1
|
Feinstein A, Cole JL, May ER. Dimerization Promotes PKR Activation by Modulating Energetics of αC Helix Conversion between Active and Inactive Conformations. J Phys Chem B 2024; 128:9305-9314. [PMID: 39359136 PMCID: PMC11457141 DOI: 10.1021/acs.jpcb.4c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Protein kinase R (PKR) functions in the eukaryotic innate immune system as a first-line defense against viral infections. PKR binds viral dsRNA, leading to autophosphorylation and activation. In its active state, PKR can phosphorylate its primary substrate, eIF2α, which blocks the initiation of translation in the infected cell. It has been established that PKR activation occurs when the kinase domain dimerizes in a back-to-back configuration. However, the mechanism by which dimerization leads to enzymatic activation is not fully understood. Here, we investigate the structural mechanistic basis and energy landscape for PKR activation, with a focus on the αC helix─a kinase activation and signal integration hub─using all-atom equilibrium and enhanced sampling molecular dynamics simulations. By employing window-exchange umbrella sampling, we compute free-energy profiles of activation, which show that back-to-back dimerization stabilizes a catalytically competent conformation of PKR. Key hydrophobic residues in the homodimer interface contribute to stabilization of the αC helix in an active conformation and the position of its critical glutamate residue. Using linear mutual information analysis, we analyze allosteric communication connecting the protomers' N-lobes and the αC helix dimer interface with the αC helix.
Collapse
Affiliation(s)
- Aaron
G. Feinstein
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs, Connecticut 06269, United States
| | - James L. Cole
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs, Connecticut 06269, United States
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Eric R. May
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
2
|
Baker ZD, Rasmussen DM, Levinson NM. Exploring the conformational landscapes of protein kinases: perspectives from FRET and DEER. Biochem Soc Trans 2024; 52:1071-1083. [PMID: 38778760 PMCID: PMC11346445 DOI: 10.1042/bst20230558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Conformational changes of catalytically-important structural elements are a key feature of the regulation mechanisms of protein kinases and are important for dictating inhibitor binding modes and affinities. The lack of widely applicable methods for tracking kinase conformational changes in solution has hindered our understanding of kinase regulation and our ability to design conformationally selective inhibitors. Here we provide an overview of two recently developed methods that detect conformational changes of the regulatory activation loop and αC-helix of kinases and that yield complementary information about allosteric mechanisms. An intramolecular Förster resonance energy transfer-based approach provides a scalable platform for detecting and classifying structural changes in high-throughput, as well as quantifying ligand binding cooperativity, shedding light on the energetics governing allostery. The pulsed electron paramagnetic resonance technique double electron-electron resonance provides lower throughput but higher resolution information on structural changes that allows for unambiguous assignment of conformational states and quantification of population shifts. Together, these methods are shedding new light on kinase regulation and drug interactions and providing new routes for the identification of novel kinase inhibitors and allosteric modulators.
Collapse
Affiliation(s)
- Zachary D. Baker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Damien M. Rasmussen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Nicholas M. Levinson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, U.S.A
| |
Collapse
|
3
|
Malarz K, Mularski J, Pacholczyk M, Musiol R. Styrylquinazoline derivatives as ABL inhibitors selective for different DFG orientations. J Enzyme Inhib Med Chem 2023; 38:2201410. [PMID: 37070569 PMCID: PMC10120462 DOI: 10.1080/14756366.2023.2201410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Among tyrosine kinase inhibitors, quinazoline-based compounds represent a large and well-known group of multi-target agents. Our previous studies have shown interesting kinases inhibition activity for a series of 4-aminostyrylquinazolines based on the CP-31398 scaffold. Here, we synthesised a new series of styrylquinazolines with a thioaryl moiety in the C4 position and evaluated in detail their biological activity. Our results showed high inhibition potential against non-receptor tyrosine kinases for several compounds. Molecular docking studies showed differential binding to the DFG conformational states of ABL kinase for two derivatives. The compounds showed sub-micromolar activity against leukaemia. Finally, in-depth cellular studies revealed the full landscape of the mechanism of action of the most active compounds. We conclude that S4-substituted styrylquinazolines can be considered as a promising scaffold for the development of multi-kinase inhibitors targeting a desired binding mode to kinases as effective anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Malarz
- Institute of Physics, University of Silesia in Katowice, Chorzów, Poland
| | - Jacek Mularski
- Institute of Chemistry, University of Silesia in Katowice, Chorzów, Poland
| | - Marcin Pacholczyk
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, Chorzów, Poland
| |
Collapse
|
4
|
Majumdar S, Di Palma F, Spyrakis F, Decherchi S, Cavalli A. Molecular Dynamics and Machine Learning Give Insights on the Flexibility-Activity Relationships in Tyrosine Kinome. J Chem Inf Model 2023; 63:4814-4826. [PMID: 37462363 PMCID: PMC10428216 DOI: 10.1021/acs.jcim.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/15/2023]
Abstract
Tyrosine kinases are a subfamily of kinases with critical roles in cellular machinery. Dysregulation of their active or inactive forms is associated with diseases like cancer. This study aimed to holistically understand their flexibility-activity relationships, focusing on pockets and fluctuations. We studied 43 different tyrosine kinases by collecting 120 μs of molecular dynamics simulations, pocket and residue fluctuation analysis, and a complementary machine learning approach. We found that the inactive forms often have increased flexibility, particularly at the DFG motif level. Noteworthy, thanks to these long simulations combined with a decision tree, we identified a semiquantitative fluctuation threshold of the DGF+3 residue over which the kinase has a higher probability to be in the inactive form.
Collapse
Affiliation(s)
- Sarmistha Majumdar
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Francesco Di Palma
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Francesca Spyrakis
- Department
of Drug Science and Technology, University
of Turin, via Giuria
9, I-10125 Turin, Italy
| | - Sergio Decherchi
- Data
Science and Computation, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Andrea Cavalli
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
5
|
Lichtinger SM, Biggin PC. Tackling Hysteresis in Conformational Sampling: How to Be Forgetful with MEMENTO. J Chem Theory Comput 2023; 19:3705-3720. [PMID: 37285481 PMCID: PMC10308841 DOI: 10.1021/acs.jctc.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 06/09/2023]
Abstract
The structure of proteins has long been recognized to hold the key to understanding and engineering their function, and rapid advances in structural biology and protein structure prediction are now supplying researchers with an ever-increasing wealth of structural information. Most of the time, however, structures can only be determined in free energy minima, one at a time. While conformational flexibility may thus be inferred from static end-state structures, their interconversion mechanisms─a central ambition of structural biology─are often beyond the scope of direct experimentation. Given the dynamical nature of the processes in question, many studies have attempted to explore conformational transitions using molecular dynamics (MD). However, ensuring proper convergence and reversibility in the predicted transitions is extremely challenging. In particular, a commonly used technique to map out a path from a starting to a target conformation called steered MD (SMD) can suffer from starting-state dependence (hysteresis) when combined with techniques such as umbrella sampling (US) to compute the free energy profile of a transition. Here, we study this problem in detail on conformational changes of increasing complexity. We also present a new, history-independent approach that we term "MEMENTO" (Morphing End states by Modelling Ensembles with iNdependent TOpologies) to generate paths that alleviate hysteresis in the construction of conformational free energy profiles. MEMENTO utilizes template-based structure modelling to restore physically reasonable protein conformations based on coordinate interpolation (morphing) as an ensemble of plausible intermediates, from which a smooth path is picked. We compare SMD and MEMENTO on well-characterized test cases (the toy peptide deca-alanine and the enzyme adenylate kinase) before discussing its use in more complicated systems (the kinase P38α and the bacterial leucine transporter LeuT). Our work shows that for all but the simplest systems SMD paths should not in general be used to seed umbrella sampling or related techniques, unless the paths are validated by consistent results from biased runs in opposite directions. MEMENTO, on the other hand, performs well as a flexible tool to generate intermediate structures for umbrella sampling. We also demonstrate that extended end-state sampling combined with MEMENTO can aid the discovery of collective variables on a case-by-case basis.
Collapse
Affiliation(s)
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
6
|
Shekhar M, Smith Z, Seeliger MA, Tiwary P. Protein Flexibility and Dissociation Pathway Differentiation Can Explain Onset of Resistance Mutations in Kinases. Angew Chem Int Ed Engl 2022; 61:e202200983. [PMID: 35486370 DOI: 10.1002/anie.202200983] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Understanding how mutations render a drug ineffective is a problem of immense relevance. Often the mechanism through which mutations cause drug resistance can be explained purely through thermodynamics. However, the more perplexing situation is when two proteins have the same drug binding affinities but different residence times. In this work, we demonstrate how all-atom molecular dynamics simulations using recent developments grounded in statistical mechanics can provide a detailed mechanistic rationale for such variances. We discover dissociation mechanisms for the anti-cancer drug Imatinib (Gleevec) against wild-type and the N368S mutant of Abl kinase. We show how this point mutation triggers far-reaching changes in the protein's flexibility and leads to a different, much faster, drug dissociation pathway. We believe that this work marks an efficient and scalable approach to obtain mechanistic insight into resistance mutations in biomolecular receptors that are hard to explain using a structural perspective.
