) complex of ligand H4peada showed better stability and r1 relaxivity for its potential use as MRI contrast agent.
Collapse
Affiliation(s)
- Bedika Phukan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Chandan Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Raunak Varshney
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-100054
- India
| |
Collapse
|
15
|
Shamsutdinova N, Zairov R, Nizameev I, Gubaidullin A, Mukhametshina A, Podyachev S, Ismayev I, Kadirov M, Voloshina A, Mukhametzyanov T, Mustafina A. Tuning magnetic relaxation properties of "hard cores" in core-shell colloids by modification of "soft shell". Colloids Surf B Biointerfaces 2017; 162:52-59. [PMID: 29149728 DOI: 10.1016/j.colsurfb.2017.10.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023]
Abstract
The present work introduces an impact of polyelectrolyte-based hydrophilic shell on magnetic relaxivity and luminescence of hard cores built from isostructural complexes of Tb(III) and Gd(III) in the core-shell aqueous colloids. Microscopic and scattering techniques reveal "plum pudding" morphology of the colloids, where polyelectrolyte-coated ultrasmall (<5nm) hard cores form aggregates in aqueous solutions. Interaction of bovine serum albumin (BSA) with the colloids provides a tool to modify the polyelectrolyte-based shell, which is the reason for the improvement in both aggregation behavior of the colloids and their relaxivity. The modification of the hydrophilic polyelectrolyte-based shell enables to tune the longitudinal relaxivity from 5.9 to 23.3mM-1s-1 at 0.47T. This tendency is the reason for significant improvement of contrasting effect of the colloids in T1- and T2-weighted images obtained by whole body scanner at 1.5T. High contrasting effect of the colloids, together with low cytotoxicity towards Wi-38 diploid human cells makes them promising MRI contrast agents.
Collapse
Affiliation(s)
- Nataliya Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Rustem Zairov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation.
| | - Irek Nizameev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Aidar Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Alsu Mukhametshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Sergey Podyachev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Ildus Ismayev
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx St., Kazan, 420111, Russian Federation
| | - Marsil Kadirov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Alexandra Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Timur Mukhametzyanov
- Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russian Federation
| | - Asiya Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| |
Collapse
|
16
|
Zhang B, Yang W, Yu J, Guo W, Wang J, Liu S, Xiao Y, Shi D. Green Synthesis of Sub-10 nm Gadolinium-Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumor-Bearing Mice in Magnetic Resonance Imaging. Adv Healthc Mater 2017; 6. [PMID: 28004887 DOI: 10.1002/adhm.201600865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/18/2016] [Indexed: 12/13/2022]
Abstract
Gadolinium (Gd)-based nanoparticles are known for their high potential in magnetic resonance imaging (MRI). However, further MRI applications of these nanoparticles are hampered by their relatively large sizes resulting in poor organ/tumor targeting. In this study, ultrafine sub-10 nm and biocompatible Gd-based nanoparticles are synthesized in a bioinspired, environmentally benign, and straightforward fashion. This novel green synthetic strategy is developed for growing dextran-coated Gd-based nanoparticles (GdNPs@Dex). The as-prepared GdNPs@Dex is not only biocompatible but also stable with a sub-10 nm size. It exhibits higher longitudinal and transverse relaxivities in water (r1 and r2 values of 5.43 and 7.502 s-1 × 10-3 m-1 of Gd3+ , respectively) than those measured for Gd-DTPA solution (r1 and r2 values of 3.42 and 3.86 s-1 × 10-3 m-1 of Gd3+ , respectively). In vivo dynamic T1 -weighted MRI in tumor-bearing mice shows GdNPs@Dex can selectively target kidneys and tumor, in addition to liver and spleen. GdNPs@Dex is found particularly capable for determining the tumor boundary with clearly enhanced tumor angiogenesis. GdNPs@Dex is also found cleared from body gradually mainly via hepatobiliary and renal processing with no obvious systemic toxicity. With this green synthesis strategy, the sub-10 nm GdNPs@Dex presents promising potentials for translational biomedical imaging applications.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Weitao Yang
- School of Materials Science and Engineering; School of Life Science; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology; Tianjin University; Tianjin 300072 China
| | - Jiani Yu
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Weisheng Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Jun Wang
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Shiyuan Liu
- Department of Radiology; Changzheng Hospital; The Second Military Medical University; Shanghai 200003 China
| | - Yi Xiao
- Department of Radiology; Changzheng Hospital; The Second Military Medical University; Shanghai 200003 China
| | - Donglu Shi
- The Institute for Translational Nanomedicine; Shanghai East Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200092 P. R. China
- Department of Mechanical and Materials Engineering; College of Engineering and Applied Science; University of Cincinnati; Cincinnati OH 45221-0072 USA
| |
Collapse
|
17
|