Collapse
Affiliation(s)
- Mrinal Shekhar
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zachary Smith
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Shekhar M, Smith Z, Seeliger M, Tiwary P. Protein Flexibility and Dissociation Pathway Differentiation Can Explain Onset Of Resistance Mutations in Kinases. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mrinal Shekhar
- Broad Institute Center for Development of Therapeutics UNITED STATES
| | - Zachary Smith
- University of Maryland at College Park Institute for Physical Science and Technology UNITED STATES
| | - Markus Seeliger
- Stony Brook University Department of Pharmacological Sciences UNITED STATES
| | - Pratyush Tiwary
- university of maryland chemistry and biochemistry university of maryland 20740 college park UNITED STATES
| |
Collapse
|
8
|
Huang YMM. Multiscale computational study of ligand binding pathways: Case of p38 MAP kinase and its inhibitors. Biophys J 2021; 120:3881-3892. [PMID: 34453922 PMCID: PMC8511166 DOI: 10.1016/j.bpj.2021.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023] Open
Abstract
Protein kinases are one of the most important drug targets in the past 10 years. Understanding the inhibitor association processes will profoundly impact new binder designs with preferred binding kinetics. However, after more than a decade of effort, a complete atomistic-level study of kinase inhibitor binding pathways is still lacking. As all kinases share a similar scaffold, we used p38 kinase as a model system to investigate the conformational dynamics and free energy transition of inhibitor binding toward kinases. Two major kinase conformations, Asp-Phe-Gly (DFG)-in and DFG-out, and three types of inhibitors, type I, II, and III, were thoroughly investigated in this work. We performed Brownian dynamics simulations and up to 340 μs Gaussian-accelerated molecular dynamics simulations to capture the inhibitor binding paths and a series of conformational transitions of the p38 kinase from its apo to inhibitor-bound form. Eighteen successful binding trajectories, including all types of inhibitors, are reported herein. Our simulations suggest a mechanism of inhibitor recruitment, a faster ligand association step to a pre-existing DFG-in/DFG-out p38 protein, followed by a slower molecular rearrangement step to adjust the protein-ligand conformation followed by a shift in the energy landscape to reach the final bound state. The ligand association processes also reflect the energetic favor of type I and type II/III inhibitor binding through ATP and allosteric channels, respectively. These different binding routes are directly responsible for the fast (type I binders) and slow (type II/III binders) kinetics of different types of p38 inhibitors. Our findings also echo the recent study of p38 inhibitor dissociation, implying that ligand unbinding could undergo a reverse path of binding, and both processes share similar metastates. This study deepens the understanding of molecular and energetic features of kinase inhibitor-binding processes and will inspire future drug development from a kinetic point of view.
Collapse
Affiliation(s)
- Yu-Ming M Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|
9
|
Zhang G, Li C, Quartararo AJ, Loas A, Pentelute BL. Automated affinity selection for rapid discovery of peptide binders. Chem Sci 2021; 12:10817-10824. [PMID: 34447564 PMCID: PMC8372318 DOI: 10.1039/d1sc02587b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
In-solution affinity selection (AS) of large synthetic peptide libraries affords identification of binders to protein targets through access to an expanded chemical space. Standard affinity selection methods, however, can be time-consuming, low-throughput, or provide hits that display low selectivity to the target. Here we report an automated bio-layer interferometry (BLI)-assisted affinity selection platform. When coupled with tandem mass spectrometry (MS), this method enables both rapid de novo discovery and affinity maturation of known peptide binders with high selectivity. The BLI-assisted AS-MS technology also features real-time monitoring of the peptide binding during the library selection process, a feature unattainable by current selection approaches. We show the utility of the BLI AS-MS platform toward rapid identification of novel nanomolar (dissociation constant, KD < 50 nM) non-canonical binders to the leukemia-associated oncogenic protein menin. To our knowledge, this is the first application of BLI to the affinity selection of synthetic peptide libraries. We believe our approach can significantly accelerate the use of synthetic peptidomimetic libraries in drug discovery. This work reports an automated affinity selection-mass spectrometry (AS-MS) approach amenable to both de novo peptide binder discovery and affinity maturation of known binders in a high-throughput and selective manner.![]()
Collapse
Affiliation(s)
- Genwei Zhang
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Chengxi Li
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anthony J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA .,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology 500 Main Street Cambridge MA 02142 USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA.,Broad Institute of MIT and Harvard 415 Main Street Cambridge MA 02142 USA
| |
Collapse
|
10
|
Chen J, Wang W, Sun H, Pang L, Bao H. Binding mechanism of inhibitors to p38α MAP kinase deciphered by using multiple replica Gaussian accelerated molecular dynamics and calculations of binding free energies. Comput Biol Med 2021; 134:104485. [PMID: 33993013 DOI: 10.1016/j.compbiomed.2021.104485] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
The p38α MAP Kinase has been an important target of drug design for treatment of inflammatory diseases and cancers. This work applies multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations and the molecular mechanics generalized Born surface area (MM-GBSA) method to probe the binding mechanism of inhibitors L51, R24 and 1AU to p38α. Dynamics analyses show that inhibitor bindings exert significant effect on conformational changes of the active helix α2 and the conserved DFG loop. The rank of binding free energies calculated with MM-GBSA not only agrees well with that determined by the experimental IC50 values but also suggests that mutual compensation between the enthalpy and entropy changes can improve binding of inhibitors to p38α. The analyses of free energy landscapes indicate that the L51, R24 and 1AU bound p38α display a DFG-out conformation. The residue-based free energy decomposition method is used to evaluate contributions of separate residues to the inhibitor-p38α binding and the results imply that residues V30, V38, L74, L75, I84, T106, H107, L108, M109, L167, F169 and D168 can be utilized as efficient targets of potent inhibitors toward p38α.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
11
|
Narayan B, Buchete NV, Elber R. Computer Simulations of the Dissociation Mechanism of Gleevec from Abl Kinase with Milestoning. J Phys Chem B 2021; 125:5706-5715. [PMID: 33930271 DOI: 10.1021/acs.jpcb.1c00264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gleevec (a.k.a., imatinib) is an important anticancer (e.g., chronic myeloid leukemia) chemotherapeutic drug due to its inhibitory interaction with the Abl kinase. Here, we use atomically detailed simulations within the Milestoning framework to study the molecular dissociation mechanism of Gleevec from Abl kinase. We compute the dissociation free energy profile, the mean first passage time for unbinding, and explore the transition state ensemble of conformations. The milestones form a multidimensional network with average connectivity of about 2.93, which is significantly higher than the connectivity for a one-dimensional reaction coordinate. The free energy barrier for Gleevec dissociation is estimated to be ∼10 kcal/mol, and the exit time is ∼55 ms. We examined the transition state conformations using both, the committor and transition function. We show that near the transition state the highly conserved salt bridge K217 and E286 is transiently broken. Together with the calculated free energy profile, these calculations can advance the understanding of the molecular interaction mechanisms between Gleevec and Abl kinase and play a role in future drug design and optimization studies.
Collapse
Affiliation(s)
- Brajesh Narayan
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.,Institute for Discovery, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicolae-Viorel Buchete
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.,Institute for Discovery, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ron Elber
- Oden Institute for Computational Engineering and Science, Department of Chemistry, University of Texas at Austin, Austin Texas 78712, United States
| |
Collapse
|
12
|
Roser P, Weisner J, Stehle J, Rauh D, Drescher M. Conformational selection vs. induced fit: insights into the binding mechanisms of p38α MAP Kinase inhibitors. Chem Commun (Camb) 2021; 56:8818-8821. [PMID: 32749403 DOI: 10.1039/d0cc02539a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The conformational dynamics of a kinase's activation loop have been challenging to assess due to the activation loop's intrinsic flexibility. To directly probe the conformational equilibrium of the activation loop of mitogen-activated protein kinase p38α, we present an approach based on site-directed spin labeling, electron paramagnetic resonance (EPR) distance restraints, and multilateration. We demonstrate that the activation loop of apo p38α resides in a highly flexible equilibrium state and we reveal that binding of small molecules significantly alters this equilibrium and the populated sub-states.
Collapse
Affiliation(s)
- Patrick Roser
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Jörn Weisner
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany.
| | - Juliane Stehle
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany.