Zhang B, Wang J, Yu J, Fang X, Wang X, Shi D. Site-Specific Biomimetic Precision Chemistry of Bimodal Contrast Agent with Modular Peptides for Tumor-Targeted Imaging. Bioconjug Chem 2017; 28:330-335. [PMID: 28085270 DOI: 10.1021/acs.bioconjchem.6b00712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various biomimetic nanoparticles have been fabricated for cancer nanotheranostics with a diverse range of proteins. However, the operating mechanisms of these reactions are still unclear, especially on the interaction between metal ions and protein, the precise binding sites, and the existence format of nanoparticles. Assuming the shortening of the amino acids sequence into several, namely short peptides, it would be much easier to investigate the biomimetic reaction mechanism. In this study, a modular peptide, possessing Au3+ ion coordination motifs and a Gd3+ ion chelation sequence, is designed and synthesized. This peptide is experimentally found effective in site-specific biomimetic synthesis of paramagnetic fluorescent gold nanoclusters (pAuNCs) with a quantum yield of 6.8%, deep red emission at 676 nm, and potent relaxivity. The gel electrophoresis result declares that the two imaging motifs in pAuNCs are quite stable. In vivo fluorescence-magnetic resonance bimodal imaging show significant tumor enhancement by pAuNCs in tumor-bearing mice. In vivo biodistribution and toxicity studies reveal that pAuNCs can be gradually cleared from the body without damage. This study presents a modular peptide that can incubate multifunctional nanoparticles in a biomimetic fashion and hopefully provides a strategy for the investigation of the mechanism of protein-mediated biomimetic synthesis.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Jun Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Jiani Yu
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Xiangming Fang
- Department of Radiology, Wuxi People's Hospital, Nanjing Medical University , Wuxi 214023, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Donglu Shi
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200092, P. R. China.,The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati , Cincinnati, Ohio 45221, United States
| |
Collapse
|
18
|
Yan L, Shen L, Zhou H, Wu C, Zhao Y, Wang L, Fang X, Zhang G, Xu J, Yang W. Combination of the fluorescent conjugated polymer and 1, 4, 7, 10- tetraazacyclododecane-1, 4, 7-triacetic acid gadolinium chelate as an agent for dual-modal imaging. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Zhang J, Hao G, Yao C, Yu J, Wang J, Yang W, Hu C, Zhang B. Albumin-Mediated Biomineralization of Paramagnetic NIR Ag2S QDs for Tiny Tumor Bimodal Targeted Imaging in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16612-16621. [PMID: 27300300 DOI: 10.1021/acsami.6b04738] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bimodal imaging has captured increasing interests due to its complementary characteristics of two kinds of imaging modalities. Among the various dual-modal imaging techniques, MR/fluorescence imaging has been widely studied owing to its high 3D resolution and sensitivity. There is, however, still a strong demand to construct biocompatible MR/fluorescence contrast agents with near-infrared (NIR) fluorescent emissions and high relaxivities. In this study, BSA-DTPA(Gd) derived from bovine serum albumin (BSA) as a novel kind of biotemplate is employed for biomineralization of paramagnetic NIR Ag2S quantum dots (denoted as Ag2S@BSA-DTPA(Gd) pQDs). This synthetic strategy is found to be bioinspired, environmentally benign, and straightforward. The obtained Ag2S@BSA-DTPA(Gd) pQDs have fine sizes (ca. 6 nm) and good colloidal stability. They exhibit unabated NIR fluorescent emission (ca. 790 nm) as well as high longitudinal relaxivity (r1 = 12.6 mM(-1) s(-1)) compared to that of commercial Magnevist (r1 = 3.13 mM(-1) s(-1)). In vivo tumor-bearing MR and fluorescence imaging both demonstrate that Ag2S@BSA-DTPA(Gd) pQDs have pronounced tiny tumor targeting capability. In vitro and in vivo toxicity study show Ag2S@BSA-DTPA(Gd) pQDs are biocompatible. Also, biodistribution analysis indicates they can be cleared from body mainly via liver metabolism. This protein-mediated biomineralized Ag2S@BSA-DTPA(Gd) pQDs presents great potential as a novel bimodal imaging contrast agent for tiny tumor diagnosis.
Collapse
Affiliation(s)
- Jing Zhang
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Guangyu Hao
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Chenfei Yao
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Jiani Yu
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Jun Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Weitao Yang
- School of Materials Science and Engineering, School of Life Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Chunhong Hu
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| |
Collapse
|
20
|
Randolph LM, LeGuyader CLM, Hahn ME, Andolina CM, Patterson JP, Mattrey RF, Millstone JE, Botta M, Scadeng M, Gianneschi NC. Polymeric Gd-DOTA amphiphiles form spherical and fibril-shaped nanoparticle MRI contrast agents. Chem Sci 2016; 7:4230-4236. [PMID: 30155069 PMCID: PMC6013922 DOI: 10.1039/c6sc00342g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
A Gd3+-coordinated polymerizable analogue of the MRI contrast agent Gd-DOTA was used to prepare amphiphilic block copolymers, with hydrophilic blocks composed entirely of the polymerized contrast agent. The resulting amphiphilic block copolymers assemble into nanoparticles (NPs) of spherical- or fibril-shape, each demonstrating enhanced relaxivity over Gd-DOTA. As an initial examination of their behavior in vivo, intraperitoneal (IP) injection of NPs into live mice was performed, showing long IP residence times, observed by MRI. Extended residence times for particles of well-defined morphology may represent a valuable design paradigm for treatment or diagnosis of peritoneal malignances.
Collapse
Affiliation(s)
- Lyndsay M Randolph
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| | - Clare L M LeGuyader
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| | - Michael E Hahn
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
- Department of Radiology , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA
| | - Christopher M Andolina
- Department of Chemistry , University of Pittsburgh , 4200 Fifth Ave , Pittsburgh , PA 15260 , USA
| | - Joseph P Patterson
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| | - Robert F Mattrey
- Department of Radiology , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA
| | - Jill E Millstone
- Department of Chemistry , University of Pittsburgh , 4200 Fifth Ave , Pittsburgh , PA 15260 , USA
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale "A. Avogadro" , Alessandria , Italy
| | - Miriam Scadeng
- Department of Radiology , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA
| | - Nathan C Gianneschi
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| |
Collapse
|
21
|
Sour A, Jenni S, Ortí-Suárez A, Schmitt J, Heitz V, Bolze F, Loureiro de Sousa P, Po C, Bonnet CS, Pallier A, Tóth É, Ventura B. Four Gadolinium(III) Complexes Appended to a Porphyrin: A Water-Soluble Molecular Theranostic Agent with Remarkable Relaxivity Suited for MRI Tracking of the Photosensitizer. Inorg Chem 2016; 55:4545-54. [DOI: 10.1021/acs.inorgchem.6b00381] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Angélique Sour
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Sébastien Jenni
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Ana Ortí-Suárez
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Julie Schmitt
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Frédéric Bolze
- CAMB, UMR 7199,
UdS/CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route
du Rhin, 67401 Illkirch, France
| | - Paulo Loureiro de Sousa
- CNRS, ICube, FMTS, Institut de Physique
Biologique, Faculté de Médecine, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg Cedex, France
| | - Chrystelle Po
- CNRS, ICube, FMTS, Institut de Physique
Biologique, Faculté de Médecine, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg Cedex, France
| | - Célia S. Bonnet
- Centre
de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, rue Charles Sadron, CS 80054, 45071 Orléans Cedex 2, France
| | - Agnès Pallier
- Centre
de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, rue Charles Sadron, CS 80054, 45071 Orléans Cedex 2, France
| | - Éva Tóth
- Centre
de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, rue Charles Sadron, CS 80054, 45071 Orléans Cedex 2, France
| | | |
Collapse
|
22
|
Malzahn K, Ebert S, Schlegel I, Neudert O, Wagner M, Schütz G, Ide A, Roohi F, Münnemann K, Crespy D, Landfester K. Design and Control of Nanoconfinement to Achieve Magnetic Resonance Contrast Agents with High Relaxivity. Adv Healthc Mater 2016; 5:567-74. [PMID: 26696569 DOI: 10.1002/adhm.201500748] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/08/2022]
Abstract
The enhanced relaxation of hydrogen atoms of surrounding water from suitable contrast agent promotes magnetic resonance imaging as one of the most important medical diagnosis technique. The key challenge for the preparation of performant contrast agents for magnetic resonance imaging with high relaxivity is to ensure a high local concentration of contrast agent while allowing a contact between water and the contrast agent. Both requirements are answered by tailoring a semipermeable confinement for a gadolinium complex used as contrast agent. A locally high concentration is achieved by successfully encapsulating the complex in polymer nanocontainers that serves to protect and retain the complex inside a limited space. The access of water to the complex is achieved by carefully controlling the chemistry of the shell and the core of the nanocontainers. The confinement of the nanocontainers enables an increased relaxivity compared to an aqueous solution of the contrast agent. The nanocontainers are successfully applied in vivo to yield enhanced contrast in magnetic resonance imaging.
Collapse
Affiliation(s)
- Kerstin Malzahn
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Sandro Ebert
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Isabel Schlegel
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Oliver Neudert
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Gunnar Schütz
- Bayer Healthcare/Bayer Pharma AG; Müllerstr. 178 13353 Berlin Germany
| | - Andreas Ide
- Bayer Healthcare/Bayer Pharma AG; Müllerstr. 178 13353 Berlin Germany
| | - Farnoosh Roohi
- Bayer Healthcare/Bayer Pharma AG; Müllerstr. 178 13353 Berlin Germany
| | - Kerstin Münnemann
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Daniel Crespy
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Vidyasirimedhi Institute of Science and Technology (VISTEC); 555 Moo 1 Payupnai Wangchan Rayong 21210 Thailand
| | | |
Collapse
|
23
|
Zhang J, Hao G, Yao C, Hu S, Hu C, Zhang B. Paramagnetic albumin decorated CuInS2/ZnS QDs for CD133+ glioma bimodal MR/fluorescence targeted imaging. J Mater Chem B 2016; 4:4110-4118. [PMID: 32264613 DOI: 10.1039/c6tb00834h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A sensitive, specific, accurate and biocompatible molecular nanoprobe is constructed, by rational design of the structure and an advanced surface engineering strategy, with MR/fluorescence imaging modalities for CD133+ glioma bimodal targeted imaging.
Collapse
Affiliation(s)
- Jing Zhang
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Guangyu Hao
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Chenfei Yao
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Su Hu
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Chunhong Hu
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Bingbo Zhang
- Institute of Photomedicine
- Shanghai Skin Disease Hospital
- The Institute for Biomedical Engineering & Nano Science
- Tongji University School of Medicine
- Shanghai 200443
| |
Collapse
|
24
|
Longo DL, Arena F, Consolino L, Minazzi P, Geninatti-Crich S, Giovenzana GB, Aime S. Gd-AAZTA-MADEC, an improved blood pool agent for DCE-MRI studies on mice on 1 T scanners. Biomaterials 2015; 75:47-57. [PMID: 26480471 DOI: 10.1016/j.biomaterials.2015.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
A novel MRI blood-pool contrast agent (Gd-AAZTA-MADEC) has been compared with established blood pool agents for tumor contrast enhanced images and angiography. Synthesis, relaxometric properties, albumin binding affinity and pharmacokinetic profiles are reported. For in vivo studies, angiographic images and tumor contrast enhanced images were acquired on mice with benchtop 1T-MRI scanners and compared with MS-325, B22956/1 and B25716/1. The design of this contrast agent involved the elongation of the spacer between the targeting deoxycholic acid moiety and the Gd-AAZTA imaging reporting unit that drastically changed either the binding affinity to albumin (KA(HSA) = 8.3 × 10(5) M(-1)) and the hydration state of the Gd ion (q = 2) in comparison to the recently reported B25716/1. The very markedly high binding affinity towards mouse and human serum albumins resulted in peculiar pharmacokinetics and relaxometric properties. The NMRD profiles clearly indicated that maximum efficiency is attainable at magnetic field strength of 1 T. In vivo studies showed high enhancement of the vasculature and a prolonged accumulation inside tumor. The herein reported pre-clinical imaging studies show that a great benefit arises from the combination of a benchtop MRI scanner operating at 1 T and the albumin-binding Gd-AAZTA-MADEC complex, for pursuing enhanced angiography and improved characterization of tumor vascular microenvironment.