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
13
|
Tong MHG, Jeeves M, Rajesh S, Ludwig C, Lenoir M, Kumar J, McClelland DM, Berditchevski F, Hubbard JA, Kenyon C, Butterworth S, Knapp S, Overduin M. Backbone resonance assignments of the catalytic and regulatory domains of Ca 2+/calmodulin-dependent protein kinase 1D. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:221-225. [PMID: 32535836 PMCID: PMC7462902 DOI: 10.1007/s12104-020-09950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The CaMK subfamily of Ser/Thr kinases are regulated by calmodulin interactions with their C-terminal regions. They are exemplified by Ca2+/calmodulin dependent protein kinase 1δ which is known as CaMK1D, CaMKIδ or CKLiK. CaMK1D mediates intracellular signalling downstream of Ca2+ influx and thereby exhibits amplifications of Ca2+signals and polymorphisms that have been implicated in breast cancer and diabetes. Here we report the backbone 1H, 13C, 15N assignments of the 38 kDa human CaMK1D protein in its free state, including both the canonical bi-lobed kinase fold as well as the autoinhibitory and calmodulin binding domains.
Collapse
Affiliation(s)
- Michael H G Tong
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sundaresan Rajesh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christian Ludwig
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marc Lenoir
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jitendra Kumar
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Darren M McClelland
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Julia A Hubbard
- Computational, Analytical and Structural Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Colin Kenyon
- Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town, 7505, South Africa
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Stefan Knapp
- Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences, Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
14
|
Du Y, Wang R. Revealing the Unbinding Kinetics and Mechanism of Type I and Type II Protein Kinase Inhibitors by Local-Scaled Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:6620-6632. [PMID: 32841004 DOI: 10.1021/acs.jctc.0c00342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinase inhibitors disrupt phosphorylation of the target kinases, which are an important class of drug for treating cancer and other diseases. Conventional structure-based design methods (such as molecular docking) focus on the static binding mode of the kinase inhibitor with its target. However, dissociation kinetic properties of a drug molecule are found to correlate with its residence time in vivo and thus have drawn the attention of drug designers in recent years. In this study, we have applied the local-scaled molecular dynamics (MD) simulation enabled in GROMACS software to explore the unbinding mechanism of a total of 41 type I and type II kinase inhibitors. Our simulation considered multiple starting configurations as well as possible protonation states of kinase inhibitors. Based on our local-scaled MD results, we discovered that the integrals of the favorable binding energy during dissociation correlated well (R2 = 0.64) with the experimental dissociation rate constants of those kinase inhibitors on the entire data set. Given its accuracy and technical advantage, this method may serve as a practical option for estimating this important property in reality. Our simulation also provided a reasonable explanation of the dynamic properties of kinase and its inhibitor as well as the role of relevant water molecules in dissociation.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
15
|
Narayan B, Fathizadeh A, Templeton C, He P, Arasteh S, Elber R, Buchete NV, Levy RM. The transition between active and inactive conformations of Abl kinase studied by rock climbing and Milestoning. Biochim Biophys Acta Gen Subj 2020; 1864:129508. [PMID: 31884066 PMCID: PMC7012767 DOI: 10.1016/j.bbagen.2019.129508] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Kinases are a family of enzymes that catalyze the transfer of the ɤ-phosphate group from ATP to a protein's residue. Malfunctioning kinases are involved in many health problems such as cardiovascular diseases, diabetes, and cancer. Kinases transitions between multiple conformations of inactive to active forms attracted considerable interest. METHOD A reaction coordinate is computed for the transition between the active to inactive conformation in Abl kinase with a focus on the DFG-in to DFG-out flip. The method of Rock Climbing is used to construct a path locally, which is subsequently optimized using a functional of the entire path. The discrete coordinate sets along the reaction path are used in a Milestoning calculation of the free energy landscape and the rate of the transition. RESULTS The estimated transition times are between a few milliseconds and seconds, consistent with simulations of the kinetics and with indirect experimental data. The activation requires the transient dissociation of the salt bridge between Lys271 and Glu286. The salt bridge reforms once the DFG motif is stabilized by a locked conformation of Phe382. About ten residues are identified that contribute significantly to the process and are included as part of the reaction space. CONCLUSIONS The transition from DFG-in to DFG-out in Abl kinase was simulated using atomic resolution of a fully solvated protein yielding detailed description of the kinetics and the mechanism of the DFG flip. The results are consistent with other computational methods that simulate the kinetics and with some indirect experimental measurements. GENERAL SIGNIFICANCE The activation of kinases includes a conformational transition of the DFG motif that is important for enzyme activity but is not accessible to conventional Molecular Dynamics. We propose a detailed mechanism for the transition, at a timescale longer than conventional MD, using a combination of reaction path and Milestoning algorithms. The mechanism includes local structural adjustments near the binding site as well as collective interactions with more remote residues.
Collapse
Affiliation(s)
- Brajesh Narayan
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Arman Fathizadeh
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E. 24(th) Street, 1 University Station (C0200), Austin, TX 78712-1229, USA
| | - Clark Templeton
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keaton St. Stop C0400, Austin, TX 78712-1589, USA
| | - Peng He
- Department of Chemistry, Temple University, 1801 N Broad Street, Philadelphia, PA 19122, USA
| | - Shima Arasteh
- Department of Chemistry, Temple University, 1801 N Broad Street, Philadelphia, PA 19122, USA
| | - Ron Elber
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E. 24(th) Street, 1 University Station (C0200), Austin, TX 78712-1229, USA; Department of Chemistry, University of Texas at Austin, 2506 Speedway STOP A5300, Austin, TX 78712-1224, USA.
| | | | - Ron M Levy
- Department of Chemistry, Temple University, 1801 N Broad Street, Philadelphia, PA 19122, USA
| |
Collapse
|
16
|
Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W, Elcock A, Zhu S. p38α Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma. Front Oncol 2019; 9:1294. [PMID: 31828036 PMCID: PMC6890821 DOI: 10.3389/fonc.2019.01294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
p38 mitogen-activated protein kinases are signaling molecules with major involvement in cancer. A detailed mechanistic understanding of how p38 MAPK family members function is urgently warranted for cancer targeted therapy. The conformational dynamics of the most common member of p38 MAPK family, p38α, are crucial for its function but poorly understood. Here we found that, unlike in other cancer types, p38α is significantly activated in pancreatic adenocarcinoma samples, suggesting its potential for anti-pancreatic cancer therapy. Using a state of the art supercomputer, Anton, long-timescale (39 μs) unbiased molecular dynamics simulations of p38α show that apo p38α has high structural flexibility in six regions, and reveal potential catalysis mechanism involving a “butterfly” motion. Moreover, in vitro studies show the low-selectivity of the current p38α inhibitors in both human and mouse pancreatic cancer cell lines, while computational solvent mapping identified 17 novel pockets for drug design. Taken together, our study reveals the conformational dynamics and potentially druggable pockets of p38α, which may potentiate p38α-targeting drug development and benefit pancreatic cancer patients.
Collapse
Affiliation(s)
- Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Ye
- Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Yongtian Lu
- Department of ENT, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Adrian Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Shun Zhu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Tsai CC, Yue Z, Shen J. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase. J Am Chem Soc 2019; 141:15092-15101. [PMID: 31476863 DOI: 10.1021/jacs.9b06064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinases are important cellular signaling molecules involved in cancer and a multitude of other diseases. It is well-known that inactive kinases display a remarkable conformational plasticity; however, the molecular mechanisms remain poorly understood. Conformational heterogeneity presents an opportunity but also a challenge in kinase drug discovery. The ability to predictively model various conformational states could accelerate selective inhibitor design. Here we performed a proton-coupled molecular dynamics study to explore the conformational landscape of a c-Src kinase. Starting from a completely inactive structure, the simulations captured all major types of conformational states without the use of a target structure, mutation, or bias. The simulations allowed us to test the experimental hypotheses regarding the mechanism of DFG flip, its coupling to the αC-helix movement, and the formation of regulatory spine. Perhaps the most significant finding is how key titratable residues, such as DFG-Asp, αC-Glu, and HRD-Asp, change protonation states dependent on the DFG, αC, and activation loop conformations. Our data offer direct evidence to support a long-standing hypothesis that protonation of Asp favors the DFG-out state and explain why DFG flip is also possible in simulations with deprotonated Asp. The simulations also revealed intermediate states, among which a unique DFG-out/α-C state formed as DFG-Asp is moved into a back pocket forming a salt bridge with catalytic Lys, which can be tested in selective inhibitor design. Our finding of how proton coupling enables the remarkable conformational plasticity may shift the paradigm of computational studies of kinases which assume fixed protonation states. Understanding proton-coupled conformational dynamics may hold a key to further innovation in kinase drug discovery.
Collapse
Affiliation(s)
- Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Zhi Yue
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
18
|
Application of a Substrate-Mediated Selection with c-Src Tyrosine Kinase to a DNA-Encoded Chemical Library. Molecules 2019; 24:molecules24152764. [PMID: 31366048 PMCID: PMC6695731 DOI: 10.3390/molecules24152764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
As aberrant activity of protein kinases is observed in many disease states, these enzymes are common targets for therapeutics and detection of activity levels. The development of non-natural protein kinase substrates offers an approach to protein substrate competitive inhibitors, a class of kinase inhibitors with promise for improved specificity. Also, kinase activity detection approaches would benefit from substrates with improved activity and specificity. Here, we apply a substrate-mediated selection to a peptidomimetic DNA-encoded chemical library for enrichment of molecules that can be phosphorylated by the protein tyrosine kinase, c-Src. Several substrates were identified and characterized for activity. A lead compound (SrcDEL10) showed both the ability to serve as a substrate and to promote ATP hydrolysis by the kinase. In inhibition assays, compounds displayed IC50's ranging from of 8-100 µM. NMR analysis of SrcDEL10 bound to the c-Src:ATP complex was conducted to characterize the binding mode. An ester derivative of the lead compound demonstrated cellular activity with inhibition of Src-dependent signaling in cell culture. Together, the results show the potential for substrate-mediated selections of DNA-encoded libraries to discover molecules with functions other than simple protein binding and offer a new discovery method for development of synthetic tyrosine kinase substrates.
Collapse
|
19
|
Fierro F, Giorgetti A, Carloni P, Meyerhof W, Alfonso-Prieto M. Dual binding mode of "bitter sugars" to their human bitter taste receptor target. Sci Rep 2019; 9:8437. [PMID: 31186454 PMCID: PMC6560132 DOI: 10.1038/s41598-019-44805-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
The 25 human bitter taste receptors (hTAS2Rs) are responsible for detecting bitter molecules present in food, and they also play several physiological and pathological roles in extraoral compartments. Therefore, understanding their ligand specificity is important both for food research and for pharmacological applications. Here we provide a molecular insight into the exquisite molecular recognition of bitter β-glycopyranosides by one of the members of this receptor subclass, hTAS2R16. Most of its agonists have in common the presence of a β-glycopyranose unit along with an extremely structurally diverse aglycon moiety. This poses the question of how hTAS2R16 can recognize such a large number of "bitter sugars". By means of hybrid molecular mechanics/coarse grained molecular dynamics simulations, here we show that the three hTAS2R16 agonists salicin, arbutin and phenyl-β-D-glucopyranoside interact with the receptor through a previously unrecognized dual binding mode. Such mechanism may offer a seamless way to fit different aglycons inside the binding cavity, while maintaining the sugar bound, similar to the strategy used by several carbohydrate-binding lectins. Our prediction is validated a posteriori by comparison with mutagenesis data and also rationalizes a wealth of structure-activity relationship data. Therefore, our findings not only provide a deeper molecular characterization of the binding determinants for the three ligands studied here, but also give insights applicable to other hTAS2R16 agonists. Together with our results for other hTAS2Rs, this study paves the way to improve our overall understanding of the structural determinants of ligand specificity in bitter taste receptors.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biotechnology, University of Verona, Verona, Italy
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
- VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany.
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
20
|
You W, Tang Z, Chang CEA. Potential Mean Force from Umbrella Sampling Simulations: What Can We Learn and What Is Missed? J Chem Theory Comput 2019; 15:2433-2443. [PMID: 30811931 PMCID: PMC6456367 DOI: 10.1021/acs.jctc.8b01142] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Changes in free energy provide valuable information for molecular recognition, including both ligand-receptor binding thermodynamics and kinetics. Umbrella sampling (US), a widely used free energy calculation method, has long been used to explore the dissociation process of ligand-receptor systems and compute binding free energy. In existing publications, the binding free energy computed from the potential of mean force (PMF) with US simulation mostly yielded "ball park" values with experimental data. However, the computed PMF values are highly influenced by factors such as initial conformations and/or trajectories provided, the reaction coordinate, and sampling of conformational space in each US window. These critical factors have rarely been carefully studied. Here we used US to study the guest aspirin and 1-butanol dissociation processes of β-cyclodextrin (β-CD) and an inhibitor SB2 dissociation from a p38α mitogen-activated protein kinase (MAPK) complex. For β-CD, we used three different β-CD conformations to generate the dissociation path with US windows. For p38α, we generated the dissociation pathway by using accelerated molecular dynamics followed by conformational relaxing with short conventional MD, steered MD, and manual pulling. We found that, even for small β-CD complexes, different β-CD conformations altered the height of the PMF, but the pattern of PMF was not affected if the MD sampling in each US window was well-converged. Because changing the macrocyclic ring conformation needs to rotate dihedral angles in the ring, a bound ligand largely restrains the motion of cyclodextrin. Therefore, once a guest is in the binding site, cyclodextrin cannot freely change its initial conformation, resulting in different absolute heights of the PMF, which cannot be overcome by running excessively long MD simulations for each US window. Moreover, if the US simulations were not converged, the important barrier and minimum were missed. For ligand-protein systems, our studies also suggest that the dissociation trajectories modeled by an enhanced sampling method must maintain a natural molecular movement to avoid biased PMF plots when using US simulations.
Collapse
Affiliation(s)
- Wanli You
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiye Tang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
21
|
Suplatov D, Kopylov K, Sharapova Y, Švedas V. Human p38α mitogen-activated protein kinase in the Asp168-Phe169-Gly170-in (DFG-in) state can bind allosteric inhibitor Doramapimod. J Biomol Struct Dyn 2018; 37:2049-2060. [PMID: 29749295 DOI: 10.1080/07391102.2018.1475260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Doramapimod (BIRB-796) is widely recognized as one of the most potent and selective type II inhibitors of human p38α mitogen-activated protein kinase (MAPK); however, the understanding of its binding mechanism remains incomplete. Previous studies indicated high affinity of the ligand to a so-called allosteric pocket revealed only in the 'out' state of the DFG motif (i.e. Asp168-Phe169-Gly170) when Phe169 becomes fully exposed to the solvent. The possibility of alternative binding in the DFG-in state was hypothesized, but the molecular mechanism was not known. Methods of bioinformatics, docking and long-time scale classical and accelerated molecular dynamics have been applied to study the interaction of Doramapimod with the human p38α MAPK. It was shown that Doramapimod can bind to the protein even when the Phe169 is fully buried inside the allosteric pocket and the kinase activation loop is in the DFG-in state. Orientation of the inhibitor in such a complex is significantly different from that in the known crystallographic complex formed by the kinase in the DFG-out state; however, the Doramapimod's binding is followed by the ligand-induced conformational changes, which finally improve accommodation of the inhibitor. Molecular modelling has confirmed that Doramapimod combines the features of type I and II inhibitors of p38α MAPK, i.e. can directly and indirectly compete with the ATP binding. It can be concluded that optimization of the initial binding in the DFG-in state and the final accommodation in the DFG-out state should be both considered at designing novel efficient type II inhibitors of MAPK and homologous proteins. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dmitry Suplatov
- a Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology , Lomonosov Moscow State University , Vorobjev hills , Moscow , Russia
| | - Kirill Kopylov
- a Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology , Lomonosov Moscow State University , Vorobjev hills , Moscow , Russia
| | - Yana Sharapova
- a Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology , Lomonosov Moscow State University , Vorobjev hills , Moscow , Russia
| | - Vytas Švedas
- a Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology , Lomonosov Moscow State University , Vorobjev hills , Moscow , Russia
| |
Collapse
|
22
|
Kinase Inhibitory Activities and Molecular Docking of a Novel Series of Anticancer Pyrazole Derivatives. Molecules 2018; 23:molecules23123074. [PMID: 30477238 PMCID: PMC6321587 DOI: 10.3390/molecules23123074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022] Open
Abstract
A series of novel 1,3,4-triarylpyrazoles containing different heterocycles has been prepared, characterized and screened for their in vitro antiproliferative activity against HePG-2, MCF-7, PC-3, A-549 and HCT-116 cancer cell lines. The biological results revealed that compound 6 showed the highest anticancer activity so it was subjected to a kinase assay study where it reduced the activity of several protein kinases including AKT1, AKT2, BRAF V600E, EGFR, p38α and PDGFRβ at 100 μM using the radiometric or ADP-Glo assay method. Molecular docking simulation supported the initial kinase assay and suggested a common mode of interaction at the ATP-binding sites of these kinases, which demonstrates that compound 6 is a potential agent for cancer therapy deserving further research.
Collapse
|
23
|
Roser P, Weisner J, Simard JR, Rauh D, Drescher M. Direct monitoring of the conformational equilibria of the activation loop in the mitogen-activated protein kinase p38α. Chem Commun (Camb) 2018; 54:12057-12060. [PMID: 30295691 DOI: 10.1039/c8cc06128a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conformational transitions in protein kinases are crucial for the biological function of these enzymes. Here, we characterize and assess conformational equilibria of the activation loop and the effect of small molecule inhibitors in the MAP kinase p38α. Our work experimentally revealed the existence of a two-state equilibrium for p38α while the addition of inhibitors shifts the equilibrium between these two states.