Collapse
Affiliation(s)
- Dario Livio Longo
- Istituto di Biostrutture e Bioimmagini (CNR) c/o Molecular Biotechnology Center, Via Nizza 52, 10126, Torino, Italy; Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| | - Francesca Arena
- Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Lorena Consolino
- Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy; CAGE Chemicals Srl, Via Bovio 6, 28100, Novara, Italy
| | - Paolo Minazzi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "A. Avogadro" Largo Donegani 2/3, 28100, Novara, Italy; CAGE Chemicals Srl, Via Bovio 6, 28100, Novara, Italy
| | - Simonetta Geninatti-Crich
- Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giovanni Battista Giovenzana
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "A. Avogadro" Largo Donegani 2/3, 28100, Novara, Italy; CAGE Chemicals Srl, Via Bovio 6, 28100, Novara, Italy
| | - Silvio Aime
- Istituto di Biostrutture e Bioimmagini (CNR) c/o Molecular Biotechnology Center, Via Nizza 52, 10126, Torino, Italy; Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| |
Collapse
|
25
|
Abstract
This perspective outlines strategies towards the development of MR imaging probes that our lab has explored over the last 15 years. Namely, we discuss methods to enhance the signal generating capacity of MR probes and how to achieve tissue specificity through protein targeting or probe activation within the tissue microenvironment.
Collapse
Affiliation(s)
- Eszter Boros
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
26
|
Boros E, Caravan. P. Probing the structure-relaxivity relationship of bis-hydrated Gd(DOTAla) derivatives. Inorg Chem 2015; 54:2403-10. [PMID: 25693053 PMCID: PMC4758459 DOI: 10.1021/ic503035f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two structural isomers of the heptadentate chelator DO3Ala were synthesized, with carboxymethyl groups at either the 1,4- or 1,7-positions of the cyclen macrocycle. To interrogate the relaxivity under different rotatational dynamics regimes, the pendant primary amine was coupled to ibuprofen to enable binding to serum albumin. These chelators 6a and 6b form bis(aqua) ternary complexes with Gd(III) or Tb(III) as estimated from relaxivity measurements or luminescence lifetime measurements in water. The relaxivity of [Gd(6a)(H2O)2] and [Gd(6b)(H2O)2] was measured in the presence and absence of coordinating anions prevalent in vivo such as phosphate, lactate, and bicarbonate and compared with data attained for the q = 2 complex [Gd(DO3A)(H2O)2]. We found that relaxivity was reduced through formation of ternary complexes with lactate and bicarbonate, albeit to a lesser degree then the relaxivity of Gd(DO3A). In the presence of 100-fold excess phosphate, relaxivity was slightly increased and typical for q = 2 complexes of this size (8.3 mM(-1) s(-1) and 9.5 mM(-1) s(-1), respectively, at 37 °C, 60 MHz). Relaxivity for the complexes in the presence of HSA corresponded well to relaxivity obtained for complexes with reduced access for inner-sphere water (13.5 and 12.7 mM(-1) s(-1) at 37 °C, 60 MHz). Mean water residency time at 37 °C was determined using temperature-dependent (17)O-T2 measurements at 11.7 T and calculated to be (310)τM = 23 ± 1 ns for both structural isomers. Kinetic inertness under forcing conditions (pH 3, competing DTPA ligand) was found to be comparable to [Gd(DO3A)(H2O)]. Overall, we found that the replacement of one of the acetate arms of DO3A with an amino-propionate arm does not significantly alter the relaxometric and kinetic inertness properties of the corresponding Gd complexes; however, it does provide access to easily functionalizable q = 2 derivatives.
Collapse
Affiliation(s)
- Eszter Boros
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | - Peter Caravan.
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
27
|
Wu C, Li D, Yang L, Lin B, Zhang H, Xu Y, Cheng Z, Xia C, Gong Q, Song B, Ai H. Multivalent manganese complex decorated amphiphilic dextran micelles as sensitive MRI probes. J Mater Chem B 2015; 3:1470-1473. [PMID: 32429604 DOI: 10.1039/c4tb02036g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
T1 contrast agents based on Mn(II) were conjugated on amphiphilic dextran micelles via click chemistry. The obtained paramagnetic nanomicelle contrast agent has a higher T1 relaxivity (13.3 Mn mmol-1 s-1) and better sensitivity than those of free Mn(II) complexes. Studies carried out in vivo suggest that this contrast agent has a better and long-acting vascular enhancement effect at a lower manganese dosage (0.1 Mn mmol kg-1 BW).
Collapse
Affiliation(s)
- Changqiang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Vries A, Moonen R, Yildirim M, Langereis S, Lamerichs R, Pikkemaat JA, Baroni S, Terreno E, Nicolay K, Strijkers GJ, Grüll H. Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:83-91. [PMID: 24470297 DOI: 10.1002/cmmi.1541] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/23/2013] [Accepted: 03/10/2013] [Indexed: 01/17/2023]
Abstract
Fluorine MRI ((19) F MRI) is receiving an increasing attention as a viable alternative to proton-based MRI ((1) H MRI) for dedicated application in molecular imaging. The (19) F nucleus has a high gyromagnetic ratio, a 100% natural abundance and is furthermore hardly present in human tissues allowing for hot spot MR imaging. The applicability of (19) F MRI as a molecular and cellular imaging technique has been exploited, ranging from cell tracking to detection and imaging of tumors in preclinical studies. In addition to applications, developing new contrast materials with improved relaxation properties has also been a core research topic in the field, since the inherently low longitudinal relaxation rates of perfluorocarbon compounds result in relatively low imaging efficiency. Borrowed from (1) H MRI, the incorporation of lanthanides, specifically Gd(III) complexes, as signal modulating ingredients in the nanoparticle formulation has emerged as a promising approach to improvement of the fluorine signal. Three different perfluorocarbon emulsions were investigated at five different magnetic field strengths. Perfluoro-15-crown-5-ether was used as the core material and Gd(III)DOTA-DSPE, Gd(III)DOTA-C6-DSPE and Gd(III)DTPA-BSA as the relaxation altering components. While Gd(III)DOTA-DSPE and Gd(III)DOTA-C6-DSPE were favorable constructs for (1) H NMR, Gd(III)DTPA-BSA showed the strongest increase in (19F) R(1). These results show the potential of the use of paramagnetic lipids to increase (19F) R(1) at clinical field strengths (1.5-3 T). At higher field strengths (6.3-14 T), gadolinium does not lead to an increase in (19F) R(1) compared with emulsions without gadolinium, but leads to an significant increase in (19F) R(2). Our data therefore suggest that the most favorable situation for fluorine measurements is at high magnetic fields without the inclusion of gadolinium constructs.