Collapse
Affiliation(s)
- Patrick Roser
- Department of Chemistry and Konstanz Research School Chemical Biology, (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
24
|
Larsen EK, Olivieri C, Walker C, V S M, Gao J, Bernlohr DA, Tonelli M, Markley JL, Veglia G. Probing Protein-Protein Interactions Using Asymmetric Labeling and Carbonyl-Carbon Selective Heteronuclear NMR Spectroscopy. Molecules 2018; 23:E1937. [PMID: 30081441 PMCID: PMC6205158 DOI: 10.3390/molecules23081937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/23/2022] Open
Abstract
Protein-protein interactions (PPIs) regulate a plethora of cellular processes and NMR spectroscopy has been a leading technique for characterizing them at the atomic resolution. Technically, however, PPIs characterization has been challenging due to multiple samples required to characterize the hot spots at the protein interface. In this paper, we review our recently developed methods that greatly simplify PPI studies, which minimize the number of samples required to fully characterize residues involved in the protein-protein binding interface. This original strategy combines asymmetric labeling of two binding partners and the carbonyl-carbon label selective (CCLS) pulse sequence element implemented into the heteronuclear single quantum correlation (¹H-15N HSQC) spectra. The CCLS scheme removes signals of the J-coupled 15N⁻13C resonances and records simultaneously two individual amide fingerprints for each binding partner. We show the application to the measurements of chemical shift correlations, residual dipolar couplings (RDCs), and paramagnetic relaxation enhancements (PRE). These experiments open an avenue for further modifications of existing experiments facilitating the NMR analysis of PPIs.
Collapse
Affiliation(s)
- Erik K Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Manu V S
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Madison, WI 53706, USA.
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Tröster A, Heinzlmeir S, Berger BT, Gande SL, Saxena K, Sreeramulu S, Linhard V, Nasiri AH, Bolte M, Müller S, Kuster B, Médard G, Kudlinzki D, Schwalbe H. NVP-BHG712: Effects of Regioisomers on the Affinity and Selectivity toward the EPHrin Family. ChemMedChem 2018; 13:1629-1633. [PMID: 29928781 DOI: 10.1002/cmdc.201800398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 01/14/2023]
Abstract
Erythropoietin-producing hepatocellular (EPH) receptors are transmembrane receptor tyrosine kinases. Their extracellular domains bind specifically to ephrin A/B ligands, and this binding modulates intracellular kinase activity. EPHs are key players in bidirectional intercellular signaling, controlling cell morphology, adhesion, and migration. They are increasingly recognized as cancer drug targets. We analyzed the binding of NVP-BHG712 (NVP) to EPHA2 and EPHB4. Unexpectedly, all tested commercially available NVP samples turned out to be a regioisomer (NVPiso) of the inhibitor, initially described in a Novartis patent application. They only differ by the localization of a single methyl group on either one of two adjacent nitrogen atoms. The two compounds of identical mass revealed different binding modes. Furthermore, both in vitro and in vivo experiments showed that the isomers differ in their kinase affinity and selectivity.
Collapse
Affiliation(s)
- Alix Tröster
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Benedict-Tilman Berger
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.,Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Santosh L Gande
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Amir H Nasiri
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael Bolte
- Institute for Inorganic Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
26
|
Pitsawong W, Buosi V, Otten R, Agafonov RV, Zorba A, Kern N, Kutter S, Kern G, Pádua RA, Meniche X, Kern D. Dynamics of human protein kinase Aurora A linked to drug selectivity. eLife 2018; 7:36656. [PMID: 29901437 PMCID: PMC6054532 DOI: 10.7554/elife.36656] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinase Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome. Protein kinases are a family of enzymes found in all living organisms. These enzymes help to control many biological processes, including cell division. When particular protein kinases do not work correctly, cells may start to divide uncontrollably, which can lead to cancer. One example is the kinase Aurora A, which is over-active in many common human cancers. As a result, researchers are currently trying to design drugs that reduce the activity of Aurora A in the hope that these could form new anticancer treatments. In general, drugs are designed to be as specific in their action as possible to reduce the risk of harmful side effects to the patient. Designing a drug that affects a single protein kinase, however, is difficult because there are hundreds of different kinases in the body, all with similar structures. Because drugs often work by binding to specific structural features, a drug that targets one protein kinase can often alter the activity of a large number of others too. Gleevec is a successful anti-leukemia drug that specifically works on one target kinase, producing minimal side effects. It was recently discovered that the drug works through a phenomenon called ‘induced fit’. This means that after the drug binds it causes a change in the enzyme’s overall shape that alters the activity of the enzyme. The shape change is complex, and so even small structural differences can change the effect of a particular drug. Do other drugs that target other protein kinases also produce induced fit effects? To find out, Pitsawong, Buosi, Otten, Agafonov et al. studied how three anti-cancer drugs interact with Aurora A: two drugs specifically designed to switch off Aurora A, and Gleevec (which does not target Aurora A). The two drugs that specifically target Aurora A were thought to work by targeting one structural feature of the enzyme. However, the biochemical and biophysical experiments performed by Pitsawong et al. revealed that these drugs instead work through an induced fit effect. By contrast, Gleevec did not trigger an induced fit on Aurora A and so bound less tightly to it. In light of these results, Pitsawong et al. suggest that future efforts to design drugs that target protein kinases should focus on exploiting the induced fit process. This will require more research into the structure of particular kinases.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Vanessa Buosi
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Renee Otten
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Roman V Agafonov
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Adelajda Zorba
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Nadja Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Steffen Kutter
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Gunther Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Ricardo Ap Pádua
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Xavier Meniche
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Dorothee Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| |
Collapse
|
27
|
You W, Chang CEA. Role of Molecular Interactions and Protein Rearrangement in the Dissociation Kinetics of p38α MAP Kinase Type-I/II/III Inhibitors. J Chem Inf Model 2018; 58:968-981. [PMID: 29620886 PMCID: PMC5975198 DOI: 10.1021/acs.jcim.7b00640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the governing factors of fast or slow inhibitor binding/unbinding assists in developing drugs with preferred kinetic properties. For inhibitors with the same binding affinity targeting different binding sites of the same protein, the kinetic behavior can profoundly differ. In this study, we investigated unbinding kinetics and mechanisms of fast (type-I) and slow (type-II/III) binders of p38α mitogen-activated protein kinase, where the crystal structures showed that type-I and type-II/III inhibitors bind to pockets with different conformations of the Asp-Phe-Gly (DFG) motif. The work used methods that combine conventional molecular dynamics (MD), accelerated molecular dynamics (AMD) simulations, and the newly developed pathway search guided by internal motions (PSIM) method to find dissociation pathways. The study focuses on revealing key interactions and molecular rearrangements that hinder ligand dissociation by using umbrella sampling and post-MD processing to examine changes in free energy during ligand unbinding. As anticipated, the initial dissociation steps all require breaking interactions that appeared in crystal structures of the bound complexes. Interestingly, for type-I inhibitors such as SB2, p38α keeps barrier-free conformational fluctuation in the ligand-bound complex and during ligand dissociation. In contrast, with a type-II/III inhibitor such as BIRB796, with the rearrangements of p38α in its bound state, ligand unbinding features energetically unfavorable protein-ligand concerted movement. Our results also show that the type-II/III inhibitors preferred dissociation pathways through the allosteric channel, which is consistent with an existing publication. The study suggests that the level of required protein rearrangement is one major determining factor of drug binding kinetics in p38α systems, providing useful information for development of inhibitors.
Collapse
Affiliation(s)
- Wanli You
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
28
|
Meng Y, Gao C, Clawson D, Atwell S, Russell M, Vieth M, Roux B. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. J Chem Theory Comput 2018; 14:2721-2732. [PMID: 29474075 PMCID: PMC6317529 DOI: 10.1021/acs.jctc.7b01170] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding protein conformational variability remains a challenge in drug discovery. The issue arises in protein kinases, whose multiple conformational states can affect the binding of small-molecule inhibitors. To overcome this challenge, we propose a comprehensive computational framework based on Markov state models (MSMs). Our framework integrates the information from explicit-solvent molecular dynamics simulations to accurately rank-order the accessible conformational variants of a target protein. We tested the methodology using Abl kinase with a reference and blind-test set. Only half of the Abl conformational variants discovered by our approach are present in the disclosed X-ray structures. The approach successfully identified a protein conformational state not previously observed in public structures but evident in a retrospective analysis of Lilly in-house structures: the X-ray structure of Abl with WHI-P154. Using a MSM-derived model, the free energy landscape and kinetic profile of Abl was analyzed in detail highlighting opportunities for targeting the unique metastable states.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Cen Gao
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - David Clawson
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Shane Atwell
- Applied Molecular Evolution, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Marijane Russell
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Michal Vieth
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
29
|
Dynamic activation and regulation of the mitogen-activated protein kinase p38. Proc Natl Acad Sci U S A 2018; 115:4655-4660. [PMID: 29666261 DOI: 10.1073/pnas.1721441115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitogen-activated protein kinases, which include p38, are essential for cell differentiation and autophagy. The current model for p38 activation involves activation-loop phosphorylation with subsequent substrate binding leading to substrate phosphorylation. Despite extensive efforts, the molecular mechanism of activation remains unclear. Here, using NMR spectroscopy, we show how the modulation of protein dynamics across timescales activates p38. We find that activation-loop phosphorylation does not change the average conformation of p38; rather it quenches the loop ps-ns dynamics. We then show that substrate binding to nonphosphorylated and phosphorylated p38 results in uniform µs-ms backbone dynamics at catalytically essential regions and across the entire molecule, respectively. Together, these results show that phosphorylation and substrate binding flatten the energy landscape of the protein, making essential elements of allostery and activation dynamically accessible. The high degree of structural conservation among ser/thr kinases suggests that elements of this mechanism may be conserved across the kinase family.