Collapse
Affiliation(s)
- Anke de Vries
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Iwaki S, Hokamura K, Ogawa M, Takehara Y, Muramatsu Y, Yamane T, Hirabayashi K, Morimoto Y, Hagisawa K, Nakahara K, Mineno T, Terai T, Komatsu T, Ueno T, Tamura K, Adachi Y, Hirata Y, Arita M, Arai H, Umemura K, Nagano T, Hanaoka K. A design strategy for small molecule-based targeted MRI contrast agents: their application for detection of atherosclerotic plaques. Org Biomol Chem 2014; 12:8611-8. [DOI: 10.1039/c4ob01270d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Chen Y, Zhu Q, Cui X, Tang W, Yang H, Yuan Y, Hu A. Preparation of Highly Efficient MRI Contrast Agents through Complexation of Cationic GdIII-Containing Metallosurfactant with Biocompatible Polyelectrolytes. Chemistry 2014; 20:12477-82. [DOI: 10.1002/chem.201402530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 12/21/2022]
|
31
|
Boros E, Karimi S, Kenton N, Helm L, Caravan P. Gd(DOTAlaP): exploring the boundaries of fast water exchange in gadolinium-based magnetic resonance imaging contrast agents. Inorg Chem 2014; 53:6985-94. [PMID: 24922178 PMCID: PMC4095929 DOI: 10.1021/ic5008928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Here,
we describe the synthesis of the single amino acid chelator DOTAlaP
and four of its derivatives. The corresponding gadolinium(III) complexes
were investigated for their kinetic inertness, relaxometric properties
at a range of fields and temperatures, water exchange rate, and interaction
with human serum albumin (HSA). Derivatives with one inner-sphere
water (q = 1) were determined to have a mean water
residency time between 8 and 6 ns in phoshate-buffered saline at 37
°C. The corresponding europium complexes were also formed and
used to obtain information on the hydration number of the corresponding
coordination complexes. Two complexes capable of binding HSA were
also synthesized, of which one, Gd(5b), contains no inner-sphere
water, while the other derivative, Gd(4b), is a mixture
of ca. 15% q =1 and 85% q = 0. In
the presence of HSA, the latter displayed a very short mean water
residency time (τM310 = 2.4 ns) and enhanced
relaxivity at intermediate and high fields. The kinetic inertness
of Gd(4b) with respect to complex dissociation was decreased
compared to its DOTAla analogue but still 100-fold more inert than
[Gd(BOPTA)(H2O)]2–. Magnetic resonance
imaging in mice showed that Gd(4b) was able to provide
38% better vessel to muscle contrast compared to the clinically used
HSA binding agent MS-325. Converting one
of the acetate groups in the single amino acid chelator DOTAla to
methylenephosphonate (DOTAlaP) results in gadolinium(III) complexes
with extremely fast water exchange kinetics and/or in equilibrium
between monoaquated (q = 1) and unaquated (q = 0) states. The presence of phosphonate and the very
fast water exchange kinetics result in stable complexes with high
relaxivity at high magnetic fields, especially when bound to serum
albumin.
Collapse
Affiliation(s)
- Eszter Boros
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | | | | | | | | |
Collapse
|
32
|
Xue S, Qiao J, Jiang J, Hubbard K, White N, Wei L, Li S, Liu ZR, Yang JJ. Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers. Med Res Rev 2014; 34:1070-99. [PMID: 24615853 DOI: 10.1002/med.21313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic resonance imaging (MRI) is the leading imaging technique for disease diagnostics, providing high resolution, three-dimensional images noninvasively. MRI contrast agents are designed to improve the contrast and sensitivity of MRI. However, current clinically used MRI contrast agents have relaxivities far below the theoretical upper limit, which largely prevent advancing molecular imaging of biomarkers with desired sensitivity and specificity. This review describes current progress in the development of a new class of protein-based MRI contrast agents (ProCAs) with high relaxivity using protein design to optimize the parameters that govern relaxivity. Further, engineering with targeting moiety allows these contrast agents to be applicable for molecular imaging of prostate cancer biomarkers by MRI. The developed protein-based contrast agents also exhibit additional in vitro and in vivo advantages for molecular imaging of disease biomarkers, such as high metal-binding stability and selectivity, reduced toxicity, proper blood circulation time, and higher permeability in tumor tissue in addition to improved relaxivities.
Collapse
Affiliation(s)
- Shenghui Xue
- Departments of Chemistry and Biology, Georgia State University, Atlanta, Georgia; Center for Diagnostics & Therapeutics (CDT), Georgia State University, Atlanta, Georgia; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ferreira MF, Pereira G, Martins AF, Martins CIO, Prata MIM, Petoud S, Toth E, Ferreira PMT, Martins JA, Geraldes CFGC. Ln[DO3A-N-α-(pyrenebutanamido)propionate] complexes: optimized relaxivity and NIR optical properties. Dalton Trans 2014; 43:3162-73. [DOI: 10.1039/c3dt52958d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Debroye E, Parac-Vogt TN. Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chem Soc Rev 2014; 43:8178-92. [DOI: 10.1039/c4cs00201f] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the spotlight: polymetallic complexes permitting efficient sensitization of lanthanide luminescence and exhibiting favorable relaxometric properties.
Collapse
Affiliation(s)
- Elke Debroye
- Department of Chemistry
- KU Leuven
- 3001 Leuven, Belgium
| | | |
Collapse
|
35
|
Abstract
Biomedical imaging techniques can provide a vast amount of anatomical information, enabling diagnosis and the monitoring of disease and treatment profile. MRI uniquely offers convenient, non-invasive, high resolution tomographic imaging. A considerable amount of effort has been invested, across several decades, in the design of non toxic paramagnetic contrast agents capable of enhancing positive MRI signal contrast. Recently, focus has shifted towards the development of agents capable of specifically reporting on their local biochemical environment, where a switch in image contrast is triggered by a specific stimulus/biochemical variable. Such an ability would not only strengthen diagnosis but also provide unique disease-specific biochemical insight. This feature article focuses on recent progress in the development of MRI contrast switching with molecular, macromolecular and nanoparticle-based agents.
Collapse
Affiliation(s)
- Gemma-Louise Davies
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | | | | |
Collapse
|
36
|
Kong J, Liu T, Bao Y, Jin K, Zhang X, Tang Q, Duan C. Naphthyridine-based lanthanide complexes worked as magnetic resonance imaging contrast for guanosine 5'-monophosphate in vivo. Talanta 2013; 117:412-8. [PMID: 24209361 DOI: 10.1016/j.talanta.2013.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/24/2022]
Abstract
New lanthanide complex Gd-ANAMD containing 2-amino-7-methyl-1,8-naphthyridine was achieved for selective magnetic resonance imaging towards guanosine 5'-monophosphate over other ribonucleotide polyphosphates in aqueous media and in vivo. The formation of strong multi-hydrogen bonds between naphthyridine and guanosine made the phosphate in guanosine 5'-monophosphate positioned on a suitable site to coordinate with the lanthanide ion. The substitution of the coordination naphthyridine by the phosphate oxygen atoms caused obvious relaxivity decrease. The negligible cytotoxicity and appropriate blood circulation time of Gd-ANAMD allow potential application of Magnetic Resonance Imaging in vivo. (1)H NMR confirmed that the selectivity of these lanthanide complexes towards guanosine was attributed to the formation of hydrogen bonds between the guanine moeity and the naphthyridine. The fluorescence detection and lifetime measurement of Tb-ANAMD and Eu-ANAMD suggested that the decrease of the relaxivity is not attributed to the change of the q value, but caused by the prolonging of the residence lifetime of inner-sphere water.
Collapse
Affiliation(s)
- Jichuan Kong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, PR China; Institute of Physics and Chemistry, Henan Polytechnic University, 454000 Jiaozuo, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Characterisation and evaluation of paramagnetic fluorine labelled glycol chitosan conjugates for 19F and 1H magnetic resonance imaging. J Biol Inorg Chem 2013; 19:215-27. [DOI: 10.1007/s00775-013-1028-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 12/29/2022]
|
38
|
Cittadino E, Botta M, Tei L, Kielar F, Stefania R, Chiavazza E, Aime S, Terreno E. In Vivo Magnetic Resonance Imaging Detection of Paramagnetic Liposomes Loaded with Amphiphilic Gadolinium(III) Complexes: Impact of Molecular Structure on Relaxivity and Excretion Efficiency. Chempluschem 2013; 78:712-722. [DOI: 10.1002/cplu.201300096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/30/2023]
|
39
|
Soleimani A, Martínez F, Economopoulos V, Foster PJ, Scholl TJ, Gillies ER. Polymer cross-linking: a nanogel approach to enhancing the relaxivity of MRI contrast agents. J Mater Chem B 2013; 1:1027-1034. [DOI: 10.1039/c2tb00352j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Carniato F, Tei L, Arrais A, Marchese L, Botta M. Selective Anchoring of GdIIIChelates on the External Surface of Organo-Modified Mesoporous Silica Nanoparticles: A New Chemical Strategy To Enhance Relaxivity. Chemistry 2012; 19:1421-8. [DOI: 10.1002/chem.201202670] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 11/12/2022]
|
41
|
Bryson J, Reineke JW, Reineke TM. Macromolecular Imaging Agents Containing Lanthanides: Can Conceptual Promise Lead to Clinical Potential? Macromolecules 2012; 45:8939-8952. [PMID: 23467737 DOI: 10.1021/ma301568u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Macromolecular magnetic resonance imaging (MRI) contrast agents are increasingly being used to improve the resolution of this noninvasive diagnostic technique. All clinically-approved T1 contrast agents are small molecule chelates of gadolinium [Gd(III)] that affect bound water proton relaxivity. Both the small size and monomeric nature of these agents ultimately limits the image resolution enhancement that can be achieved for both contrast enhancement and pharmacokinetic/biodistribution reasons. The multimeric nature of macromolecules, such as polymers, dendrimers, and noncovalent complexes of small molecule agents with proteins, have been shown to significantly increase the image contrast and resolution due to their large size and ability to incorporate multiple Gd(III) chlelation sites. Also, macromolecular agents are advantageous as they have the ability to be designed to be nontoxic, hydrophilic, easily purified, aggregation-resistant, and have controllable three-dimensional macromolecular structure housing the multiple lanthanide chelation sites. For these reasons, large molecule diagnostics have the ability to significantly increase the relaxivity of water protons within the targeted tissues and thus the image resolution for many diagnostic applications. The FDA approval of a contrast agent that consists of a reversible, non-covalent coupling of a small Gd(III) chelate with serum albumin for blood pool imaging (marketed under the trade names of Vasovist and Ablivar) proved to be one of the first diagnostic agent to capitalize on these benefits from macromolecular association in humans. However, much research and development is necessary to optimize the safety of these unique agents for in vivo use and potential clinical development. To this end, recent work in the field of polymer, dendrimer, and noncovalent complex-based imaging agents are reviewed herein and the future outlook of this field is discussed.