Collapse
|
30
|
Abstract
NMR spectroscopy and other solution methods are increasingly being used to obtain novel insights into the mechanisms by which MAPK regulatory proteins bind and direct the activity of MAPKs. Here, we describe how interactions between the MAPK p38α and its regulatory proteins are studied using NMR spectroscopy, isothermal titration calorimetry, and small angle X-ray scattering (SAXS).
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA. .,Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
31
|
Gilburt JAH, Sarkar H, Sheldrake P, Blagg J, Ying L, Dodson CA. Dynamic Equilibrium of the Aurora A Kinase Activation Loop Revealed by Single-Molecule Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- James A. H. Gilburt
- National Heart & Lung Institute; SAF Building; Imperial College London; London SW7 2AZ UK
| | - Hajrah Sarkar
- National Heart & Lung Institute; SAF Building; Imperial College London; London SW7 2AZ UK
| | - Peter Sheldrake
- Cancer Research UK Cancer Therapeutics Unit; The Institute of Cancer Research; 15 Cotswold Road Sutton Surrey SM2 5NG UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit; The Institute of Cancer Research; 15 Cotswold Road Sutton Surrey SM2 5NG UK
| | - Liming Ying
- National Heart & Lung Institute; SAF Building; Imperial College London; London SW7 2AZ UK
| | - Charlotte A. Dodson
- National Heart & Lung Institute; SAF Building; Imperial College London; London SW7 2AZ UK
| |
Collapse
|
32
|
Gilburt JAH, Sarkar H, Sheldrake P, Blagg J, Ying L, Dodson CA. Dynamic Equilibrium of the Aurora A Kinase Activation Loop Revealed by Single-Molecule Spectroscopy. Angew Chem Int Ed Engl 2017; 56:11409-11414. [PMID: 28700101 PMCID: PMC5601181 DOI: 10.1002/anie.201704654] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 12/14/2022]
Abstract
The conformation of the activation loop (T-loop) of protein kinases underlies enzymatic activity and influences the binding of small-molecule inhibitors. By using single-molecule fluorescence spectroscopy, we have determined that phosphorylated Aurora A kinase is in dynamic equilibrium between a DFG-in-like active T-loop conformation and a DFG-out-like inactive conformation, and have measured the rate constants of interconversion. Addition of the Aurora A activating protein TPX2 shifts the equilibrium towards an active T-loop conformation whereas addition of the inhibitors MLN8054 and CD532 favors an inactive T-loop. We show that Aurora A binds TPX2 and MLN8054 simultaneously and provide a new model for kinase conformational behavior. Our approach will enable conformation-specific effects to be integrated into inhibitor discovery across the kinome, and we outline some immediate consequences for structure-based drug discovery.
Collapse
Affiliation(s)
- James A. H. Gilburt
- National Heart & Lung InstituteSAF BuildingImperial College LondonLondonSW7 2AZUK
| | - Hajrah Sarkar
- National Heart & Lung InstituteSAF BuildingImperial College LondonLondonSW7 2AZUK
| | - Peter Sheldrake
- Cancer Research UK Cancer Therapeutics UnitThe Institute of Cancer Research15 Cotswold RoadSuttonSurreySM2 5NGUK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics UnitThe Institute of Cancer Research15 Cotswold RoadSuttonSurreySM2 5NGUK
| | - Liming Ying
- National Heart & Lung InstituteSAF BuildingImperial College LondonLondonSW7 2AZUK
| | - Charlotte A. Dodson
- National Heart & Lung InstituteSAF BuildingImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
33
|
Wentsch HK, Walter NM, Bührmann M, Mayer-Wrangowski S, Rauh D, Zaman GJR, Willemsen-Seegers N, Buijsman RC, Henning M, Dauch D, Zender L, Laufer S. Optimierte Bindungsdauer am Zielenzym: Typ-I1/2
-Inhibitoren der p38α-MAP-Kinase mit verbesserter Bindungskinetik durch direkte Interaktion mit der R-Spine. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Heike K. Wentsch
- Pharmazeutisches Institut; Pharmazeutische und Medizinische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
| | - Niklas M. Walter
- Pharmazeutisches Institut; Pharmazeutische und Medizinische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
| | - Mike Bührmann
- Fakultät für Chemie und Chemische Biologie; TU Dortmund; Deutschland
| | | | - Daniel Rauh
- Fakultät für Chemie und Chemische Biologie; TU Dortmund; Deutschland
| | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V. (NTRC); Oss Niederlande
| | | | | | - Melanie Henning
- Klinische Tumorbiologie; Abteilung Innere Medizin VIII; Universitätsklinikum Tübingen; Deutschland
- Institut für Physiologie; Abteilung Physiologie I; Eberhard Karls Universität Tübingen; Deutschland
| | - Daniel Dauch
- Klinische Tumorbiologie; Abteilung Innere Medizin VIII; Universitätsklinikum Tübingen; Deutschland
- Institut für Physiologie; Abteilung Physiologie I; Eberhard Karls Universität Tübingen; Deutschland
| | - Lars Zender
- Klinische Tumorbiologie; Abteilung Innere Medizin VIII; Universitätsklinikum Tübingen; Deutschland
- Institut für Physiologie; Abteilung Physiologie I; Eberhard Karls Universität Tübingen; Deutschland
| | - Stefan Laufer
- Pharmazeutisches Institut; Pharmazeutische und Medizinische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
| |
Collapse
|
34
|
Wentsch HK, Walter NM, Bührmann M, Mayer-Wrangowski S, Rauh D, Zaman GJR, Willemsen-Seegers N, Buijsman RC, Henning M, Dauch D, Zender L, Laufer S. Optimized Target Residence Time: Type I1/2
Inhibitors for p38α MAP Kinase with Improved Binding Kinetics through Direct Interaction with the R-Spine. Angew Chem Int Ed Engl 2017; 56:5363-5367. [DOI: 10.1002/anie.201701185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/09/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Heike K. Wentsch
- Institute of Pharmaceutical Sciences; Pharmaceutical and Medicinal Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Niklas M. Walter
- Institute of Pharmaceutical Sciences; Pharmaceutical and Medicinal Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Mike Bührmann
- Faculty of Chemistry and Chemical Biology; Technische Universität Dortmund; Germany
| | | | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology; Technische Universität Dortmund; Germany
| | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V. (NTRC); Oss The Netherlands
| | | | - Rogier C. Buijsman
- Netherlands Translational Research Center B.V. (NTRC); Oss The Netherlands
| | - Melanie Henning
- Department of Internal Medicine VIII; University Hospital Tübingen (Germany)
- Institute of Physiology; Department of Physiology I; Eberhard Karls Universität Tübingen; Germany
| | - Daniel Dauch
- Department of Internal Medicine VIII; University Hospital Tübingen (Germany)
- Institute of Physiology; Department of Physiology I; Eberhard Karls Universität Tübingen; Germany
| | - Lars Zender
- Department of Internal Medicine VIII; University Hospital Tübingen (Germany)
- Institute of Physiology; Department of Physiology I; Eberhard Karls Universität Tübingen; Germany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences; Pharmaceutical and Medicinal Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
| |
Collapse
|
35
|
Casasnovas R, Limongelli V, Tiwary P, Carloni P, Parrinello M. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations. J Am Chem Soc 2017; 139:4780-4788. [PMID: 28290199 DOI: 10.1021/jacs.6b12950] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding the structural and energetic requisites of ligand binding toward its molecular target is of paramount relevance in drug design. In recent years, atomistic free energy calculations have proven to be a valid tool to complement experiments in characterizing the thermodynamic and kinetic properties of protein/ligand interaction. Here, we investigate, through a recently developed metadynamics-based protocol, the unbinding mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. We provide a thorough description of the ligand unbinding pathway identifying the most stable binding mode and other thermodynamically relevant poses. From our simulations, we estimated the unbinding rate as koff = 0.020 ± 0.011 s-1. This is in good agreement with the experimental value (koff = 0.14 s-1). Next, we developed a Markov state model that allowed identifying the rate-limiting step of the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38 inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in designing new drugs with engineered binding/unbinding kinetics.