Collapse
|
42
|
Chen SH, Kuo YT, Singh G, Cheng TL, Su YZ, Wang TP, Chiu YY, Lai JJ, Chang CC, Jaw TS, Tzou SC, Liu GC, Wang YM. Development of a Gd(III)-based receptor-induced magnetization enhancement (RIME) contrast agent for β-glucuronidase activity profiling. Inorg Chem 2012; 51:12426-35. [PMID: 23116118 DOI: 10.1021/ic301827p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
β-Glucuronidase is a key lysosomal enzyme and is often overexpressed in necrotic tumor masses. We report here the synthesis of a pro receptor-induced magnetization enhancement (pro-RIME) magnetic resonance imaging (MRI) contrast agent ([Gd(DOTA-FPβGu)]) for molecular imaging of β-glucuronidase activity in tumor tissues. The contrast agent consists of two parts, a gadolinium complex and a β-glucuronidase substrate (β-d-glucopyranuronic acid). The binding association constant (KA) of [Gd(DOTA-FPβGu)] is 7.42 × 10(2), which is significantly lower than that of a commercially available MS-325 (KA = 3.0 × 10(4)) RIME contrast agent. The low KA value of [Gd(DOTA-FPβGu)] is due to the pendant β-d-glucopyranuronic acid moiety. Therefore, [Gd(DOTA-FPβGu)] can be used for detection of β-glucuronidase through RIME modulation. The detail mechanism of enzymatic activation of [Gd(DOTA-FPβGu)] was elucidated by LC-MS. The kinetics of β-glucuronidase catalyzed hydrolysis of [Eu(DOTA-FPβGu)] at pH 7.4 best fit the Miechalis-Menten kinetic mode with Km = 1.38 mM, kcat = 3.76 × 10(3), and kcat/Km = 2.72 × 10(3) M(-1) s(-1). The low Km value indicates high affinity of β-glucuronidase for [Gd(DOTA-FPβGu)] at physiological pH. Relaxometric studies revealed that T1 relaxivity of [Gd(DOTA-FPβGu)] changes in response to the concentration of β-glucuronidase. Consistent with the relaxometric studies, [Gd(DOTA-FPβGu)] showed significant change in MR image signal in the presence of β-glucuronidase and HSA. In vitro and in vivo MR images demonstrated appreciable differences in signal enhancement in the cell lines and tumor xenografts in accordance to their expression levels of β-glucuronidase.
Collapse
Affiliation(s)
- Shih-Hsien Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , 100 Shih-Chuan first Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bernard ED, Beking MA, Rajamanickam K, Tsai EC, Derosa MC. Target binding improves relaxivity in aptamer-gadolinium conjugates. J Biol Inorg Chem 2012; 17:1159-75. [PMID: 22903502 DOI: 10.1007/s00775-012-0930-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 07/29/2012] [Indexed: 11/24/2022]
Abstract
MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.
Collapse
Affiliation(s)
- Elyse D Bernard
- Department of Chemistry, Ottawa-Carleton Chemistry Institute, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | | | | | | | |
Collapse
|
44
|
Gringeri CV, Menchise V, Rizzitelli S, Cittadino E, Catanzaro V, Dati G, Chaabane L, Digilio G, Aime S. Novel Gd(III)-based probes for MR molecular imaging of matrix metalloproteinases. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:175-84. [PMID: 22434630 DOI: 10.1002/cmmi.478] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two novel Gd-based contrast agents (CAs) for the molecular imaging of matrix metalloproteinases (MMPs) were synthetized and characterized in vitro and in vivo. These probes were based on the PLG*LWAR peptide sequence, known to be hydrolyzed between Gly and Leu by a broad panel of MMPs. A Gd-DOTA chelate was conjugated to the N-terminal position through an amide bond, either directly to proline (compd Gd-K11) or through a hydrophilic spacer (compd Gd-K11N). Both CA were made strongly amphiphilic by conjugating an alkyl chain at the C-terminus of the peptide sequence. Gd-K11 and Gd-K11N have a good affinity for β-cyclodextrins (K(D) 310 and 670 µ m respectively) and for serum albumin (K(D) 350 and 90 µ m respectively), and can be efficiently cleaved in vitro at the expected site by MMP-2 and MMP-12. Upon MMP-dependent cleavage, the CAs lose the C-terminal tetrapeptide and the alkyl chain, thus undergoing to an amphiphilic-to-hydrophilic transformation that is expected to alter tissue pharmacokinetics. To prove this, Gd-K11 was systemically administered to mice bearing a subcutaneous B16.F10 melanoma, either pre-treated or not with the broad spectrum MMP inhibitor GM6001 (Ilomastat). The washout of the Gd-contrast enhancement in MR images was significantly faster for untreated subjects (displaying MMP activity) with respect to treated ones (MMP activity inhibited). The washout kinetics of Gd-contrast enhancement from the tumor microenvironment could be then interpreted in terms of the local activity of MMPs.