Collapse
Affiliation(s)
- Rodrigo Casasnovas
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI) , Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology, via G. Buffi 13, CH-6900, Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, Naples I-80131, Italy
| | - Pratyush Tiwary
- Department of Chemistry, Columbia University , New York, New York, 10027, United States
| | - Paolo Carloni
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana , via G. Buffi 13, Lugano CH-6900, Switzerland
| |
Collapse
|
36
|
Chen H, Marsiglia WM, Cho MK, Huang Z, Deng J, Blais SP, Gai W, Bhattacharya S, Neubert TA, Traaseth NJ, Mohammadi M. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases. eLife 2017; 6:e21137. [PMID: 28166054 PMCID: PMC5293489 DOI: 10.7554/elife.21137] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/02/2017] [Indexed: 01/07/2023] Open
Abstract
Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the 'molecular brake', 'DFG latch', 'A-loop plug', and 'αC tether'. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs.
Collapse
Affiliation(s)
- Huaibin Chen
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | | | - Min-Kyu Cho
- Department of Chemistry, New York University, New York, United States
| | | | - Jingjing Deng
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Steven P Blais
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Weiming Gai
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | | | - Thomas A Neubert
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | | | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| |
Collapse
|
37
|
Heinzlmeir S, Kudlinzki D, Sreeramulu S, Klaeger S, Gande SL, Linhard V, Wilhelm M, Qiao H, Helm D, Ruprecht B, Saxena K, Médard G, Schwalbe H, Kuster B. Chemical Proteomics and Structural Biology Define EPHA2 Inhibition by Clinical Kinase Drugs. ACS Chem Biol 2016; 11:3400-3411. [PMID: 27768280 DOI: 10.1021/acschembio.6b00709] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The receptor tyrosine kinase EPHA2 (Ephrin type-A receptor 2) plays important roles in oncogenesis, metastasis, and treatment resistance, yet therapeutic targeting, drug discovery, or investigation of EPHA2 biology is hampered by the lack of appropriate inhibitors and structural information. Here, we used chemical proteomics to survey 235 clinical kinase inhibitors for their kinase selectivity and identified 24 drugs with submicromolar affinities for EPHA2. NMR-based conformational dynamics together with nine new cocrystal structures delineated drug-EPHA2 interactions in full detail. The combination of selectivity profiling, structure determination, and kinome wide sequence alignment allowed the development of a classification system in which amino acids in the drug binding site of EPHA2 are categorized into key, scaffold, potency, and selectivity residues. This scheme should be generally applicable in kinase drug discovery, and we anticipate that the provided information will greatly facilitate the development of selective EPHA2 inhibitors in particular and the repurposing of clinical kinase inhibitors in general.
Collapse
Affiliation(s)
- Stephanie Heinzlmeir
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Denis Kudlinzki
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sridhar Sreeramulu
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
| | - Susan Klaeger
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Santosh Lakshmi Gande
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Verena Linhard
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
| | - Mathias Wilhelm
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Huichao Qiao
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Dominic Helm
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Benjamin Ruprecht
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Krishna Saxena
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Guillaume Médard
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Harald Schwalbe
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bernhard Kuster
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Integrated Protein Science Munich (CIPSM), 85354 Freising, Germany
- Bavarian
Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
38
|
Gande SL, Saxena K, Sreeramulu S, Linhard V, Kudlinzki D, Heinzlmeir S, Reichert AJ, Skerra A, Kuster B, Schwalbe H. Expression and Purification of EPHA2 Tyrosine Kinase Domain for Crystallographic and NMR Studies. Chembiochem 2016; 17:2257-2263. [DOI: 10.1002/cbic.201600483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Santosh L. Gande
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Stephanie Heinzlmeir
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
- Chair of Proteomics and Bioanalytics; Technical University of Munich; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Andreas J. Reichert
- Chair of Biological Chemistry; Technical University of Munich; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Arne Skerra
- Chair of Biological Chemistry; Technical University of Munich; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Bernhard Kuster
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
- Chair of Proteomics and Bioanalytics; Technical University of Munich; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
- Center for integrated Protein Science Munich (CIPSM); Technical University of Munich; Arcisstrasse 21 80333 München Germany
- Bavarian Biomolecular Mass Spectrometry Center; Technical University of Munich; Gregor-Mendel-Strasse 4 85354 Freising Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Johann Wolfgang Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium (DKTK); In Neuenheimer Feld 280 69120 Heidelberg Germany
- German Cancer Research Center (DKFZ); In Neuenheimer Feld 280 69120 Heidelberg Germany
| |
Collapse
|
39
|
Cappelli A, Nannicini C, Chelini A, Paolino M, Giuliani G, Anzini M, Giordani A, Sabatini C, Caselli G, Mennuni L, Makovec F, Giorgi G, Vomero S, Menziani MC. Phenylindenone isomers as divergent modulators of p38α MAP kinase. Bioorg Med Chem Lett 2016; 26:5160-5163. [DOI: 10.1016/j.bmcl.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 11/29/2022]
|
40
|
Nash MA, Smith SP, Fontes CM, Bayer EA. Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes. Curr Opin Struct Biol 2016; 40:89-96. [PMID: 27579515 DOI: 10.1016/j.sbi.2016.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Cohesins and dockerins are complementary interacting protein modules that form stable and highly specific receptor-ligand complexes. They play a crucial role in the assembly of cellulose-degrading multi-enzyme complexes called cellulosomes and have potential applicability in several technology areas, including biomass conversion processes. Here, we describe several exceptional properties of cohesin-dockerin complexes, including their tenacious biochemical affinity, remarkably high mechanostability and a dual-binding mode of recognition that is contrary to the conventional lock-and-key model of receptor-ligand interactions. We focus on structural aspects of the dual mode of cohesin-dockerin binding, highlighting recent single-molecule analysis techniques for its explicit characterization.
Collapse
Affiliation(s)
- Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany; Department of Chemistry, University of Basel, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH-Zürich), 4058 Basel, Switzerland.
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Carlos Mga Fontes
- CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
41
|
NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38γ. Sci Rep 2016; 6:28655. [PMID: 27353957 PMCID: PMC4926091 DOI: 10.1038/srep28655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 02/01/2023] Open
Abstract
The intramolecular network structure of a protein provides valuable insights into allosteric sites and communication pathways. However, a straightforward method to comprehensively map and characterize these pathways is not currently available. Here we present an approach to characterize intramolecular network structure using NMR chemical shift perturbations. We apply the method to the mitogen activated protein kinase (MAPK) p38γ. p38γ contains allosteric sites that are conserved among eukaryotic kinases as well as unique to the MAPK family. How these regulatory sites communicate with catalytic residues is not well understood. Using our method, we observe and characterize for the first time information flux between regulatory sites through a conserved kinase infrastructure. This network is accessed, reinforced, and broken in various states of p38γ, reflecting the functional state of the protein. We demonstrate that the approach detects critical junctions in the network corresponding to biologically significant allosteric sites and pathways.
Collapse
|
42
|
Morando MA, Saladino G, D’Amelio N, Pucheta-Martinez E, Lovera S, Lelli M, López-Méndez B, Marenchino M, Campos-Olivas R, Gervasio FL. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase. Sci Rep 2016; 6:24439. [PMID: 27087366 PMCID: PMC4834493 DOI: 10.1038/srep24439] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/29/2016] [Indexed: 01/06/2023] Open
Abstract
Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called "DFG-flip" of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an "in to out" movement resulting in a particular inactive conformation to which "type II" kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.
Collapse
Affiliation(s)
- Maria Agnese Morando
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Giorgio Saladino
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Nicola D’Amelio
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | | - Silvia Lovera
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Moreno Lelli
- Chemistry Department, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Blanca López-Méndez
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Marco Marenchino
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Francesco Luigi Gervasio
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
43
|
Ansideri F, Lange A, El-Gokha A, Boeckler FM, Koch P. Fluorescence polarization-based assays for detecting compounds binding to inactive c-Jun N-terminal kinase 3 and p38α mitogen-activated protein kinase. Anal Biochem 2016; 503:28-40. [PMID: 26954235 DOI: 10.1016/j.ab.2016.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/14/2022]
Abstract
Two fluorescein-labeled pyridinylimidazoles were synthesized and evaluated as probes for the binding affinity determination of potential kinase inhibitors to the c-Jun N-terminal kinase 3 (JNK3) and p38α mitogen-activated protein kinase (MAPK). Fluorescence polarization (FP)-based competition binding assays were developed for both enzymes using 1-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)-3-(4-((4-(4-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)thiourea (5) as an FP probe (JNK3: Kd = 3.0 nM; p38α MAPK: Kd = 5.7 nM). The validation of the assays with known inhibitors of JNK3 and p38α MAPK revealed that both FP assays correlate very well with inhibition data received by the activity assays. This, in addition to the viability of both FP-based binding assays for the high-throughput screening procedure, makes the assays suitable as inexpensive prescreening protocols for JNK3 and p38α MAPK inhibitors.
Collapse
Affiliation(s)
- Francesco Ansideri
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Andreas Lange
- Institute of Pharmaceutical Sciences, Molecular Design and Pharmaceutical Biophysics, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Ahmed El-Gokha
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany; Department of Chemistry, Faculty of Science, Menofia University, Menofia, Egypt
| | - Frank M Boeckler
- Institute of Pharmaceutical Sciences, Molecular Design and Pharmaceutical Biophysics, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Pierre Koch
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
44
|
Yan M, Wang H, Wang Q, Zhang Z, Zhang C. Allosteric inhibition of c-Met kinase in sub-microsecond molecular dynamics simulations induced by its inhibitor, tivantinib. Phys Chem Chem Phys 2016; 18:10367-74. [DOI: 10.1039/c5cp07001e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular dynamics simulations showed that conformation transition of c-Met from DFG-in to DFG-out may accomplish rapidly in the presence of tivantinib. A unique binding mode of tivantinib was found to be critical for this “DFG-flip”.
Collapse
Affiliation(s)
- Maocai Yan
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| | - Huiyun Wang
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| | - Qibao Wang
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| | - Zhen Zhang
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| | - Chunyan Zhang
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| |
Collapse
|
45
|
Nasiri AH, Saxena K, Bats JW, Nasiri HR, Schwalbe H. Biophysical investigation and conformational analysis of p38α kinase inhibitor doramapimod and its analogues. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00262e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doramapimod (BIRB 796) is a potent inhibitor of p38α nitrogen-activated protein kinase. By using biophysical methods, a clear correlation between kinase binding and the torsion angle θ of doramapimod analogues was found, highlighting the importance of inhibitor conformation for protein binding.
Collapse
Affiliation(s)
- Amir H. Nasiri
- Institute of Organic Chemistry and Chemical Biology
- Center for Biomolecular Magnetic Resonance (BMRZ)
- Johann Wolfgang Goethe-University Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - Krishna Saxena
- Institute of Organic Chemistry and Chemical Biology
- Center for Biomolecular Magnetic Resonance (BMRZ)
- Johann Wolfgang Goethe-University Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - Jan W. Bats
- Institute of Organic Chemistry and Chemical Biology
- Center for Biomolecular Magnetic Resonance (BMRZ)
- Johann Wolfgang Goethe-University Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - Hamid R. Nasiri
- Institute of Organic Chemistry and Chemical Biology
- Center for Biomolecular Magnetic Resonance (BMRZ)
- Johann Wolfgang Goethe-University Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology
- Center for Biomolecular Magnetic Resonance (BMRZ)
- Johann Wolfgang Goethe-University Frankfurt
- D-60438 Frankfurt am Main
- Germany
| |
Collapse
|
46
|
Astolfi A, Iraci N, Sabatini S, Barreca ML, Cecchetti V. p38α MAPK and Type I Inhibitors: Binding Site Analysis and Use of Target Ensembles in Virtual Screening. Molecules 2015; 20:15842-61. [PMID: 26334265 PMCID: PMC6331920 DOI: 10.3390/molecules200915842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022] Open
Abstract
Mitogen-activated protein kinase p38α plays an essential role in the regulation of pro-inflammatory signaling, and selective blockade of this kinase could be efficacious in many pathological processes. Despite considerable research efforts focused on the discovery and development of p38α MAPK inhibitors, no drug targeting this protein has been approved for clinical use so far. We herein analyze the available crystal structures of p38α MAPK in complex with ATP competitive type I inhibitors, getting insights into ATP binding site conformation and its influence on automated molecular docking results. The use of target ensembles, rather than single conformations, resulted in a performance improvement in both the ability to reproduce experimental bound conformations and the capability of mining active molecules from compound libraries. The information gathered from this study can be exploited in structure-based drug discovery programs having as the ultimate aim the identification of novel p38α MAPK type I inhibitors.
Collapse
Affiliation(s)
- Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy.
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy.
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy.
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy.
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy.
| |
Collapse
|
47
|
Basnet SKC, Diab S, Schmid R, Yu M, Yang Y, Gillam TA, Teo T, Li P, Peat T, Albrecht H, Wang S. Identification of a Highly Conserved Allosteric Binding Site on Mnk1 and Mnk2. Mol Pharmacol 2015; 88:935-48. [PMID: 26268528 DOI: 10.1124/mol.115.100131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Elevated levels of phosphorylated eukaryotic initiation factor 4E (eIF4E) have been implicated in many tumor types, and mitogen activated protein kinase-interacting kinases (Mnks) are the only known kinases that phosphorylate eIF4E at Ser209. The phosphorylation of eIF4E is essential for oncogenic transformation but is of no significance to normal growth and development. Pharmacological inhibition of Mnks therefore provides a nontoxic and effective strategy for cancer therapy. However, a lack of specific Mnk inhibitors has confounded pharmacological target validation and clinical development. Herein, we report the identification of a novel series of Mnk inhibitors and their binding modes. A systematic workflow has been established to distinguish between type III and type I/II inhibitors. A selection of 66 compounds was tested for Mnk1 and Mnk2 inhibition, and 9 out of 20 active compounds showed type III interaction with an allosteric site of the proteins. Most of the type III inhibitors exhibited dual Mnk1 and Mnk2 activities and demonstrated potent antiproliferative properties against the MV4-11 acute myeloid leukemia cell line. Interestingly, ATP-/substrate-competitive inhibitors were found to be highly selective for Mnk2, with little or no activity for Mnk1. Our study suggests that Mnk1 and Mnk2 share a common structure of the allosteric inhibitory binding site but possess different structural features of the ATP catalytic domain. The findings will assist in the future design and development of Mnk targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Sunita K C Basnet
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Sarah Diab
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Raffaella Schmid
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Yuchao Yang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Todd Alexander Gillam
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Theodosia Teo
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Peng Li
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Tom Peat
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)
| |
Collapse
|
48
|
Abstract
Protein tyrosine kinases differ widely in their propensity to undergo rearrangements
of the N-terminal Asp–Phe–Gly (DFG) motif of the activation
loop, with some, including FGFR1 kinase, appearing refractory to this so-called
‘DFG flip'. Recent inhibitor-bound structures have unexpectedly
revealed FGFR1 for the first time in a ‘DFG-out' state. Here we
use conformationally selective inhibitors as chemical probes for interrogation of
the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our
detailed structural and biophysical insights identify contributions from altered
dynamics in distal elements, including the αH helix, towards the
outstanding stability of the DFG-out complex with the inhibitor ponatinib. We
conclude that the αC-β4 loop and ‘molecular
brake' regions together impose a high energy barrier for this
conformational rearrangement, and that this may have significance for maintaining
autoinhibition in the non-phosphorylated basal state of FGFR1. Receptor tyrosine kinases are key mediators of cell proliferation
that have been implicated in several disease states for which they represent promising
drug targets. Here the authors determine the thermodynamic basis for the low propensity
of FGFR1 to access the DFG-Phe-out conformation required to bind type-II
inhibitors.
Collapse
|
49
|
Larion M, Hansen AL, Zhang F, Bruschweiler-Li L, Tugarinov V, Miller BG, Brüschweiler R. Kinetic Cooperativity in Human Pancreatic Glucokinase Originates from Millisecond Dynamics of the Small Domain. Angew Chem Int Ed Engl 2015; 54:8129-32. [PMID: 26013420 PMCID: PMC4587531 DOI: 10.1002/anie.201501204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/15/2015] [Indexed: 11/06/2022]
Abstract
The hallmark of glucokinase (GCK), which catalyzes the phosphorylation of glucose during glycolysis, is its kinetic cooperativity, whose understanding at atomic detail has remained open since its discovery over 40 years ago. Herein, by using kinetic CPMG NMR spectroscopic data for 17 isoleucine side chains distributed over all parts of GCK, we show that the origin of kinetic cooperativity is rooted in intramolecular protein dynamics. Residues of glucose-free GCK located in the small domain displayed distinct exchange behavior involving multiple conformers that are substantially populated (p>17 %) with a kex value of 509±51 s(-1) , whereas in the glucose-bound form these exchange processes were quenched. This exchange behavior directly competes with the enzymatic turnover rate at physiological glucose concentrations, thereby generating the sigmoidal rate dependence that defines kinetic cooperativity.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 (USA)
| | - Alexandar L Hansen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 (USA)
| | - Fengli Zhang
- National High Magnetic Field Laboratory, Tallahassee, FL 32306 (USA)
| | - Lei Bruschweiler-Li
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 (USA)
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (USA)
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 (USA).
| |
Collapse
|
50
|
Larion M, Hansen AL, Zhang F, Bruschweiler-Li L, Tugarinov V, Miller BG, Brüschweiler R. Kinetic Cooperativity in Human Pancreatic Glucokinase Originates from Millisecond Dynamics of the Small Domain. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|