Collapse
Affiliation(s)
- Concetta V Gringeri
- Department of Environmental and Life Sciences, Università del Piemonte Orientale A. Avogadro, Viale T. Michel 11, 15121, Alessandria, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dhingra Verma K, Mishra A, Engelmann J, Beyerlein M, Maier ME, Logothetis NK. Magnetic-Field-Dependent 1H Relaxivity Behavior of Biotin/Avidin-Based Magnetic Resonance Imaging Probes. Chempluschem 2012. [DOI: 10.1002/cplu.201200064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Moriggi L, Yaseen MA, Helm L, Caravan P. Serum albumin targeted, pH-dependent magnetic resonance relaxation agents. Chemistry 2012; 18:3675-86. [PMID: 22328098 PMCID: PMC3304010 DOI: 10.1002/chem.201103344] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Indexed: 11/11/2022]
Abstract
The objective of this work was the synthesis of serum albumin targeted, Gd(III)-based magnetic resonance imaging (MRI) contrast agents exhibiting a strong pH-dependent relaxivity. Two new complexes (Gd-glu and Gd-bbu) were synthesized based on the DO3A macrocycle modified with three carboxyalkyl substituents α to the three ring nitrogen atoms, and a biphenylsulfonamide arm. The sulfonamide nitrogen coordinates the Gd in a pH-dependent fashion, resulting in a decrease in the hydration state, q, as pH is increased and a resultant decrease in relaxivity (r(1)). In the absence of human serum albumin (HSA), r(1) increases from 2.0 to 6.0 mM(-1) s(-1) for Gd-glu and from 2.4 to 9.0 mM(-1) s(-1) for Gd-bbu from pH 5 to 8.5 at 37 °C, 0.47 T, respectively. These complexes (0.2 mM) are bound (>98.9 %) to HSA (0.69 mM) over the pH range 5-8.5. Binding to albumin increases the rotational correlation time and results in higher relaxivity. The r(1) increased 120 % (pH 5) and 550 % (pH 8.5) for Gd-glu and 42 % (pH 5) and 260 % (pH 8.5) for Gd-bbu. The increases in r(1) at pH 5 were unexpectedly low for a putative slow tumbling q=2 complex. The Gd-bbu system was investigated further. At pH 5, it binds in a stepwise fashion to HSA with dissociation constants K(d1)=0.65, K(d2)=18, K(d3)=1360 μM. The relaxivity at each binding site was constant. Luminescence lifetime titration experiments with the Eu(III) analogue revealed that the inner-sphere water ligands are displaced when the complex binds to HSA resulting in lower than expected r(1) at pH 5. Variable pH and temperature nuclear magnetic relaxation dispersion (NMRD) studies showed that the increased r(1) of the albumin-bound q=0 complexes is due to the presence of a nearby water molecule with a long residency time (1-2 ns). The distance between this water molecule and the Gd ion changes with pH resulting in albumin-bound pH-dependent relaxivity.
Collapse
Affiliation(s)
- Loïck Moriggi
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (USA)
| | - Mohammad A. Yaseen
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (USA)
| | - Lothar Helm
- Institut de Chimie Moléculaire et Biologique, Ecole Polytechnique Fédérale de Lausanne, EPFL-BCH, 1015 Lausanne (Switzerland)
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (USA)
| |
Collapse
|
47
|
Bonnet CS, Tóth É. Magnetic Resonance Imaging Contrast Agents. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Metal–Organic Frameworks in Biomedicine. Chem Rev 2011; 112:1232-68. [PMID: 22168547 DOI: 10.1021/cr200256v] [Citation(s) in RCA: 2703] [Impact Index Per Article: 193.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Patricia Horcajada
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Ruxandra Gref
- Faculté de Pharmacie, UMR CNRS 8612, Université Paris-Sud, 92296 Châtenay-Malabry Cedex, France
| | - Tarek Baati
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Phoebe K. Allan
- EaStChem School of Chemistry, University of St. Andrews Purdie Building, St Andrews, KY16 9ST U.K
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Université Montpellier 2, 34095 Montpellier cedex 05, France
| | - Patrick Couvreur
- Faculté de Pharmacie, UMR CNRS 8612, Université Paris-Sud, 92296 Châtenay-Malabry Cedex, France
| | - Gérard Férey
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Russell E. Morris
- EaStChem School of Chemistry, University of St. Andrews Purdie Building, St Andrews, KY16 9ST U.K
| | - Christian Serre
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
49
|
Bhuniya S, Moon H, Lee H, Hong KS, Lee S, Yu DY, Kim JS. Uridine-based paramagnetic supramolecular nanoaggregate with high relaxivity capable of detecting primitive liver tumor lesions. Biomaterials 2011; 32:6533-40. [DOI: 10.1016/j.biomaterials.2011.05.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
|
50
|
Mastarone DJ, Harrison VS, Eckermann AL, Parigi G, Luchinat C, Meade TJ. A modular system for the synthesis of multiplexed magnetic resonance probes. J Am Chem Soc 2011; 133:5329-37. [PMID: 21413801 PMCID: PMC3086647 DOI: 10.1021/ja1099616] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a modular architecture for preparing high-relaxivity multiplexed probes utilizing click chemistry. Our system incorporates azide bearing Gd(III) chelates and a trialkyne scaffold with a functional group for subsequent modification. In optimizing the relaxivity of this new complex, we undertook a study of the linker length between a chelate and the scaffold to determine its effect on relaxivity. The results show a strong dependence on flexibility between the individual chelates and the scaffold with decreasing linker length leading to significant increases in relaxivity. Nuclear magnetic resonance dispersion (NMRD) spectra were obtained to confirm a 10-fold increase in the rotational correlation time from 0.049 to 0.60 ns at 310 K. We have additionally obtained a crystal structure demonstrating that modification with an azide does not impact the coordination of the lanthanide. The resulting multinuclear center has a 500% increase in per Gd (or ionic) relaxivity at 1.41 T versus small molecule contrast agents and a 170% increase in relaxivity at 9.4 T.
Collapse
Affiliation(s)
- Daniel J. Mastarone
- Department of Chemistry, Molecular Biosciences, Neurobiology and Physiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Victoria S.R. Harrison
- Department of Chemistry, Molecular Biosciences, Neurobiology and Physiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Amanda L. Eckermann
- Department of Chemistry, Molecular Biosciences, Neurobiology and Physiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Giacomo Parigi
- CERM and Department of Chemistry, University of Florence, Florence, Italy
| | - Claudio Luchinat
- CERM and Department of Chemistry, University of Florence, Florence, Italy
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology and Physiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| |
Collapse
|